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ELEMENTS IN EXCHANGE QB∞-RINGS

Huanyin Chen

Abstract. An element u ∈ R is pseudo invertible if there exist v, w ∈ R
such that R(1 − uv)R(1 − wu)R is a nilpotent ideal. A ring R is a QB∞
ring provided whenever aR + bR = R with a, b ∈ R, there exists y ∈ R such
that a + by is pseudo invertible. We prove, in this paper, that an exchange
ring R is a QB∞-ring if and only if whenever x = xyx, there exists a pseudo
invertible u ∈ R such that x = xyu = uyx if and only if whenever x = xyx,
there exists a ∈ R such that y+a is pseudo invertible and 1+xa is invertible.
Also we characterize exchange QB∞-rings by virtue of pseudo unit-regularity.
These generalize the main results of Wei (2004, Theorem 3, Theorem 7; 2005,
Theorem 2.2, Theorem 2.4 and Theorem 3.6).

1. INTRODUCTION

A ring R has stable one provided that aR + bR = R with a, b ∈ R implies
that there exists a y ∈ R such that a + by is invertible (cf. [4] and [9]). Replacing
invertible elements with weakly invertible elements in the definition of stable range
one, one introduced some other conditions. A ring R has weakly stable range one
if whenever aR + bR = R with a, b ∈ R, there exists y ∈ R such that a + by is
right or left invertible (cf. [5] and [12-13]). In [2], Ara et al. discovered a new
class of rings, i.e., QB-rings. They called a ring R is a QB-ring provided that
whenever aR + bR = R with a, b ∈ R, there exists y ∈ R such that a + by is
quasi invertible, where u ∈ R is quasi invertible provided that there exist v, w ∈ R

such that (1 − uv)R(1− wu) = (1 − wu)R(1 − uv) = 0. The class of QB-rings
gives a nice infinite analogoue of stable range one (see [2-3] and [6]). In [7], the
author introduced a new class of rings, i.e., QB∞-rings. A ring R is a QB∞ ring
provided whenever aR+bR = R with a, b ∈ R, there exists y ∈ R such that a+by

is pseudo invertible, where u ∈ R is pseudo invertible if there exists v, w ∈ R
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such that R(1 − uv)R(1− wu)R is a nilpotent ideal. Clearly, every QB-ring is a
QB∞-ring, while the converse is not true. For example, the ring TM2(R) of all
2 × 2 upper triangular matrices over a QB-ring R is a QB∞-ring, but TM2(R)
is not a QB-ring (see [7, Example 3.3]). Also we note that infinite analogoues of
stable range one were also studied in the context of C∗-algebras (cf. [10]).

A ring R is called an exchange ring if for every right R-module A and any two
decompositions A = M ⊕ N =

⊕
i∈I Ai, where MR

∼= RR and I is a finite index
set, there exist submodules A′

i ⊆ Ai such that A = M⊕(
⊕

i∈I A′
i). It is well known

that regular rings, π-regular rings, unit C∗-algebras of real rank zero, semiperfect
rings, left or right continuous rings and clean rings are all exchange rings (cf. [1],
[6], [9] and [11]). We prove, in this paper, that an exchange ring R is a QB∞-ring
if and only if whenever x = xyx, there exists a pseudo invertible u ∈ R such that
x = xyu = uyx if and only if whenever x = xyx, there exists a ∈ R such that
y + a is pseudo invertible and 1 + xa is invertible. Also we characterize exchange
QB∞-rings by virtue of pseudo unit-regularity. These generalize [12, Theorem 3],
[12,Theorem 7], [13,Theorem 2.2], [13, Theorem 2.4] and [13, Theorem 3.6].

Throughout, R is an associative ring with nonzero identity 1R. U(R) denotes
the set of all units of R. x ∈ R is called pseudo unit-regular provided that there
exists a u ∈ R−1∞ such that x = xux. We always use Rr∞ to stand for the set of all
pseudo unit-regular elements in R.

