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ELEMENTS IN EXCHANGE @ Bs-RINGS

Huanyin Chen

Abstract. An element v € R is pseudo invertible if there exist v,w € R
such that R(1 — uv)R(1 — wu)R is a nilpotent ideal. A ring R is a QB
ring provided whenever aR 4+ bR = R with a,b € R, there exists y € R such
that a + by is pseudo invertible. We prove, in this paper, that an exchange
ring R is a Q B-ring if and only if whenever x = zyx, there exists a pseudo
invertible v € R such that x = xyu = uyz if and only if whenever z = zyz,
there exists a € R such that y+a is pseudo invertible and 1+ za is invertible.
Also we characterize exchange @ B.-rings by virtue of pseudo unit-regularity.
These generalize the main results of Wei (2004, Theorem 3, Theorem 7; 2005,
Theorem 2.2, Theorem 2.4 and Theorem 3.6).

1. INTRODUCTION

A ring R has stable one provided that aR + bR = R with a,b € R implies
that there exists a y € R such that a + by is invertible (cf. [4] and [9]). Replacing
invertible elements with weakly invertible elements in the definition of stable range
one, one introduced some other conditions. A ring R has weakly stable range one
if whenever aR + bR = R with a,b € R, there exists y € R such that a + by is
right or left invertible (cf. [5] and [12-13]). In [2], Ara et al. discovered a new
class of rings, i.e., @B-rings. They called a ring R is a QQB-ring provided that
whenever aR + bR = R with a,b € R, there exists y € R such that a + by is
quasi invertible, where v € R is quasi invertible provided that there exist v, w € R
such that (1 — uwv)R(1 — wu) = (1 — wu)R(1 — uv) = 0. The class of Q) B-rings
gives a nice infinite analogoue of stable range one (see [2-3] and [6]). In [7], the
author introduced a new class of rings, i.e., QB.o-rings. A ring R is a QB ring
provided whenever aR+bR = R with a,b € R, there exists y € R such that a + by
is pseudo invertible, where v € R is pseudo invertible if there exists v,w € R
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such that R(1 — uwv)R(1 — wu)R is a nilpotent ideal. Clearly, every QB-ring is a
@ Bo-ring, while the converse is not true. For example, the ring 7'M (R) of all
2 x 2 upper triangular matrices over a QB-ring R is a Q B-ring, but T My (R)
is not a @B-ring (see [7, Example 3.3]). Also we note that infinite analogoues of
stable range one were also studied in the context of C*-algebras (cf. [10]).

Aring R is called an exchange ring if for every right R-module A and any two
decompositions A = M © N = @, Ai, where Mp = Ry and I is a finite index
set, there exist submodules A; C A; suchthat A = M@ (), A;). Itis well known
that regular rings, w-regular rings, unit C*-algebras of real rank zero, semiperfect
rings, left or right continuous rings and clean rings are all exchange rings (cf. [1],
[6], [9] and [11]). We prove, in this paper, that an exchange ring R is a Q B »-ring
if and only if whenever x = zyx, there exists a pseudo invertible « € R such that
x = xyu = uyzx if and only if whenever x = zyzx, there exists a € R such that
y + a is pseudo invertible and 1 + xa is invertible. Also we characterize exchange
Q) Bso-rings by virtue of pseudo unit-regularity. These generalize [12, Theorem 3],
[12,Theorem 7], [13,Theorem 2.2], [13, Theorem 2.4] and [13, Theorem 3.6].

Throughout, R is an associative ring with nonzero identity 1z. U(R) denotes
the set of all units of R. = € R is called pseudo unit-regular provided that there
exists a u € R such that = zuz. We always use R”, to stand for the set of all
pseudo unit-regular elements in R.

2. PSeEuDO INVERTIBILITY

Let Q(0) = {r € R | RrR isan nilpotent ideal of R}. Then Q(0) is an
ideal of R. We begin with a characterization of exchange @ B..-rings by virtue of
pseudo-invertible elements.

