This paper is available online at http://www.tjm.nsysu.edu.tw/

ELEMENTS IN EXCHANGE $Q B_{\infty}$-RINGS

Huanyin Chen

Abstract

An element $u \in R$ is pseudo invertible if there exist $v, w \in R$ such that $R(1-u v) R(1-w u) R$ is a nilpotent ideal. A ring R is a $Q B_{\infty}$ ring provided whenever $a R+b R=R$ with $a, b \in R$, there exists $y \in R$ such that $a+b y$ is pseudo invertible. We prove, in this paper, that an exchange ring R is a $Q B_{\infty}$-ring if and only if whenever $x=x y x$, there exists a pseudo invertible $u \in R$ such that $x=x y u=u y x$ if and only if whenever $x=x y x$, there exists $a \in R$ such that $y+a$ is pseudo invertible and $1+x a$ is invertible. Also we characterize exchange $Q B_{\infty}$-rings by virtue of pseudo unit-regularity. These generalize the main results of Wei (2004, Theorem 3, Theorem 7; 2005, Theorem 2.2, Theorem 2.4 and Theorem 3.6).

1. Introduction

A ring R has stable one provided that $a R+b R=R$ with $a, b \in R$ implies that there exists a $y \in R$ such that $a+b y$ is invertible (cf. [4] and [9]). Replacing invertible elements with weakly invertible elements in the definition of stable range one, one introduced some other conditions. A ring R has weakly stable range one if whenever $a R+b R=R$ with $a, b \in R$, there exists $y \in R$ such that $a+b y$ is right or left invertible (cf. [5] and [12-13]). In [2], Ara et al. discovered a new class of rings, i.e., $Q B$-rings. They called a ring R is a $Q B$-ring provided that whenever $a R+b R=R$ with $a, b \in R$, there exists $y \in R$ such that $a+b y$ is quasi invertible, where $u \in R$ is quasi invertible provided that there exist $v, w \in R$ such that $(1-u v) R(1-w u)=(1-w u) R(1-u v)=0$. The class of $Q B$-rings gives a nice infinite analogoue of stable range one (see [2-3] and [6]). In [7], the author introduced a new class of rings, i.e., $Q B_{\infty}$-rings. A ring R is a $Q B_{\infty}$ ring provided whenever $a R+b R=R$ with $a, b \in R$, there exists $y \in R$ such that $a+b y$ is pseudo invertible, where $u \in R$ is pseudo invertible if there exists $v, w \in R$

Received May 8, 2006, accepted October 20, 2007.
Communicated by Wen-Fong Ke.
2000 Mathematics Subject Classification: 16E50, 16D70, 19B10.
Key words and phrases: Exchange ring, $Q B_{\infty}$-Ring, Pseudo unit-regularity.
such that $R(1-u v) R(1-w u) R$ is a nilpotent ideal. Clearly, every $Q B$-ring is a $Q B_{\infty}$-ring, while the converse is not true. For example, the ring $T M_{2}(R)$ of all 2×2 upper triangular matrices over a $Q B$-ring R is a $Q B_{\infty}$-ring, but $T M_{2}(R)$ is not a $Q B$-ring (see [7, Example 3.3]). Also we note that infinite analogoues of stable range one were also studied in the context of C^{*}-algebras (cf. [10]).

A ring R is called an exchange ring if for every right R-module A and any two decompositions $A=M \oplus N=\bigoplus_{i \in I} A_{i}$, where $M_{R} \cong R_{R}$ and I is a finite index set, there exist submodules $A_{i}^{\prime} \subseteq A_{i}$ such that $A=M \oplus\left(\bigoplus_{i \in I} A_{i}^{\prime}\right)$. It is well known that regular rings, π-regular rings, unit C^{*}-algebras of real rank zero, semiperfect rings, left or right continuous rings and clean rings are all exchange rings (cf. [1], [6], [9] and [11]). We prove, in this paper, that an exchange ring R is a $Q B_{\infty}$-ring if and only if whenever $x=x y x$, there exists a pseudo invertible $u \in R$ such that $x=x y u=u y x$ if and only if whenever $x=x y x$, there exists $a \in R$ such that $y+a$ is pseudo invertible and $1+x a$ is invertible. Also we characterize exchange $Q B_{\infty}$-rings by virtue of pseudo unit-regularity. These generalize [12, Theorem 3], [12,Theorem 7], [13,Theorem 2.2], [13, Theorem 2.4] and [13, Theorem 3.6].

Throughout, R is an associative ring with nonzero identity $1_{R} . U(R)$ denotes the set of all units of $R . \quad x \in R$ is called pseudo unit-regular provided that there exists a $u \in R_{\infty}^{-1}$ such that $x=x u x$. We always use R_{∞}^{r} to stand for the set of all pseudo unit-regular elements in R.