2. PSEUDO INVERTIBILITY

Let Q(0) = {r ∈ R | RrR is an nilpotent ideal of R}. Then Q(0) is an
ideal of R. We begin with a characterization of exchange QB∞-rings by virtue of
pseudo-invertible elements.

Theorem 2.1. Let R be an exchange ring. Then the following are equivalent:

(i) R is a QB∞-ring.
(ii) Every regular element in R is pseudo unit-regular.

Proof. (1) ⇒ (2) Given any regular x ∈ R, there exists a y ∈ R such that
x = xyx. Since yx + (1 − yx) = 1, we have a z ∈ R such that y + (1 − yx)z =
u ∈ R−1∞ . Hence, x = xyx = x

(
y + (1 − yx)z

)
x = xux, as required.

(2) ⇒ (1) Suppose that ax + b = 1 in R. In view of [11, Proposition 28.6],
there exists an idempotent e ∈ bR such that 1− e ∈ (1− b)R. Assume that e = bs

and 1 − e = axt for some s, t ∈ R. Then axt + e = 1; hence, (1 − e)a ∈ R is
regular. By assumption, we can find a pseudo-invertible u ∈ R such that (1−e)a =
(1− e)au(1− e)a. Since (1− e)axt + e = 1, we have that u(1− e)axt+ ue = u.
Let f = u(1 − e)a. Then f = f 2 ∈ R. Clearly, f(xt + ue) + (1− f)ue = u, and
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so (1 − f)ue = (1 − f)u. Since u ∈ R−1∞ , it follows from [7, Lemma 2.1] that
u ≡ uvu

(
mod Q(0)

)
for a v ∈ R. Thus,

(1− f)uv(1− f)u = (1 − f)
(
uvu − uvu(1− e)au

)

≡ (1 − f)(u − fu)

≡ (1 − f)u
(
mod Q(0)

)
.

Let g = (1−f)uv(1−f). Then g ≡ g2
(
mod Q(0)

)
. As a result, we get f(xt+ue)+

gu ≡ u
(
mod Q(0)

)
. One easily checks that fg = gf = 0, and so f(xt + ue) ≡

fu
(
mod Q(0)

)
. One easily checks that

u
(
(1 − e)a + ev(1− f)(1 + fuev(1 − f)

)(
1− fuev(1− f)

)
u

=
(
f + uev(1− f)(1 + fuev(1 − f)

)(
1 − fuev(1 − f)

)
u

=
(
f(1 − fuev(1 − f) + uev(1− f)

)
u

=
(
f + (1− f)uev(1− f)

)
u

= fu + (1− f)uv(1− f)u

= fu + gu

≡ u
(
mod Q(0)

)
.

As u ∈ R−1∞ , it is easy to verify that

a + bs
(
v(1− f) − a

)

= a − ea + ev(1− f)
= (1 − e)a + v(1− f)(1 + fuv(1− f) ∈ R−1

∞ .

Therefore R is a QB∞-ring.

Corollary 2.2. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB∞-ring.
(2) For any regular x ∈ R, there exists u ∈ R−1∞ such that ux is an idempotent.

Proof. (1) ⇒ (2) For any regular x ∈ R, it follows by Theorem 2.1 that there
exists a u ∈ R−1∞ such that x = xux. So ux ∈ R is an idempotent.

(2) ⇒ (1) For any regular x ∈ R, there exists a u ∈ R−1∞ such that ux is
an idempotent. Clearly, we have a y ∈ R such that x = xyx and y = yxy.
From yx + (1 − yx) = 1, we get uyx + u(1 − yx) = u. As in the proof of
Theorem 2.1, we can find a z ∈ R such that y + (1 − yx)z = u ∈ R−1∞ . Hence, x
= x

(
y+(1−yx)z

)
x = xux. According to Theorem 2.1, we complete the proof.
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Lemma 2.3. Let R be a ring and x ∈ R. Then the following are equivalent:

(1) There exists a v ∈ R−1∞ such that x = xvx.
(2) x = xyx = xyu, where y ∈ R, u ∈ R−1∞ .
(3) x = xyx = uyx, where y ∈ R, u ∈ R−1∞ .