Theorem 2.1. Let R be an exchange ring. Then the following are equivalent:
(i) Risa QBuo-ring.
(ii) Every regular element in R is pseudo unit-regular.

Proof. (1) = (2) Given any regular x € R, there exists a y € R such that
x = xyx. Since yr + (1 —yz) =1, we have a z € R such that y + (1 — yz)z =
u € Ry}. Hence, x = zyz = z(y + (1 — yz)z)x = zux, as required.

(2) = (1) Suppose that ax +b = 1 in R. In view of [11, Proposition 28.6],
there exists an idempotent e € bR such that 1 — e € (1 — b) R. Assume that e = bs
and 1 — e = axt for some s,t € R. Then axt + e = 1; hence, (1 —e)a € R is
regular. By assumption, we can find a pseudo-invertible . € R such that (1—e)a =
(1—e)au(l —e)a. Since (1 —e)axt + e = 1, we have that u(1 — e)azt + ue = u.
Let f = u(1 —e)a. Then f = f? € R. Clearly, f(xt+ ue) + (1 — f)ue = u, and
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s0 (1 — f)ue = (1 — f)u. Since u € RZ!

oo !

u = uvu(mod Q(O)) for av € R. Thus,

(1= fluv(l = flu =

it follows from [7, Lemma 2.1] that

Letg = (1—f)uv(1—f). Then g = g2(mod Q(0)). As aresult, we get f(zt+ue)+
gu = u(mod Q(0)). One easily checks that fg = gf = 0, and so f(xt + ue) =
fu(mod Q(0)). One easily checks that
u((1—e)a+ev(l— f)(1+ fuev(l — f))(1— fuev(l— f))u

= (f+uev(l = f)(1+ fuev(l— f)) (1 — fuev(l — f))u

= (f(1 = fuev(l = f) + uev(l— f))u

— (f+ (1 fues(l - f))u

= fu+(1— fluw(l — flu

= fu+gu

= u(mod Q(0)).
As u € R}, it is easy to verify that

a+bs(v(l—f)—a)

=a—ea+ev(l—f)
=(1-ea+v(l—f1+ fuv(l—f)e€ Rgol,

Therefore R is a QQ Bo-ring. ]

Corollary 2.2. Let Rbean exchange ring. Then the following are equivalent:
(1) Risa @QBo-ring.
(2) For any regular z € R, there exists u € R} such that uz is an idempotent.

Proof. (1) = (2) For any regular = € R, it follows by Theorem 2.1 that there
exists a u € Ry! such that = zux. So ux € R is an idempotent.

(2) = (1) For any regular x € R, there exists a u € R} such that uz is
an idempotent. Clearly, we have a y € R such that x = xyz and y = yzy.
From yz + (1 — yz) = 1, we get uyx + u(l — yx) = u. As in the proof of
Theorem 2.1, we can find a z € R such that y + (1 — yx)z = u € R}, Hence, x
= z(y+(1—yz)z)z = zux. According to Theorem 2.1, we complete the proof. m
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Lemma 2.3. Let R be a ring and = € R. Then the following are equivalent:

(1) There exists a v € Ry such that x = zvx.
(2) == ayz = xyu, where y € R,u € R
(3) = = zyr = uyx, where y € R,u € R},

Proof. (1) = (2) Since zy + (1 — xy) = 1 with y € RZ}, it follows by [7,
Lemma 4.4] that z+ (1 —zy)z € Ry} foraz € R. Hence z = zy(z+(1—wy)z) =
zyu, where u =z + (1 — zy)z € R

(2) = (1) Suppose that * = zyz = wzyu, Where y € R,u € RZ. Let
e = zy. Then e € R is an idempotent. Since zy + (1 — xy) = 1, we have that
euy+(1—zy) =1, and so euy(1 —e)+ (1 —zy)(1 —e) = 1 —e. This implies that
e+(1—zy)(l—e) = 1—euy(l—e) € U(R). Therefore we get x+(1—zy)(1—e) =
(1 —euy(l — e))u € RZ!. In view of [7, Lemma 4.4], we can find a z € R such
that w :=y + 2(1 — zy) € Ry Thus, z = z(y + 2(1 — 2y) )z = 2wa.