2. Pseudo Invertibility

Let $Q(0)=\{r \in R \mid \operatorname{Rr} R$ is an nilpotent ideal of $R\}$. Then $Q(0)$ is an ideal of R. We begin with a characterization of exchange $Q B_{\infty}$-rings by virtue of pseudo-invertible elements.

Theorem 2.1. Let R be an exchange ring. Then the following are equivalent:
(i) R is a $Q B_{\infty}$-ring.
(ii) Every regular element in R is pseudo unit-regular.

Proof. (1) \Rightarrow (2) Given any regular $x \in R$, there exists a $y \in R$ such that $x=x y x$. Since $y x+(1-y x)=1$, we have a $z \in R$ such that $y+(1-y x) z=$ $u \in R_{\infty}^{-1}$. Hence, $x=x y x=x(y+(1-y x) z) x=x u x$, as required.
(2) \Rightarrow (1) Suppose that $a x+b=1$ in R. In view of [11, Proposition 28.6], there exists an idempotent $e \in b R$ such that $1-e \in(1-b) R$. Assume that $e=b s$ and $1-e=a x t$ for some $s, t \in R$. Then axt $+e=1$; hence, $(1-e) a \in R$ is regular. By assumption, we can find a pseudo-invertible $u \in R$ such that $(1-e) a=$ $(1-e) a u(1-e) a$. Since $(1-e) a x t+e=1$, we have that $u(1-e) a x t+u e=u$. Let $f=u(1-e) a$. Then $f=f^{2} \in R$. Clearly, $f(x t+u e)+(1-f) u e=u$, and
so $(1-f) u e=(1-f) u$. Since $u \in R_{\infty}^{-1}$, it follows from [7, Lemma 2.1] that $u \equiv u v u(\bmod Q(0))$ for a $v \in R$. Thus,

$$
\begin{aligned}
(1-f) u v(1-f) u & =(1-f)(u v u-u v u(1-e) a u) \\
& \equiv(1-f)(u-f u) \\
& \equiv(1-f) u(\bmod Q(0)) .
\end{aligned}
$$

Let $g=(1-f) u v(1-f)$. Then $g \equiv g^{2}(\bmod Q(0))$. As a result, we get $f(x t+u e)+$ $g u \equiv u(\bmod Q(0))$. One easily checks that $f g=g f=0$, and so $f(x t+u e) \equiv$ $f u(\bmod Q(0))$. One easily checks that

$$
\begin{aligned}
& u((1-e) a+\operatorname{ev}(1-f)(1+f u e v(1-f))(1-f u e v(1-f)) u \\
= & (f+\operatorname{uev}(1-f)(1+f u e v(1-f))(1-f \operatorname{uev}(1-f)) u \\
= & (f(1-f \operatorname{uev}(1-f)+\operatorname{uev}(1-f)) u \\
= & (f+(1-f) \operatorname{uev}(1-f)) u \\
= & f u+(1-f) u v(1-f) u \\
= & f u+g u \\
\equiv & u(\bmod Q(0)) .
\end{aligned}
$$

As $u \in R_{\infty}^{-1}$, it is easy to verify that

$$
\begin{aligned}
& a+b s(v(1-f)-a) \\
= & a-e a+e v(1-f) \\
= & (1-e) a+v(1-f)\left(1+f u v(1-f) \in R_{\infty}^{-1} .\right.
\end{aligned}
$$

Therefore R is a $Q B_{\infty}$-ring.
Corollary 2.2. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) For any regular $x \in R$, there exists $u \in R_{\infty}^{-1}$ such that ux is an idempotent.

Proof. (1) \Rightarrow (2) For any regular $x \in R$, it follows by Theorem 2.1 that there exists a $u \in R_{\infty}^{-1}$ such that $x=x u x$. So $u x \in R$ is an idempotent.
(2) \Rightarrow (1) For any regular $x \in R$, there exists a $u \in R_{\infty}^{-1}$ such that $u x$ is an idempotent. Clearly, we have a $y \in R$ such that $x=x y x$ and $y=y x y$. From $y x+(1-y x)=1$, we get $u y x+u(1-y x)=u$. As in the proof of Theorem 2.1, we can find a $z \in R$ such that $y+(1-y x) z=u \in R_{\infty}^{-1}$. Hence, x $=x(y+(1-y x) z) x=x u x$. According to Theorem 2.1, we complete the proof.

Lemma 2.3. Let R be a ring and $x \in R$. Then the following are equivalent:
(1) There exists a $v \in R_{\infty}^{-1}$ such that $x=x v x$.
(2) $x=x y x=x y u$, where $y \in R, u \in R_{\infty}^{-1}$.
(3) $x=x y x=u y x$, where $y \in R, u \in R_{\infty}^{-1}$.