Proof. (1) ⇒ (2) Since xy + (1 − xy) = 1 with y ∈ R−1∞ , it follows by [7,
Lemma 4.4] that x+(1−xy)z ∈ R−1∞ for a z ∈ R. Hence x = xy

(
x+(1−xy)z

)
=

xyu, where u = x + (1− xy)z ∈ R−1∞ .
(2) ⇒ (1) Suppose that x = xyx = xyu, where y ∈ R, u ∈ R−1∞ . Let

e = xy. Then e ∈ R is an idempotent. Since xy + (1 − xy) = 1, we have that
euy +(1−xy) = 1, and so euy(1−e)+(1−xy)(1−e) = 1−e. This implies that
e+(1−xy)(1−e) = 1−euy(1−e) ∈ U(R). Therefore we get x+(1−xy)(1−e) =(
1 − euy(1 − e)

)
u ∈ R−1∞ . In view of [7, Lemma 4.4], we can find a z ∈ R such

that w := y + z(1 − xy) ∈ R−1∞ . Thus, x = x
(
y + z(1− xy)

)
x = xwx.

(1) ⇒ (3) Since yx + (1 − yx) = 1 with y ∈ R−1∞ , it follows by [7, Lemma
4.4] that x + z(1− yx) ∈ R−1∞ for a z ∈ R. Then x =

(
x + (1− yx)z

)
yx = uyx,

where u = x + z(1 − yx) ∈ R−1∞ .
(3) ⇒ (1) Suppose that x = xyx = uyx, where y ∈ R, u ∈ R−1∞ . Let

e = yx. Then e ∈ R is an idempotent. Since yx + (1 − yx) = 1, we have that
yue + (1 − yx) = 1, and so (1 − e)yue + (1 − e)(1 − yx) = 1 − e. Hence,
e + (1 − e)yue = 1 − (1 − e)yue ∈ U(R). Thus, we get x + u(1 − e)yue =
u
(
1 − (1 − e)yue

) ∈ R−1∞ . By virtue of [7, Lemma 4.4], we have a z ∈ R such
that w := y + (1 − yx)z ∈ R−1∞ . Therefore x = x

(
y + (1 − yx)z

)
x = xwx, as

asserted.

Theorem 2.4. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB∞-ring.
(2) Whenever x = xyx, there exists u ∈ R−1∞ such that x = xyu.
(3) Whenever x = xyx, there exists u ∈ R−1∞ such that x = uyx.

Proof. (1) ⇒ (2) Suppose that x = xyx. In view of Theorem 2.1, we can
find a v ∈ R−1∞ such that x = xvx. By Lemma 2.3, we have a u ∈ R−1∞ such
that x = xvx = xvu. Let e = xv. Then e = e2 ∈ R. Since xy + (1 − xy) = 1,
we have that euy + (1 − xy) = 1; hence, euy(1 − e) + (1 − xy)(1 − e) = 1 − e.
This implies that e + (1− xy)(1− e) = 1− euy(1− e) ∈ U(R), and so x + (1−
xy)(1 − e) =

(
1 − euy(1 − e)

)
u ∈ R−1∞ . Let w =

(
1 − euy(1 − e)

)
u. Then

x = xyx = xy
(
x + (1 − xy)(1− e)

)
= xyw.

(2) ⇒ (1) is clear by Lemma 2.3 and Theorem 2.1.
(1) ⇔ (3) is proved in the same manner.



Elements in Exchange QB∞-Rings 1035

Corollary 2.5. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB∞-ring.
(2) Whenever x ∈ R is regular, there exist an idempotent e ∈ R and a u ∈ R−1∞

such that x = eu.
(3) Whenever x ∈ R is regular, there exist an idempotent e ∈ R and a u ∈ R−1∞

such that x = ue.