(1) = (3) Since yx + (1 —yx) = 1 with y € R}, it follows by [7, Lemma
4.4] that z + 2(1 —yz) € Ry foraz € R. Thenz = (2 + (1 — yz)2)yz = uyz,
where u = x + z(1 — yz) € R},

(3) = (1) Suppose that x = zyzr = uyx, Where y € R,u € R, Let
e = yx. Then e € R is an idempotent. Since yx + (1 — yz) = 1, we have that
yue + (1 —yxz) = 1, and so (1 — e)yue + (1 —e)(1 —yx) = 1 —e. Hence,
e+ (1—eyue =1 — (1 —e)yue € U(R). Thus, we get z + u(l — e)yue =
u(1 — (1 —e)yue) € R}, By virtue of [7, Lemma 4.4], we have a z € R such
that w := y + (1 — yz)z € R}. Therefore z = z(y + (1 — yz)z)z = zwaz, as
asserted. [ ]

Theorem 2.4. Let Rbe an exchange ring. Then the following are equivalent:
(1) Risa @QBu-ring.
(2) Whenever = = xyx, there exists u € R3! such that z = zyu.
(3) Whenever = = zyz, there exists u € RZ! such that z = uyz.

Proof. (1) = (2) Suppose that x = zyz. In view of Theorem 2.1, we can
find a v € Ry} such that * = zvz. By Lemma 2.3, we have a u € Ry! such
that 2 = xvz = zvu. Lete = xv. Then e = 2 € R. Since zy + (1 — ay) = 1,
we have that euy + (1 — zy) = 1; hence, euy(1 —e) + (1 —zy)(l —e) =1 —e.
This impliesthat e + (1 — zy)(1 —e) =1 — euy(1 —e) € U(R), and so = + (1 —
zy)(1—e€) = (1 —euy(l —e))u € R}, Letw = (1 — euy(l — e))u. Then
z=ayr =ay(z+ (1 —2y)(1—e)) = zyw.

(2) = (1) is clear by Lemma 2.3 and Theorem 2.1.

(1) < (3) is proved in the same manner. n
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Corollary 2.5. Let R be an exchange ring. Then the following are equivalent:
(1) Risa QBoo-ring.
(2) Whenever = € R is regular, there exist an idempotente € R and au € R}
such that = eu.

(3) Whenever = € R is regular, there exist an idempotente € R and au € R}
such that = we.

Proof. (1) = (2) Since =z € R is regular, there exists a y € R such that
x = xyx. In view of Theorem 2.4, we have a v € Ry such that z = zyu. Let
e =xy. Then e € R is an idempotent and = = eu, as required.

(2) = (1) Given regular x € R, we have a y € R such that = = zyz. By
assumption, we have a u € R and an idempotent e € R such that x = eu. Since
xy + (1 —2y) =1, euy + (1 — xzy) = 1. As in the proof of Theorem 2.4, we
have that z + (1 — zy)(1 —e) = (1 — euy(l — e))u € R}, This implies that
z = zyr = zyw, where w := (1 — euy(1 — e))u € R}, In view of Lemma 2.3
and Theorem 2.4, we conclude that R is a Q Bo-ring.

(1) < (3) is symmetric. [

Corollary 2.6. Let R be an exchange ring. Then the following are equivalent:
(1) Risa @QBo-ring.
(2) Whenever ¢ : aR = bR with a,b € R, there exists u € R such that

12

b= ¢(a)u.
(3) Whenever ¢ : Ra = Rb with a,b € R, there exists u € R} such that
b= up(a).