Proof. (1) $\Rightarrow(2)$ Since $x y+(1-x y)=1$ with $y \in R_{\infty}^{-1}$, it follows by [7, Lemma 4.4] that $x+(1-x y) z \in R_{\infty}^{-1}$ for a $z \in R$. Hence $x=x y(x+(1-x y) z)=$ $x y u$, where $u=x+(1-x y) z \in R_{\infty}^{-1}$.
(2) \Rightarrow (1) Suppose that $x=x y x=x y u$, where $y \in R, u \in R_{\infty}^{-1}$. Let $e=x y$. Then $e \in R$ is an idempotent. Since $x y+(1-x y)=1$, we have that $e u y+(1-x y)=1$, and so $\operatorname{euy}(1-e)+(1-x y)(1-e)=1-e$. This implies that $e+(1-x y)(1-e)=1-e u y(1-e) \in U(R)$. Therefore we get $x+(1-x y)(1-e)=$ $(1-\operatorname{euy}(1-e)) u \in R_{\infty}^{-1}$. In view of [7, Lemma 4.4], we can find a $z \in R$ such that $w:=y+z(1-x y) \in R_{\infty}^{-1}$. Thus, $x=x(y+z(1-x y)) x=x w x$.
(1) \Rightarrow (3) Since $y x+(1-y x)=1$ with $y \in R_{\infty}^{-1}$, it follows by [7, Lemma 4.4] that $x+z(1-y x) \in R_{\infty}^{-1}$ for a $z \in R$. Then $x=(x+(1-y x) z) y x=u y x$, where $u=x+z(1-y x) \in R_{\infty}^{-1}$.
(3) \Rightarrow (1) Suppose that $x=x y x=u y x$, where $y \in R, u \in R_{\infty}^{-1}$. Let $e=y x$. Then $e \in R$ is an idempotent. Since $y x+(1-y x)=1$, we have that $y u e+(1-y x)=1$, and so $(1-e) y u e+(1-e)(1-y x)=1-e$. Hence, $e+(1-e) y u e=1-(1-e)$ yue $\in U(R)$. Thus, we get $x+u(1-e)$ yue $=$ $u(1-(1-e) y u e) \in R_{\infty}^{-1}$. By virtue of [7, Lemma 4.4], we have a $z \in R$ such that $w:=y+(1-y x) z \in R_{\infty}^{-1}$. Therefore $x=x(y+(1-y x) z) x=x w x$, as asserted.

Theorem 2.4. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $x=x y x$, there exists $u \in R_{\infty}^{-1}$ such that $x=x y u$.
(3) Whenever $x=x y x$, there exists $u \in R_{\infty}^{-1}$ such that $x=u y x$.

Proof. (1) \Rightarrow (2) Suppose that $x=x y x$. In view of Theorem 2.1, we can find a $v \in R_{\infty}^{-1}$ such that $x=x v x$. By Lemma 2.3, we have a $u \in R_{\infty}^{-1}$ such that $x=x v x=x v u$. Let $e=x v$. Then $e=e^{2} \in R$. Since $x y+(1-x y)=1$, we have that euy $+(1-x y)=1$; hence, euy $(1-e)+(1-x y)(1-e)=1-e$. This implies that $e+(1-x y)(1-e)=1-e u y(1-e) \in U(R)$, and so $x+(1-$ $x y)(1-e)=(1-\operatorname{euy}(1-e)) u \in R_{\infty}^{-1}$. Let $w=(1-\operatorname{euy}(1-e)) u$. Then $x=x y x=x y(x+(1-x y)(1-e))=x y w$.
$(2) \Rightarrow(1)$ is clear by Lemma 2.3 and Theorem 2.1.
$(1) \Leftrightarrow(3)$ is proved in the same manner.

Corollary 2.5. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $x \in R$ is regular, there exist an idempotent $e \in R$ and $a u \in R_{\infty}^{-1}$ such that $x=e u$.
(3) Whenever $x \in R$ is regular, there exist an idempotent $e \in R$ and $a u \in R_{\infty}^{-1}$ such that $x=u e$.

Proof. (1) \Rightarrow (2) Since $x \in R$ is regular, there exists a $y \in R$ such that $x=x y x$. In view of Theorem 2.4, we have a $u \in R_{\infty}^{-1}$ such that $x=x y u$. Let $e=x y$. Then $e \in R$ is an idempotent and $x=e u$, as required.
$(2) \Rightarrow(1)$ Given regular $x \in R$, we have a $y \in R$ such that $x=x y x$. By assumption, we have a $u \in R_{\infty}^{-1}$ and an idempotent $e \in R$ such that $x=e u$. Since $x y+(1-x y)=1$, euy $+(1-x y)=1$. As in the proof of Theorem 2.4, we have that $x+(1-x y)(1-e)=(1-e u y(1-e)) u \in R_{\infty}^{-1}$. This implies that $x=x y x=x y w$, where $w:=(1-e u y(1-e)) u \in R_{\infty}^{-1}$. In view of Lemma 2.3 and Theorem 2.4, we conclude that R is a $Q B_{\infty}$-ring.
$(1) \Leftrightarrow(3)$ is symmetric.
Corollary 2.6. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $\varphi: a R \cong b R$ with $a, b \in R$, there exists $u \in R_{\infty}^{-1}$ such that $b=\varphi(a) u$.
(3) Whenever $\varphi: R a \cong R b$ with $a, b \in R$, there exists $u \in R_{\infty}^{-1}$ such that $b=u \varphi(a)$.