Proof. (1) ⇒ (2) Since x ∈ R is regular, there exists a y ∈ R such that
x = xyx. In view of Theorem 2.4, we have a u ∈ R−1∞ such that x = xyu. Let
e = xy. Then e ∈ R is an idempotent and x = eu, as required.

(2) ⇒ (1) Given regular x ∈ R, we have a y ∈ R such that x = xyx. By
assumption, we have a u ∈ R−1∞ and an idempotent e ∈ R such that x = eu. Since
xy + (1 − xy) = 1, euy + (1 − xy) = 1. As in the proof of Theorem 2.4, we
have that x + (1 − xy)(1 − e) =

(
1 − euy(1 − e)

)
u ∈ R−1∞ . This implies that

x = xyx = xyw, where w :=
(
1 − euy(1 − e)

)
u ∈ R−1∞ . In view of Lemma 2.3

and Theorem 2.4, we conclude that R is a QB∞-ring.
(1) ⇔ (3) is symmetric.

Corollary 2.6. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB∞-ring.
(2) Whenever ϕ : aR ∼= bR with a, b ∈ R, there exists u ∈ R−1∞ such that

b = ϕ(a)u.
(3) Whenever ϕ : Ra ∼= Rb with a, b ∈ R, there exists u ∈ R−1∞ such that

b = uϕ(a).

Proof. (1) ⇒ (2) Whenever ϕ : aR ∼= bR with a, b ∈ R, we have r, s ∈ R
such that b = ϕ(ar) and a = ϕ−1(bs). Thus, a = ϕ−1

(
ϕ(ar)s

)
= ars. Since

rs+(1− rs) = 1, there exists a z ∈ R such that r +(1− rs)z = u ∈ R−1∞ . Hence,
au = a

(
r + (1 − rs)z

)
= ar = ϕ−1(b), and therefore b = ϕ(a)u.

(2) ⇒ (1) Given any regular x ∈ R, there exists a y ∈ R such that x = xyx.
Clearly, we have a R-isomorphism ϕ : xyR ∼= yxR given by ϕ(xyr) = y(xyr)
for any r ∈ R. By assumption, we have that yx = ϕ(xy)u for a u ∈ R−1∞ , i.e.,
yx = yxyu = yu. Thus, x = xyx = xyu. As yx ∈ R is an idempotent, it follows
by Corollary 2.5 that R is a QB∞-ring.

(1) ⇔ (3) is symmetric.

3. EXTENSIONS

The purpose of this section is to give extensions of Theorem 2.4. As shown
below, we also obtain new characterizations of exchange QB-rings. Let R be a ring
and a, b ∈ R. The symbol a�b means that RaRbR is a nilpotent ideal of R.
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Theorem 3.1. Let R be an exchange ring. Then the following are equivalent :
(1) R is a QB∞-ring.
(2) Whenever x = xyx, there exists a u ∈ R−1∞ such that x = xyu = uyx.
(3) Whenever x = xyx, there exists a u ∈ R−1∞ such that xyu = uyx.

Proof. (1) ⇒ (2) Given any x = xyx, then we have x = xzx, z = zxz,
where z = yxy. Since R is a QB∞-ring, it follows by Theorem 2.1, there exists
a v ∈ R−1∞ such that z = zvz. Let u = (1− xz − vz)v(1− zx − zv). One easily
checks that (1− xz − vz)2 = 1 = (1 − zx − zv)2. Hence u ∈ R−1∞ . Clearly,

xzu = −xzv(1 − zx − zv)
= −xzv + xzx + xzv

= xzx

= x.

and
uzx = (1 − xz − vz)v(−zvzx)

= −(1 − xz − vz)vzx

= −vzx + xzx + vzx

= xzx

= x.

Thus, x = xzu = x(yxy)u = xyu and x = uzx = u(yxy)x = uyx. As a result,
we see that x = xyu = uyx.