Proof. (1) = (2) Whenever ¢ : aR = bR with a,b € R, we have r,s € R
such that b = ¢(ar) and a = ¢~ *(bs). Thus, a = ¢~ '(p(ar)s) = ars. Since
rs+(1—rs) = 1, there exists a z € R such that r 4 (1 —rs)z = u € RZ}. Hence,
au=a(r+ (1 —rs)z) = ar = ¢~ *(b), and therefore b = p(a)u.

(2) = (1) Given any regular = € R, there exists a y € R such that z = zyz.
Clearly, we have a R-isomorphism ¢ : zyR = yzR given by p(zyr) = y(zyr)
for any » € R. By assumption, we have that yz = op(zy)u for a u € R, ie.,
yx = yryu = yu. Thus, z = xyxr = xyu. AS yx € R is an idempotent, it follows
by Corollary 2.5 that R is a Q Bs-ring.

(1) < (3) is symmetric. [

3. EXTENSIONS

The purpose of this section is to give extensions of Theorem 2.4. As shown
below, we also obtain new characterizations of exchange @) B-rings. Let R be a ring
and a,b € R. The symbol ahib means that RaRbR is a nilpotent ideal of R.
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Theorem 3.1. Let R be an exchange ring. Then the following are equivalent:
(1) Risa @QBoo-ring.
(2) Whenever z = zyz, there exists a u € R3! such that z = xyu = uyx.
(3) Whenever = = zyz, there exists a u € R3! such that zyu = uyz.

Proof. (1) = (2) Given any = = xyx, then we have x = zzz,z = zxz,
where z = yxy. Since R is a () B-ring, it follows by Theorem 2.1, there exists
av € Ry such that z = zvz. Letu = (1 — 22 —v2)v(l — zx — 2v). One easily
checks that (1 — 2z —vz)2 =1 = (1 — zx — zv)2. Hence u € R!. Clearly,

zzu = —xzv(l — 2z — 2v)
= —Tzv +rza + T2V
= 21
= .
and
uze = (1 —xzz —vz)v(—2zvzx)
= —(1—-zz—vz)vzx
= —V2r + rza + V2T
= 21
= .
Thus, z = zzu = z(yxy)u = xyu and = = uzz = u(yry)r = uyz. AS a result,
we see that z = zyu = uyx.

(2) = (3) is trivial.

(3) = (1) Given x = wyux, there exists a u € Ry such that zyu = uyz. In
view of [7, Lemma 2.1], we can find a v € R such that (1 — uv)g(1 — vu) and
u = wvu(mod Q(0)). Construct two maps

p:zR® (1 —2y)R — yzR® (1 —yx)R;
o(zr+ (1 — zy)s) = yar + u(l — zy)s for any s,t € R

and

¢:yR®d (1 —yx)R— 2R ® (1 — zy)R,

o(yr + (1 — yz)s) = ayr + (1 — zy)v(1 — yx)s for any s, ¢ € R.
One easily checks that zp(1)x = xp(z) = zyz = x. Furthermore, we see that
L= o(1)p(1) = 1-6(¢(1))
=1- ¢(y3:y +u(l — :J:y))

1-— (:ry + (1 — zy)vu(l — :J:y))
= (I—ay)(1 —vu)(1 — zy).
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Likewise, we have that 1 — ¢(1)¢(1) = (1 — yz)(1 — uwv)(1 — yx). Thus, R(1 —
e(1)p(1))R(1 — ¢(1)p(1))R C R(1 — wv)R(1 — vu)R. As (1 — uv)i(1 — vu),
we deduce that (1 — ¢(1)¢(1))8(1 — ¢(1)p(1)). Hence, (1) € R3!. According
to Theorem 2.1, we complete the proof. ]

Let R be aring and a,b € R. We say that a and b are pseudo-similar, denoted
by a~b, if there exist x,y € R such that a = xby, b = yax, x = xyx and y = yxy.
We now generalize [6, Theorem 13] and [13, Theorem 3.6] to exchange @ B,.-rings.

Corollary 3.2. Let R be an exchange QB..-ring. Then a~b with a,b € R
implies that there exist u,v € RZ! such that a = ubv.