Proof. (1) $\Rightarrow(2)$ Whenever $\varphi: a R \cong b R$ with $a, b \in R$, we have $r, s \in R$ such that $b=\varphi(a r)$ and $a=\varphi^{-1}(b s)$. Thus, $a=\varphi^{-1}(\varphi(a r) s)=a r s$. Since $r s+(1-r s)=1$, there exists a $z \in R$ such that $r+(1-r s) z=u \in R_{\infty}^{-1}$. Hence, $a u=a(r+(1-r s) z)=a r=\varphi^{-1}(b)$, and therefore $b=\varphi(a) u$.
$(2) \Rightarrow(1)$ Given any regular $x \in R$, there exists a $y \in R$ such that $x=x y x$. Clearly, we have a R-isomorphism $\varphi: x y R \cong y x R$ given by $\varphi(x y r)=y(x y r)$ for any $r \in R$. By assumption, we have that $y x=\varphi(x y) u$ for a $u \in R_{\infty}^{-1}$, i.e., $y x=y x y u=y u$. Thus, $x=x y x=x y u$. As $y x \in R$ is an idempotent, it follows by Corollary 2.5 that R is a $Q B_{\infty}$-ring.
$(1) \Leftrightarrow(3)$ is symmetric.

3. Extensions

The purpose of this section is to give extensions of Theorem 2.4. As shown below, we also obtain new characterizations of exchange $Q B$-rings. Let R be a ring and $a, b \in R$. The symbol $a \not b b$ means that $R a R b R$ is a nilpotent ideal of R.

Theorem 3.1. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $x=x y x$, there exists $a u \in R_{\infty}^{-1}$ such that $x=x y u=u y x$.
(3) Whenever $x=x y x$, there exists $a u \in R_{\infty}^{-1}$ such that $x y u=u y x$.

Proof. (1) $\Rightarrow(2)$ Given any $x=x y x$, then we have $x=x z x, z=z x z$, where $z=y x y$. Since R is a $Q B_{\infty}$-ring, it follows by Theorem 2.1, there exists a $v \in R_{\infty}^{-1}$ such that $z=z v z$. Let $u=(1-x z-v z) v(1-z x-z v)$. One easily checks that $(1-x z-v z)^{2}=1=(1-z x-z v)^{2}$. Hence $u \in R_{\infty}^{-1}$. Clearly,

$$
\begin{aligned}
x z u & =-x z v(1-z x-z v) \\
& =-x z v+x z x+x z v \\
& =x z x \\
& =x .
\end{aligned}
$$

and

$$
\begin{aligned}
u z x & =(1-x z-v z) v(-z v z x) \\
& =-(1-x z-v z) v z x \\
& =-v z x+x z x+v z x \\
& =x z x \\
& =x .
\end{aligned}
$$

Thus, $x=x z u=x(y x y) u=x y u$ and $x=u z x=u(y x y) x=u y x$. As a result, we see that $x=x y u=u y x$.
$(2) \Rightarrow(3)$ is trivial.
(3) \Rightarrow (1) Given $x=x y x$, there exists a $u \in R_{\infty}^{-1}$ such that $x y u=u y x$. In view of [7, Lemma 2.1], we can find a $v \in R$ such that $(1-u v) t(1-v u)$ and $u \equiv u v u(\bmod Q(0))$. Construct two maps

$$
\begin{gathered}
\varphi: x R \oplus(1-x y) R \rightarrow y x R \oplus(1-y x) R \\
\varphi(x r+(1-x y) s)=y x r+u(1-x y) s \text { for any } s, t \in R
\end{gathered}
$$

and

$$
\begin{gathered}
\phi: y R \oplus(1-y x) R \rightarrow x R \oplus(1-x y) R, \\
\phi(y r+(1-y x) s)=x y r+(1-x y) v(1-y x) s \text { for any } s, t \in R .
\end{gathered}
$$

One easily checks that $x \varphi(1) x=x \varphi(x)=x y x=x$. Furthermore, we see that

$$
\begin{aligned}
1-\phi(1) \varphi(1) & =1-\phi(\varphi(1)) \\
& =1-\phi(y x y+u(1-x y)) \\
& =1-(x y+(1-x y) v u(1-x y)) \\
& =(1-x y)(1-v u)(1-x y) .
\end{aligned}
$$

Likewise, we have that $1-\varphi(1) \phi(1)=(1-y x)(1-u v)(1-y x)$. Thus, $R(1-$ $\varphi(1) \phi(1)) R(1-\phi(1) \varphi(1)) R \subseteq R(1-u v) R(1-v u) R$. As $(1-u v) \notin(1-v u)$, we deduce that $(1-\varphi(1) \phi(1)) \downharpoonright(1-\phi(1) \varphi(1))$. Hence, $\varphi(1) \in R_{\infty}^{-1}$. According to Theorem 2.1, we complete the proof.