(2) ⇒ (3) is trivial.
(3) ⇒ (1) Given x = xyx, there exists a u ∈ R−1∞ such that xyu = uyx. In

view of [7, Lemma 2.1], we can find a v ∈ R such that (1 − uv)�(1 − vu) and
u ≡ uvu

(
mod Q(0)

)
. Construct two maps

ϕ : xR ⊕ (1− xy)R → yxR ⊕ (1 − yx)R;
ϕ
(
xr + (1− xy)s) = yxr + u(1 − xy)s for any s, t ∈ R

and

φ : yR ⊕ (1 − yx)R → xR ⊕ (1− xy)R,
φ
(
yr + (1− yx)s) = xyr + (1 − xy)v(1− yx)s for any s, t ∈ R.

One easily checks that xϕ(1)x = xϕ(x) = xyx = x. Furthermore, we see that

1− φ(1)ϕ(1) = 1 − φ
(
ϕ(1)

)

= 1 − φ
(
yxy + u(1− xy)

)

= 1 − (
xy + (1− xy)vu(1− xy)

)

= (1− xy)(1− vu)(1− xy).
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Likewise, we have that 1 − ϕ(1)φ(1) = (1 − yx)(1− uv)(1 − yx). Thus, R
(
1 −

ϕ(1)φ(1)
)
R

(
1 − φ(1)ϕ(1)

)
R ⊆ R(1 − uv)R(1 − vu)R. As (1 − uv)�(1 − vu),

we deduce that
(
1 − ϕ(1)φ(1)

)
�
(
1 − φ(1)ϕ(1)

)
. Hence, ϕ(1) ∈ R−1∞ . According

to Theorem 2.1, we complete the proof.

Let R be a ring and a, b ∈ R. We say that a and b are pseudo-similar, denoted
by a∼b, if there exist x, y ∈ R such that a = xby, b = yax, x = xyx and y = yxy.
We now generalize [6, Theorem 13] and [13, Theorem 3.6] to exchange QB∞-rings.

Corollary 3.2. Let R be an exchange QB∞-ring. Then a∼b with a, b ∈ R
implies that there exist u, v ∈ R−1∞ such that a = ubv.

Proof. Suppose that a∼b with a, b ∈ R. Then we have x, y ∈ R such that
a = xby, b = yax, x = xyx and y = yxy. In view of Theorem 3.1, there exists
a u ∈ R−1∞ such that x = xyu = uyx. One easily checks that ax = a(xyu) =
(xby)xyu = (xby)u = au and xb = (uyx)b = (uyx)(yax) = (uyxy)ax =
u(yax) = ub. In addition, ax = (xby)x = x(yax)yx = x(yax) = xb. Thus,
we can find a u ∈ R−1∞ such that au = xb = ub. Since y = yxy, it follows
from Theorem 3.1 that y = yxv for a v ∈ R−1∞ . Therefore a = xby = xbyxv =
xyaxyxv = xyaxv = xbv = ubv, as asserted.

Theorem 3.3. Let R be an exchange ring. Then the following are equivalent :

(1) R is a QB∞-ring.
(2) Whenever x = xyx, there exists some a ∈ R such that y + a ∈ R−1∞ and

1 + xa ∈ U(R).

Proof. (1) ⇒ (2) Since x = xyx, it follows from yx + (1 − yx) = 1 that
there exists a z ∈ R such that y + (1 − yx)z ∈ R−1∞ . Let a = (1 − yx)z. Then
y + a ∈ R−1∞ . In addition, we have 1 + xa = 1 + x(1− yx)z = 1 ∈ U(R).

(2) ⇒ (1) Given x = xyx, then x = xzx and z = zxz, where z = yxy.
By assumption, we have a c ∈ R such that x + c ∈ R−1∞ and 1 + zc ∈ U(R).
Thus, 1 + z(u − x) ∈ U(R) for a u ∈ R−1∞ . Let w = 1 + z(u − x). Then
zuw−1 + (1 − zx)w−1 = 1. As uw−1 ∈ R−1∞ , it follows from [7, Lemma 4.4]
that v := z + (1 − zx)w−1t ∈ R−1∞ for a t ∈ R. As a result, x = xzx =
x
(
z + (1− zx)w−1t

)
x = xvx. According to Theorem 2.1, R is a QB∞-ring.