Proof. Suppose that a~b with a,b € R. Then we have z,y € R such that
a = xby,b = yax,r = zyx and y = yxy. In view of Theorem 3.1, there exists
au € R} such that z = zyu = uyz. One easily checks that ax = a(xyu) =
(zby)zyu = (xby)u = au and zb = (uyz)b = (uyz)(yax) = (uyzry)ar =
u(yaz) = wb. In addition, ax = (xby)zr = z(yax)yr = xz(yax) = xb. Thus,
we can find a v € R} such that au = zb = ub. Since y = yaxy, it follows
from Theorem 3.1 that y = yav for a v € R!. Therefore a = xby = xbyxv =
ryaryrv = ryaxv = xbv = ubv, as asserted. ]

Theorem 3.3. Let R be an exchange ring. Then the following are equivalent :
(1) Risa @QBo-ring.

(2) Whenever z = zyx, there exists some a € R such that y +a € Ry} and
1+2za € U(R).

Proof. (1) = (2) Since x = zyx, it follows from yx + (1 — yx) = 1 that
there exists a z € R such that y + (1 — yz)z € R}. Leta = (1 — yx)z. Then
y+a € R In addition, we have 1 +za =1+ 2(1 —yx)z =1 € U(R).

(2) = (1) Given z = zyx, then z = zzx and z = zxz, where z = yzxy.
By assumption, we have a ¢ € R such that x +c € Ry and 1 + zc € U(R).
Thus, 1+ 2(u — 2) € U(R) for au € Ryl Letw = 1+ z(u — z). Then
zuw™t + (1 — zz)w™ = 1. As ww™! € R}, it follows from [7, Lemma 4.4]
that v := 2 + (1 — zx)w™t € Ryl forat € R. Asaresult, v = zzx =
z(z+ (1 - zz)w't)z = zvx. According to Theorem 2.1, R is a QBx-ring. =

Corollary 3.4. Let Rbean exchange ring. Then the following are equivalent:
(1) Risa @QBoo-ring.

(2) Whenever = € R is regular, there exist a e € r.ann(z) and a u € R} such
that y = e + u.
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Proof. (1) = (2) Given any regular z € R, there exists a y € R such
that + = xzyx. Since yx + (1 — yx) = 1, we can find a z € R such that u :=
y+(1—yz)z € R}, Thus, y = (yz—1)z+u. Lete = (yz—1)z. Theny = e+,
where e € r.ann(r) and u € R

(2) = (1) Given any regular = € R, there exista e € r.ann(z) and a u € Ry}
suchthaty =e+u. Leta = —e. Theny+a € Rl and 1 +xa=1¢€ U(R), as
required. ]

Corollary 3.5. Let R be an exchange ring. Then the following are equivalent:
(1) Risa @QBo-ring.
(2) Whenever = = zyz, there exists u € R3! such that 1 — z(y + u) € U(R).

Proof. (1) = (2) Whenever x = zyz, then —z = (—z)(—y)(—=z). By
Theorem 3.3., there exists @ € R such that —y +a € R} and 1 —xa € U(R). Let
—y+a=wu. Then 1 —z(y + u) € U(R), as required.

(2) = (1) Whenever z = zyx, there exists u € R! such that 1 — z(y + u) €
U(R). Leta = —(y+u). then 1 +za € U(R) and y+a = —u € R}, According
to Theorem 3.3, we complete the proof. ]

As in the proof of Theorem 3.1 and Theorem 3.3, we see that an exchange ring
R is a QB-ring if and only if whenever x = zyz, there exists a quasi invertible
u € R such that x = zyu = uyx if and only if whenever x = xyx, there exists
some a € R such that y + a is quasi invertible and 1 + za is invertible.

4. Pseubpo UNIT-REGULARITY

In this section, we characterize exchange Q B..-rings by virtue of pseudo unit-
regularity.