Let R be a ring and $a, b \in R$. We say that a and b are pseudo-similar, denoted by $a \approx b$, if there exist $x, y \in R$ such that $a=x b y, b=y a x, x=x y x$ and $y=y x y$. We now generalize [6, Theorem 13] and [13, Theorem 3.6] to exchange $Q B_{\infty}$-rings.

Corollary 3.2. Let R be an exchange $Q B_{\infty}$-ring. Then $a \approx b$ with $a, b \in R$ implies that there exist $u, v \in R_{\infty}^{-1}$ such that $a=u b v$.

Proof. Suppose that $a \bar{\sim} b$ with $a, b \in R$. Then we have $x, y \in R$ such that $a=x b y, b=y a x, x=x y x$ and $y=y x y$. In view of Theorem 3.1, there exists a $u \in R_{\infty}^{-1}$ such that $x=x y u=u y x$. One easily checks that $a x=a(x y u)=$ $(x b y) x y u=(x b y) u=a u$ and $x b=(u y x) b=(u y x)(y a x)=(u y x y) a x=$ $u(y a x)=u b$. In addition, $a x=(x b y) x=x(y a x) y x=x(y a x)=x b$. Thus, we can find a $u \in R_{\infty}^{-1}$ such that $a u=x b=u b$. Since $y=y x y$, it follows from Theorem 3.1 that $y=y x v$ for a $v \in R_{\infty}^{-1}$. Therefore $a=x b y=x b y x v=$ $x y a x y x v=x y a x v=x b v=u b v$, as asserted.

Theorem 3.3. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $x=x y x$, there exists some $a \in R$ such that $y+a \in R_{\infty}^{-1}$ and $1+x a \in U(R)$.

Proof. (1) \Rightarrow (2) Since $x=x y x$, it follows from $y x+(1-y x)=1$ that there exists a $z \in R$ such that $y+(1-y x) z \in R_{\infty}^{-1}$. Let $a=(1-y x) z$. Then $y+a \in R_{\infty}^{-1}$. In addition, we have $1+x a=1+x(1-y x) z=1 \in U(R)$.
$(2) \Rightarrow(1)$ Given $x=x y x$, then $x=x z x$ and $z=z x z$, where $z=y x y$. By assumption, we have a $c \in R$ such that $x+c \in R_{\infty}^{-1}$ and $1+z c \in U(R)$. Thus, $1+z(u-x) \in U(R)$ for a $u \in R_{\infty}^{-1}$. Let $w=1+z(u-x)$. Then $z u w^{-1}+(1-z x) w^{-1}=1$. As $u w^{-1} \in R_{\infty}^{-1}$, it follows from [7, Lemma 4.4] that $v:=z+(1-z x) w^{-1} t \in R_{\infty}^{-1}$ for a $t \in R$. As a result, $x=x z x=$ $x\left(z+(1-z x) w^{-1} t\right) x=x v x$. According to Theorem 2.1, R is a $Q B_{\infty}$-ring.

Corollary 3.4. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $x \in R$ is regular, there exist a e $\operatorname{r.ann}(x)$ and $a u \in R_{\infty}^{-1}$ such that $y=e+u$.

Proof. $\quad(1) \Rightarrow(2)$ Given any regular $x \in R$, there exists a $y \in R$ such that $x=x y x$. Since $y x+(1-y x)=1$, we can find a $z \in R$ such that $u:=$ $y+(1-y x) z \in R_{\infty}^{-1}$. Thus, $y=(y x-1) z+u$. Let $e=(y x-1) z$. Then $y=e+u$, where $e \in r \cdot a n n(x)$ and $u \in R_{\infty}^{-1}$.
$(2) \Rightarrow(1)$ Given any regular $x \in R$, there exist a $e \in r . a n n(x)$ and a $u \in R_{\infty}^{-1}$ such that $y=e+u$. Let $a=-e$. Then $y+a \in R_{\infty}^{-1}$ and $1+x a=1 \in U(R)$, as required.

Corollary 3.5. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty-r i n g . ~}^{\text {- }}$.
(2) Whenever $x=x y x$, there exists $u \in R_{\infty}^{-1}$ such that $1-x(y+u) \in U(R)$.

Proof. (1) \Rightarrow (2) Whenever $x=x y x$, then $-x=(-x)(-y)(-x)$. By Theorem 3.3., there exists $a \in R$ such that $-y+a \in R_{\infty}^{-1}$ and $1-x a \in U(R)$. Let $-y+a=u$. Then $1-x(y+u) \in U(R)$, as required.
$(2) \Rightarrow(1)$ Whenever $x=x y x$, there exists $u \in R_{\infty}^{-1}$ such that $1-x(y+u) \in$ $U(R)$. Let $a=-(y+u)$. then $1+x a \in U(R)$ and $y+a=-u \in R_{\infty}^{-1}$. According to Theorem 3.3, we complete the proof.