Corollary 3.4. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB∞-ring.
(2) Whenever x ∈ R is regular, there exist a e ∈ r.ann(x) and a u ∈ R−1∞ such

that y = e + u.
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Proof. (1) ⇒ (2) Given any regular x ∈ R, there exists a y ∈ R such
that x = xyx. Since yx + (1 − yx) = 1, we can find a z ∈ R such that u :=
y+(1−yx)z ∈ R−1∞ . Thus, y = (yx−1)z+u. Let e = (yx−1)z. Then y = e+u,
where e ∈ r.ann(x) and u ∈ R−1∞ .

(2) ⇒ (1) Given any regular x ∈ R, there exist a e ∈ r.ann(x) and a u ∈ R−1∞
such that y = e + u. Let a = −e. Then y + a ∈ R−1∞ and 1 + xa = 1 ∈ U(R), as
required.

Corollary 3.5. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB∞-ring.
(2) Whenever x = xyx, there exists u ∈ R−1∞ such that 1 − x(y + u) ∈ U(R).

Proof. (1) ⇒ (2) Whenever x = xyx, then −x = (−x)(−y)(−x). By
Theorem 3.3., there exists a ∈ R such that −y +a ∈ R−1∞ and 1−xa ∈ U(R). Let
−y + a = u. Then 1 − x(y + u) ∈ U(R), as required.

(2) ⇒ (1) Whenever x = xyx, there exists u ∈ R−1∞ such that 1 − x(y + u) ∈
U(R). Let a = −(y +u). then 1+xa ∈ U(R) and y +a = −u ∈ R−1∞ . According
to Theorem 3.3, we complete the proof.

As in the proof of Theorem 3.1 and Theorem 3.3, we see that an exchange ring
R is a QB-ring if and only if whenever x = xyx, there exists a quasi invertible
u ∈ R such that x = xyu = uyx if and only if whenever x = xyx, there exists
some a ∈ R such that y + a is quasi invertible and 1 + xa is invertible.

4. PSEUDO UNIT-REGULARITY

In this section, we characterize exchange QB∞-rings by virtue of pseudo unit-
regularity.

Lemma 4.1. Suppose that ax + b = 1 with a = a2, b, x ∈ R. Then there exist
a z ∈ R and a u ∈ U(R) such that xu + zbu = 1.

Proof. Since ax + b = 1, we have ax(1 − a) + b(1 − a) = 1 − a; hence,
a + b(1 − a) = 1 − ax(1 − a) ∈ U(R). In view of [8, Lemma 3.1], there exists
a z ∈ R such that x + zb ∈ U(R). Let u = (x + zb)−1. Then xu + zbu = 1, as
asserted.

Theorem 4.2. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB∞-ring.
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(2) Whenever x = xyx, there exists some a ∈ R such that x + a ∈ Rr∞ and
1 + ya ∈ U(R).

Proof. (1) ⇒ (2) Whenever x = xyx, we see that x ∈ Rr∞ from Theorem 2.1.
Choose a = 0. Then x + a ∈ Rr∞ and 1 + ya = 1 ∈ U(R).

(2) ⇒ (1) Assume that x = xyx. Then x = xzx and z = zxz, where z = yxy.
By assumption, we have a c ∈ R such that x + c ∈ Rr∞ and u := 1 + zc ∈ U(R).
Let a = xyc. Then 1 + ya = 1 + yxyc = 1 + zc ∈ U(R). In addition, x + a =
x + xyc = xy(x + c). Also we see that

x + a = x + xyc

= x + xyxyc

= x(1 + zc)
= xu.