Lemma 4.1. Suppose that ax 4+ b = 1 with @ = a2, b, x € R. Then there exist
aze Randawue U(R) such that xu + zbu = 1.

Proof. Since axz + b = 1, we have az(1 — a) + b(1 — a) = 1 — a; hence,
a+b(l—a)=1—-ax(l—a) € U(R). In view of [8, Lemma 3.1], there exists
az € Rsuchthat z + zb € U(R). Letu = (x + 2zb)~%. Then zu + zbu = 1, as
asserted. ]

Theorem 4.2. Let R be an exchange ring. Then the following are equivalent:
(1) Risa @QBo-ring.
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(2) Whenever z = zyx, there exists some a € R such that x + a € R’ and
1+ya € U(R).

Proof. (1) = (2) Whenever z = xyx, we see that x € R/, from Theorem 2.1.
Choose a =0. Then z +a € R and 1 +ya =1 € U(R).

(2) = (1) Assume that z = xyx. Then x = zzz and z = zxz, where z = yxy.
By assumption, we have a ¢ € R such that x + ¢ € R, and u := 1+ zc € U(R).
Let a = zyc. Then 14+ ya = 1+ yayc = 1 + zc € U(R). In addition, z + a =
x + zyc = zy(x + ¢). Also we see that

Tr+a =1+ xYyc
= x + xYyxryc
= z(1+ zc)

= TU.

This implies * = (x + a)u™' = ay(x + c)u™'. As x + ¢ € R’ we see that
(r+c)u~t € RT,. Thus, we haveav € R suchthat (z+c)u™t = (z+c)u™tv(z+
c)u~t. Since (z 4+ c)utv+ (1 — (z+ c)u~tv) =1, it follows by [7, Lemma 4.4]
that w := (z+c)u™+ (1—(z+c)utv)t € Ry} forat € R. Let f = (z+c)u"to.
Then (z + c)u™! = (z + c)u lvw = fw. Lete = zy. Then x = efw. Since
efwy + (1 —zy) = zy + (1 — zy) = 1, by virtue of Lemma 4.1, we can find a
ke U(R)and ad; € Rsuchthat fuyk+d;(1 —xy)k = 1. By Lemma 4.1 again,
we have al € U(R) and a dy € R such that wykl+dadi (1 —zy)kl = 1. In view of
[7, Lemma 4.4], there exists a d € R such that ykl +ddad; (1 —xy)kl € R, This
implies that ¢ := y + ddady (1 — zy) € R}; hence, z = zyx = xqx. According to
Theorem 2.1, R is a Q By,-fing. ]

Corollary 4.3. Let R be an exchange ring. Then the following are equivalent:
(1) Risa @QBo-ring.
(2) Whenever x = zyx, there exist a e € r.ann(y) and a v € RL such that
r =€+ u.

Proof. (1) = (2) is trivial from Theorem 2.1.

(2) = (1) Whenever x = zyz, there exista e € r.ann(y) and a v € R’ such
that = e + w. This implies that  —e = v € R and 1 +ye = 1 € U(R).
Therefore we complete the proof by Theorem 4.2. ]

In [4, Theorem 2.9], Canfell showed that R has stable range one if and only
if whenever aR + bR = dR, there exists a y € R and a u € U(R) such that
a+ by = du. Wei extended this result to exchange rings having weakly stable range
one (cf. [12, Theorem 7] and [13, Theorem 2.4]). Now we can generalize Canfell’s
result in case of exchange @ B.-rings.



1040 Huanyin Chen

Theorem 4.4. Let R be an exchange ring. Then the following are equivalent:
(1) Risa QBu-ring.
(2) Whenever aR + bR = dR, there exist u,v € R’ such that au + bv = d.
(3) Whenever Ra + Rb = Rd, there exist u, v € R such that ua + vb = d.