As in the proof of Theorem 3.1 and Theorem 3.3, we see that an exchange ring R is a $Q B$-ring if and only if whenever $x=x y x$, there exists a quasi invertible $u \in R$ such that $x=x y u=u y x$ if and only if whenever $x=x y x$, there exists some $a \in R$ such that $y+a$ is quasi invertible and $1+x a$ is invertible.

4. Pseudo Unit-Regularity

In this section, we characterize exchange $Q B_{\infty}$-rings by virtue of pseudo unitregularity.

Lemma 4.1. Suppose that $a x+b=1$ with $a=a^{2}, b, x \in R$. Then there exist $a z \in R$ and $a u \in U(R)$ such that $x u+z b u=1$.

Proof. Since $a x+b=1$, we have $a x(1-a)+b(1-a)=1-a$; hence, $a+b(1-a)=1-a x(1-a) \in U(R)$. In view of [8, Lemma 3.1], there exists a $z \in R$ such that $x+z b \in U(R)$. Let $u=(x+z b)^{-1}$. Then $x u+z b u=1$, as asserted.

Theorem 4.2. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $x=x y x$, there exists some $a \in R$ such that $x+a \in R_{\infty}^{r}$ and $1+y a \in U(R)$.

Proof. (1) \Rightarrow (2) Whenever $x=x y x$, we see that $x \in R_{\infty}^{r}$ from Theorem 2.1. Choose $a=0$. Then $x+a \in R_{\infty}^{r}$ and $1+y a=1 \in U(R)$.
$(2) \Rightarrow$ (1) Assume that $x=x y x$. Then $x=x z x$ and $z=z x z$, where $z=y x y$. By assumption, we have a $c \in R$ such that $x+c \in R_{\infty}^{r}$ and $u:=1+z c \in U(R)$. Let $a=x y c$. Then $1+y a=1+y x y c=1+z c \in U(R)$. In addition, $x+a=$ $x+x y c=x y(x+c)$. Also we see that

$$
\begin{aligned}
x+a & =x+x y c \\
& =x+x y x y c \\
& =x(1+z c) \\
& =x u .
\end{aligned}
$$

This implies $x=(x+a) u^{-1}=x y(x+c) u^{-1}$. As $x+c \in R_{\infty}^{r}$, we see that $(x+c) u^{-1} \in R_{\infty}^{r}$. Thus, we have a $v \in R_{\infty}^{-1}$ such that $(x+c) u^{-1}=(x+c) u^{-1} v(x+$ c) u^{-1}. Since $(x+c) u^{-1} v+\left(1-(x+c) u^{-1} v\right)=1$, it follows by [7, Lemma 4.4] that $w:=(x+c) u^{-1}+\left(1-(x+c) u^{-1} v\right) t \in R_{\infty}^{-1}$ for a $t \in R$. Let $f=(x+c) u^{-1} v$. Then $(x+c) u^{-1}=(x+c) u^{-1} v w=f w$. Let $e=x y$. Then $x=e f w$. Since efwy $+(1-x y)=x y+(1-x y)=1$, by virtue of Lemma 4.1, we can find a $k \in U(R)$ and a $d_{1} \in R$ such that $f w y k+d_{1}(1-x y) k=1$. By Lemma 4.1 again, we have a $l \in U(R)$ and a $d_{2} \in R$ such that $w y k l+d_{2} d_{1}(1-x y) k l=1$. In view of [7, Lemma 4.4], there exists a $d \in R$ such that $y k l+d d_{2} d_{1}(1-x y) k l \in R_{\infty}^{-1}$. This implies that $q:=y+d d_{2} d_{1}(1-x y) \in R_{\infty}^{-1}$; hence, $x=x y x=x q x$. According to Theorem 2.1, R is a $Q B_{\infty}$-ring.

Corollary 4.3. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $x=x y x$, there exist a $e \in \operatorname{r.ann}(y)$ and $a u \in R_{\infty}^{r}$ such that $x=e+u$.

Proof. (1) $\Rightarrow(2)$ is trivial from Theorem 2.1.
(2) \Rightarrow (1) Whenever $x=x y x$, there exist a $e \in \operatorname{r.ann}(y)$ and a $u \in R_{\infty}^{r}$ such that $x=e+u$. This implies that $x-e=u \in R_{\infty}^{r}$ and $1+y e=1 \in U(R)$. Therefore we complete the proof by Theorem 4.2.

In [4, Theorem 2.9], Canfell showed that R has stable range one if and only if whenever $a R+b R=d R$, there exists a $y \in R$ and a $u \in U(R)$ such that $a+b y=d u$. Wei extended this result to exchange rings having weakly stable range one (cf. [12, Theorem 7] and [13, Theorem 2.4]). Now we can generalize Canfell's result in case of exchange $Q B_{\infty}$-rings.