This implies x = (x + a)u−1 = xy(x + c)u−1. As x + c ∈ Rr∞, we see that
(x+c)u−1 ∈ Rr∞. Thus, we have a v ∈ R−1∞ such that (x+c)u−1 = (x+c)u−1v(x+
c)u−1. Since (x + c)u−1v +

(
1− (x + c)u−1v

)
= 1, it follows by [7, Lemma 4.4]

that w := (x+c)u−1+
(
1−(x+c)u−1v

)
t ∈ R−1∞ for a t ∈ R. Let f = (x+c)u−1v.

Then (x + c)u−1 = (x + c)u−1vw = fw. Let e = xy. Then x = efw. Since
efwy + (1 − xy) = xy + (1 − xy) = 1, by virtue of Lemma 4.1, we can find a
k ∈ U(R) and a d1 ∈ R such that fwyk +d1(1−xy)k = 1. By Lemma 4.1 again,
we have a l ∈ U(R) and a d2 ∈ R such that wykl+d2d1(1−xy)kl = 1. In view of
[7, Lemma 4.4], there exists a d ∈ R such that ykl+dd2d1(1−xy)kl ∈ R−1∞ . This
implies that q := y + dd2d1(1− xy) ∈ R−1∞ ; hence, x = xyx = xqx. According to
Theorem 2.1, R is a QB∞-ring.

Corollary 4.3. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB∞-ring.
(2) Whenever x = xyx, there exist a e ∈ r.ann(y) and a u ∈ Rr∞ such that

x = e + u.

Proof. (1) ⇒ (2) is trivial from Theorem 2.1.
(2) ⇒ (1) Whenever x = xyx, there exist a e ∈ r.ann(y) and a u ∈ Rr∞ such

that x = e + u. This implies that x − e = u ∈ Rr∞ and 1 + ye = 1 ∈ U(R).
Therefore we complete the proof by Theorem 4.2.

In [4, Theorem 2.9], Canfell showed that R has stable range one if and only
if whenever aR + bR = dR, there exists a y ∈ R and a u ∈ U(R) such that
a+by = du. Wei extended this result to exchange rings having weakly stable range
one (cf. [12, Theorem 7] and [13, Theorem 2.4]). Now we can generalize Canfell’s
result in case of exchange QB∞-rings.
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Theorem 4.4. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB∞-ring.
(2) Whenever aR + bR = dR, there exist u, v ∈ Rr∞ such that au + bv = d.
(3) Whenever Ra + Rb = Rd, there exist u, v ∈ Rr∞ such that ua + vb = d.

Proof. (1) ⇒ (2) Assume that aR + bR = dR. Then we can find some
s1, s2, x, y ∈ R such that a = ds1, b = ds2 and ax+ by = 1. Thus, ds1x+ds2y =
d. Let s3 = 1 − s1x − s2y. Then s1x + s2y + s3 = 1. This implies that
s1R + s2R + s3R = R. Since R is an exchange ring, by [11, Proposition 29.1],
we can find orthogonal idempotents e1, e2, e3 ∈ R such that e1 = s1z1, e2 =
s2z2, e3 = s3 for some z1, z2, z3 ∈ R, where e1 + e2 + e3 = 1. Let z′i = ziei.
Then ei = siz

′
i. One easily checks that z′isiz

′
i = z′iei = z′i. That is, z′i ∈ R

is regular. In view of Theorem 2.1, z′i is pseudo unit-regular. Observing that
az′1 + az′2 = d(s1z

′
1 + s2z

′
2) = de1 + de2 = d(e1 + e2 + e3) = d, as required.