Proof. (1) = (2) Assume that aR + bR = dR. Then we can find some
81,82, x,y € Rsuchthat a = ds1,b = dsy and ax + by = 1. Thus, ds1z + dsoy =
d. Let s3 = 1 — s1x — soy. Then syz + sey + s3 = 1. This implies that
siR + saR 4+ s3sR = R. Since R is an exchange ring, by [11, Proposition 29.1],
we can find orthogonal idempotents eq,es,e3 € R such that e; = s121,e0 =
S929,e3 = s3 for some 21, 20,23 € R, where e; + es +e3 = 1. Let z; = 2;€;.
Then e; = s;2]. One easily checks that z/s;2] = zle; = 2]. Thatis, 2z} € R
is regular. In view of Theorem 2.1, z is pseudo unit-regular. Observing that
azi + azh = d(s12] + s22h) = dey + dea = d(e1 + e2 + e3) = d, as required.

(2) = (1) Given az+b = 1 in R, then there exist pseudo unit-regular w, wy €
R such that aw; +bws = 1. Assume that wy = wyvw; for av € R, Since vwy +
(1—vwy) = 1, it follows from [7, Lemma 4.4] that w1 +2(1 —vw) = u € Ry} for
a z € R. This implies that w, = (w1 +2(1 —’le))vwl = ue, Wheree = vw; € R
is an idempotent. Thus, aue+bws = 1, and so (1 —e)aue+ (1 —e)bws = 1—e. As
a result, we deduce that wq +u(1—e)bwy = ue-+u(l—e)bws = u(1—(1—e)aue) €
RZ!. By [7, Lemma 4.4] again, a + bwsz € RZ! for a z € R. Therefore R is a
Q) Bso-ring.

(1) < (3) is symmetric. [

Corollary 4.5. Let R be an exchange ring. Then the following are equivalent:
(1) Risa @QBo-ring.
(2) Whenever aR = bR, there exists u € R’ such that a = bu.
(3) Whenever Ra = Rb, there exists u € R’ such that a = ub.

Proof. (1) = (2) is trivial by Theorem 4.4.

(2) = (1) Whenever z = zyx, we have that xR = xyR. By assumption, there
exists @ u € R’ such that = (zy)u. Thus, we can find a v € R} such that
u = uvu. Since uv+(1—uv) = 1, by [7, Lemma 4.4], there existsa z € R such that
w :=u+(1—wuv)z € Ry}. Thisimplies that u = uvu = u(u+(1—w)z) = wvw.
Let e = xzy and f = uv. Then e, f € R are idempotents and = efw. As in the
proof of Theorem 4.2, x € R is pseudo unit-regular. According to Theorem 2.1, R
IS a QBoo-ring.

(1) < (3) is proved in the same manner. n

The class of exchange Q) B-ring is very large. We end this paper by providing
a class of such rings.
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Example 4.6. Let R be an exchange @ B-ring. Then the ring

b
T= 0| |a,beR
a
Proof. Clearly,

is an exchange @ Boo-ring.
0 b
J(T) = a 0 ]| |a€eJ(R),beR .
0 a

Then T/J(T) = R/J(R), and so T'//J(T) is a @B-ring. One easily checks that
idempotents lift modulo J(T"). Therefore T is an exchange ring by [11, Theorem

a 0 b a 0 0
202]. Forany | 0 a 0 | + J(T) € (T/J(T))_, then [ 0 a 0 | +

0 0 a

-1

o O 2
o O

S O Q

0 0 a
J(T) € (T/J(T))_ . Thus, we can find some ¢,d € R and m € N such that

WO
(2 ))) "

Hence, (1 — ac)i(1 — ca) in R/J(R),ie,ac (R/J(R OO . In view of [6, Lemma
4.1], we have a d € R3! such that a—de J(R). erte (1 — du)b(1 — ud) for a
u € R. Then there exists some m € N such that (R(1 — du)R(1 — ud)R)"™ = 0.
Hence,

S O Q2
S OO

oo O
o O
o @ O
QO O
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Therefore, (J(T) +T)/J(T) = (T/J(T));Ol. By [6, Lemma 4.1] again, T is a
Q) Bso-ring, as asserted. ]
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