Theorem 4.4. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $a R+b R=d R$, there exist $u, v \in R_{\infty}^{r}$ such that $a u+b v=d$.
(3) Whenever $R a+R b=R d$, there exist $u, v \in R_{\infty}^{r}$ such that $u a+v b=d$.

Proof. (1) $\Rightarrow(2)$ Assume that $a R+b R=d R$. Then we can find some $s_{1}, s_{2}, x, y \in R$ such that $a=d s_{1}, b=d s_{2}$ and $a x+b y=1$. Thus, $d s_{1} x+d s_{2} y=$ d. Let $s_{3}=1-s_{1} x-s_{2} y$. Then $s_{1} x+s_{2} y+s_{3}=1$. This implies that $s_{1} R+s_{2} R+s_{3} R=R$. Since R is an exchange ring, by [11, Proposition 29.1], we can find orthogonal idempotents $e_{1}, e_{2}, e_{3} \in R$ such that $e_{1}=s_{1} z_{1}, e_{2}=$ $s_{2} z_{2}, e_{3}=s_{3}$ for some $z_{1}, z_{2}, z_{3} \in R$, where $e_{1}+e_{2}+e_{3}=1$. Let $z_{i}^{\prime}=z_{i} e_{i}$. Then $e_{i}=s_{i} z_{i}^{\prime}$. One easily checks that $z_{i}^{\prime} s_{i} z_{i}^{\prime}=z_{i}^{\prime} e_{i}=z_{i}^{\prime}$. That is, $z_{i}^{\prime} \in R$ is regular. In view of Theorem 2.1, z_{i}^{\prime} is pseudo unit-regular. Observing that $a z_{1}^{\prime}+a z_{2}^{\prime}=d\left(s_{1} z_{1}^{\prime}+s_{2} z_{2}^{\prime}\right)=d e_{1}+d e_{2}=d\left(e_{1}+e_{2}+e_{3}\right)=d$, as required.
(2) \Rightarrow (1) Given $a x+b=1$ in R, then there exist pseudo unit-regular $w_{1}, w_{2} \in$ R such that $a w_{1}+b w_{2}=1$. Assume that $w_{1}=w_{1} v w_{1}$ for a $v \in R_{\infty}^{-1}$. Since $v w_{1}+$ $\left(1-v w_{1}\right)=1$, it follows from [7, Lemma 4.4] that $w_{1}+z\left(1-v w_{1}\right)=u \in R_{\infty}^{-1}$ for a $z \in R$. This implies that $w_{1}=\left(w_{1}+z\left(1-v w_{1}\right)\right) v w_{1}=u e$, where $e=v w_{1} \in R$ is an idempotent. Thus, $a u e+b w_{2}=1$, and so $(1-e) a u e+(1-e) b w_{2}=1-e$. As a result, we deduce that $w_{1}+u(1-e) b w_{2}=u e+u(1-e) b w_{2}=u(1-(1-e) a u e) \in$ R_{∞}^{-1}. By [7, Lemma 4.4] again, $a+b w_{2} z \in R_{\infty}^{-1}$ for a $z \in R$. Therefore R is a $Q B_{\infty}$-ring.
$(1) \Leftrightarrow(3)$ is symmetric.
Corollary 4.5. Let R be an exchange ring. Then the following are equivalent:
(1) R is a $Q B_{\infty}$-ring.
(2) Whenever $a R=b R$, there exists $u \in R_{\infty}^{r}$ such that $a=b u$.
(3) Whenever $R a=R b$, there exists $u \in R_{\infty}^{r}$ such that $a=u b$.

Proof. (1) $\Rightarrow(2)$ is trivial by Theorem 4.4.
$(2) \Rightarrow(1)$ Whenever $x=x y x$, we have that $x R=x y R$. By assumption, there exists a $u \in R_{\infty}^{r}$ such that $x=(x y) u$. Thus, we can find a $v \in R_{\infty}^{-1}$ such that $u=u v u$. Since $u v+(1-u v)=1$, by [7, Lemma 4.4], there exists a $z \in R$ such that $w:=u+(1-u v) z \in R_{\infty}^{-1}$. This implies that $u=u v u=u(u+(1-u v) z)=u v w$. Let $e=x y$ and $f=u v$. Then $e, f \in R$ are idempotents and $x=e f w$. As in the proof of Theorem 4.2, $x \in R$ is pseudo unit-regular. According to Theorem 2.1, R is a $Q B_{\infty}$-ring.
$(1) \Leftrightarrow(3)$ is proved in the same manner.
The class of exchange $Q B_{\infty}$-ring is very large. We end this paper by providing a class of such rings.