(2) ⇒ (1) Given ax+b = 1 in R, then there exist pseudo unit-regular w1, w2 ∈
R such that aw1+bw2 = 1. Assume that w1 = w1vw1 for a v ∈ R−1∞ . Since vw1+
(1−vw1) = 1, it follows from [7, Lemma 4.4] that w1+z(1−vw1) = u ∈ R−1∞ for
a z ∈ R. This implies that w1 =

(
w1 +z(1−vw1)

)
vw1 = ue, where e = vw1 ∈ R

is an idempotent. Thus, aue+bw2 = 1, and so (1−e)aue+(1−e)bw2 = 1−e. As
a result, we deduce that w1+u(1−e)bw2 = ue+u(1−e)bw2 = u

(
1−(1−e)aue

) ∈
R−1∞ . By [7, Lemma 4.4] again, a + bw2z ∈ R−1∞ for a z ∈ R. Therefore R is a
QB∞-ring.

(1) ⇔ (3) is symmetric.

Corollary 4.5. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB∞-ring.
(2) Whenever aR = bR, there exists u ∈ Rr∞ such that a = bu.
(3) Whenever Ra = Rb, there exists u ∈ Rr∞ such that a = ub.

Proof. (1) ⇒ (2) is trivial by Theorem 4.4.
(2) ⇒ (1) Whenever x = xyx, we have that xR = xyR. By assumption, there

exists a u ∈ Rr∞ such that x = (xy)u. Thus, we can find a v ∈ R−1∞ such that
u = uvu. Since uv+(1−uv) = 1, by [7, Lemma 4.4], there exists a z ∈ R such that
w := u+(1−uv)z ∈ R−1∞ . This implies that u = uvu = u

(
u+(1−uv)z

)
= uvw.

Let e = xy and f = uv. Then e, f ∈ R are idempotents and x = efw. As in the
proof of Theorem 4.2, x ∈ R is pseudo unit-regular. According to Theorem 2.1, R

is a QB∞-ring.
(1) ⇔ (3) is proved in the same manner.

The class of exchange QB∞-ring is very large. We end this paper by providing
a class of such rings.
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Example 4.6. Let R be an exchange QB-ring. Then the ring

T =







a 0 b
0 a 0
0 0 a


 | a, b ∈ R




is an exchange QB∞-ring.

Proof. Clearly,

J(T ) =







a 0 b

0 a 0
0 0 a


 | a ∈ J(R), b ∈ R


 .

Then T/J(T ) ∼= R/J(R), and so T/J(T ) is a QB-ring. One easily checks that
idempotents lift modulo J(T ). Therefore T is an exchange ring by [11, Theorem

29.2]. For any




a 0 b

0 a 0
0 0 a


 + J(T ) ∈ (

T/J(T )
)−1

∞ , then




a 0 0
0 a 0
0 0 a


 +

J(T ) ∈ (
T/J(T )

)−1

∞ . Thus, we can find some c, d ∈ R and m ∈ N such that

T


1−




a 0 0
0 a 0
0 0 a







c 0 d
0 c 0
0 0 c







T


1−




c 0 d

0 c 0
0 0 c







a 0 0
0 a 0
0 0 a





T




m

⊆J(T ).

Hence, (1 − ac)�(1− ca) in R/J(R), i.e., a ∈ (
R/J(R)

)−1

∞ . In view of [6, Lemma
4.1], we have a d ∈ R−1∞ such that a − d ∈ J(R). Write (1 − du)�(1− ud) for a
u ∈ R. Then there exists some m ∈ N such that

(
R(1 − du)R(1 − ud)R

)m = 0.
Hence, 

T


1T −




d 0 0
0 d 0
0 0 d







u 0 0
0 u 0
0 0 u







T


1T −




u 0 0
0 u 0
0 0 u







d 0 0
0 d 0
0 0 d





T




2m

= 0.

This implies that




d 0
0 d 0
0 0 d


 ∈ T−1∞ . Obviously,




a 0 b
0 a 0
0 0 a


 + J(T ) =




d 0 0
0 d 0
0 0 d


 + J(T ).
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Therefore,
(
J(T ) + T−1∞

)
/J(T ) =

(
T/J(T )

)−1

∞ . By [6, Lemma 4.1] again, T is a
QB∞-ring, as asserted.
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