Example 4.6. Let R be an exchange $Q B$-ring. Then the ring

$$
T=\left\{\left.\left(\begin{array}{ccc}
a & 0 & b \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b \in R\right\}
$$

is an exchange $Q B_{\infty}$-ring.
Proof. Clearly,

$$
J(T)=\left\{\left.\left(\begin{array}{ccc}
a & 0 & b \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right) \right\rvert\, a \in J(R), b \in R\right\} .
$$

Then $T / J(T) \cong R / J(R)$, and so $T / J(T)$ is a $Q B$-ring. One easily checks that idempotents lift modulo $J(T)$. Therefore T is an exchange ring by [11, Theorem 29.2]. For any $\left(\begin{array}{ccc}a & 0 & b \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right)+J(T) \in(T / J(T))_{\infty}^{-1}$, then $\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right)+$ $J(T) \in(T / J(T))_{\infty}^{-1}$. Thus, we can find some $c, d \in R$ and $m \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left(T\left(1-\left(\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right)\left(\begin{array}{lll}
c & 0 & d \\
0 & c & 0 \\
0 & 0 & c
\end{array}\right)\right)\right. \\
& \left.T\left(1-\left(\begin{array}{lll}
c & 0 & d \\
0 & c & 0 \\
0 & 0 & c
\end{array}\right)\left(\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right)\right) T\right)^{m} \subseteq J(T) .
\end{aligned}
$$

Hence, $\overline{(1-a c)} \mathfrak{G} \overline{(1-c a)}$ in $R / J(R)$, i.e., $\bar{a} \in(R / J(R))_{\infty}^{-1}$. In view of [6, Lemma 4.1], we have a $d \in R_{\infty}^{-1}$ such that $a-d \in J(R)$. Write $(1-d u) \natural(1-u d)$ for a $u \in R$. Then there exists some $m \in \mathbb{N}$ such that $(R(1-d u) R(1-u d) R)^{m}=0$. Hence,

$$
\begin{aligned}
& \left(T\left(1_{T}-\left(\begin{array}{ccc}
d & 0 & 0 \\
0 & d & 0 \\
0 & 0 & d
\end{array}\right)\left(\begin{array}{ccc}
u & 0 & 0 \\
0 & u & 0 \\
0 & 0 & u
\end{array}\right)\right)\right. \\
& \left.T\left(1_{T}-\left(\begin{array}{lll}
u & 0 & 0 \\
0 & u & 0 \\
0 & 0 & u
\end{array}\right)\left(\begin{array}{lll}
d & 0 & 0 \\
0 & d & 0 \\
0 & 0 & d
\end{array}\right)\right) T\right)^{2 m}=0
\end{aligned}
$$

This implies that $\left(\begin{array}{ccc}d & 0 & \\ 0 & d & 0 \\ 0 & 0 & d\end{array}\right) \in T_{\infty}^{-1}$. Obviously,

$$
\left(\begin{array}{ccc}
a & 0 & b \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right)+J(T)=\left(\begin{array}{ccc}
d & 0 & 0 \\
0 & d & 0 \\
0 & 0 & d
\end{array}\right)+J(T)
$$

Therefore, $\left(J(T)+T_{\infty}^{-1}\right) / J(T)=(T / J(T))_{\infty}^{-1}$. By [6, Lemma 4.1] again, T is a $Q B_{\infty}$-ring, as asserted.

References

1. P. Ara, The exchange property for purely infinite simple rings, Proc. Amer. Math. Soc., 132 (2004), 2543-2547.
2. P. Ara, G. K. Pedersen and F. Perera, An infinite analogue of rings with stable rank one, J. Algebra, 230 (2000), 608-655.
3. P. Ara; G. K. Pedersen and F. Perera, Extensions and pullbacks in $Q B$-rings, Algebra Represent. Theory, 8 (2005), 75-97.
4. M. J. Canfell, Completion of diagrams by automorphisms and Bass' first stable range condition, J. Algebra, 176 (1995), 480-503.
5. H. Chen, Elements in one-sided unit regular rings, Comm. Algebra, 25 (1997), 2517-2529.
6. H. Chen, On exchange $Q B$-rings, Comm. Algebra, 31 (2003), 831-841.
7. H. Chen, On $Q B_{\infty}$-rings, Comm. Algebra, 34 (2006), 2057-2068.
8. K. R. Goodearl, Cancellation of low-rank vector bundles, Pacific J. Math., 113 (1984), 289-302.
9. T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Apll., 3 (2004), 301-343.
10. G. K. Pedersen, The λ-function in operator algebras, J. Operator Theory, 26 (1991), 345-381.
11. A. A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
12. J. Wei, Exchange rings with weakly stable range one, Vietnam J. Math., 32 (2004), 441-449.
13. J. Wei, Unit-regularity and stable range conditions, Comm. Algebra, 33 (2005), 1937-1946.

Huanyin Chen
Department of Mathematics,
Hangzhou Normal University,
Hangzhou 310036,
P. R. China

E-mail: huanyinchen@yahoo.cn

