TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 3, pp. 1031-1042, June 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

ELEMENTS IN EXCHANGE QB_{∞} -RINGS

Huanyin Chen

Abstract. An element $u \in R$ is pseudo invertible if there exist $v, w \in R$ such that R(1 - uv)R(1 - wu)R is a nilpotent ideal. A ring R is a QB_{∞} ring provided whenever aR + bR = R with $a, b \in R$, there exists $y \in R$ such that a + by is pseudo invertible. We prove, in this paper, that an exchange ring R is a QB_{∞} -ring if and only if whenever x = xyx, there exists a pseudo invertible $u \in R$ such that x = xyu = uyx if and only if whenever x = xyx, there exists $a \in R$ such that y + a is pseudo invertible and 1 + xa is invertible. Also we characterize exchange QB_{∞} -rings by virtue of pseudo unit-regularity. These generalize the main results of Wei (2004, Theorem 3, Theorem 7; 2005, Theorem 2.2, Theorem 2.4 and Theorem 3.6).

1. INTRODUCTION

A ring R has stable one provided that aR + bR = R with $a, b \in R$ implies that there exists a $y \in R$ such that a + by is invertible (cf. [4] and [9]). Replacing invertible elements with weakly invertible elements in the definition of stable range one, one introduced some other conditions. A ring R has weakly stable range one if whenever aR + bR = R with $a, b \in R$, there exists $y \in R$ such that a + by is right or left invertible (cf. [5] and [12-13]). In [2], Ara et al. discovered a new class of rings, i.e., QB-rings. They called a ring R is a QB-ring provided that whenever aR + bR = R with $a, b \in R$, there exists $y \in R$ such that a + by is quasi invertible, where $u \in R$ is quasi invertible provided that there exist $v, w \in R$ such that (1 - uv)R(1 - wu) = (1 - wu)R(1 - uv) = 0. The class of QB-rings gives a nice infinite analogoue of stable range one (see [2-3] and [6]). In [7], the author introduced a new class of rings, i.e., QB_{∞} -rings. A ring R is a QB_{∞} ring provided whenever aR + bR = R with $a, b \in R$, there exists $y \in R$ such that a + byis pseudo invertible, where $u \in R$ is pseudo invertible if there exists $v, w \in R$

Received May 8, 2006, accepted October 20, 2007.

Communicated by Wen-Fong Ke.

²⁰⁰⁰ Mathematics Subject Classification: 16E50, 16D70, 19B10.

Key words and phrases: Exchange ring, QB_{∞} -Ring, Pseudo unit-regularity.

such that R(1 - uv)R(1 - wu)R is a nilpotent ideal. Clearly, every QB-ring is a QB_{∞} -ring, while the converse is not true. For example, the ring $TM_2(R)$ of all 2×2 upper triangular matrices over a QB-ring R is a QB_{∞} -ring, but $TM_2(R)$ is not a QB-ring (see [7, Example 3.3]). Also we note that infinite analogoues of stable range one were also studied in the context of C^* -algebras (cf. [10]).

A ring R is called an exchange ring if for every right R-module A and any two decompositions $A = M \oplus N = \bigoplus_{i \in I} A_i$, where $M_R \cong R_R$ and I is a finite index set, there exist submodules $A'_i \subseteq A_i$ such that $A = M \oplus (\bigoplus_{i \in I} A'_i)$. It is well known that regular rings, π -regular rings, unit C*-algebras of real rank zero, semiperfect rings, left or right continuous rings and clean rings are all exchange rings (cf. [1], [6], [9] and [11]). We prove, in this paper, that an exchange ring R is a QB_{∞} -ring if and only if whenever x = xyx, there exists a pseudo invertible $u \in R$ such that x = xyu = uyx if and only if whenever x = xyx, there exists $a \in R$ such that y + a is pseudo invertible and 1 + xa is invertible. Also we characterize exchange QB_{∞} -rings by virtue of pseudo unit-regularity. These generalize [12, Theorem 3], [12,Theorem 7], [13,Theorem 2.2], [13, Theorem 2.4] and [13, Theorem 3.6].

Throughout, R is an associative ring with nonzero identity 1_R . U(R) denotes the set of all units of R. $x \in R$ is called pseudo unit-regular provided that there exists a $u \in R_{\infty}^{-1}$ such that x = xux. We always use R_{∞}^r to stand for the set of all pseudo unit-regular elements in R.

2. PSEUDO INVERTIBILITY

Let $Q(0) = \{r \in R \mid RrR \text{ is an nilpotent ideal of } R\}$. Then Q(0) is an ideal of R. We begin with a characterization of exchange QB_{∞} -rings by virtue of pseudo-invertible elements.

Theorem 2.1. Let *R* be an exchange ring. Then the following are equivalent:

- (i) R is a QB_{∞} -ring.
- (*ii*) Every regular element in R is pseudo unit-regular.

Proof. (1) \Rightarrow (2) Given any regular $x \in R$, there exists a $y \in R$ such that x = xyx. Since yx + (1 - yx) = 1, we have a $z \in R$ such that $y + (1 - yx)z = u \in R_{\infty}^{-1}$. Hence, x = xyx = x(y + (1 - yx)z)x = xux, as required.

 $(2) \Rightarrow (1)$ Suppose that ax + b = 1 in R. In view of [11, Proposition 28.6], there exists an idempotent $e \in bR$ such that $1 - e \in (1 - b)R$. Assume that e = bsand 1 - e = axt for some $s, t \in R$. Then axt + e = 1; hence, $(1 - e)a \in R$ is regular. By assumption, we can find a pseudo-invertible $u \in R$ such that (1 - e)a = (1 - e)au(1 - e)a. Since (1 - e)axt + e = 1, we have that u(1 - e)axt + ue = u. Let f = u(1 - e)a. Then $f = f^2 \in R$. Clearly, f(xt + ue) + (1 - f)ue = u, and so (1 - f)ue = (1 - f)u. Since $u \in R_{\infty}^{-1}$, it follows from [7, Lemma 2.1] that $u \equiv uvu \pmod{Q(0)}$ for a $v \in R$. Thus,

$$(1-f)uv(1-f)u = (1-f)(uvu - uvu(1-e)au) \equiv (1-f)(u-fu) \equiv (1-f)u(mod Q(0)).$$

Let g = (1-f)uv(1-f). Then $g \equiv g^2 \pmod{Q(0)}$. As a result, we get $f(xt+ue) + gu \equiv u \pmod{Q(0)}$. One easily checks that fg = gf = 0, and so $f(xt+ue) \equiv fu \pmod{Q(0)}$. One easily checks that

$$u((1-e)a + ev(1-f)(1 + fuev(1-f))(1 - fuev(1-f))u$$

= $(f + uev(1-f)(1 + fuev(1-f))(1 - fuev(1-f))u$
= $(f(1 - fuev(1-f) + uev(1-f))u$
= $(f + (1-f)uev(1-f))u$
= $fu + (1-f)uv(1-f)u$
= $fu + gu$
= $u(mod Q(0)).$

As $u \in R_{\infty}^{-1}$, it is easy to verify that

$$a + bs(v(1 - f) - a)$$

= $a - ea + ev(1 - f)$
= $(1 - e)a + v(1 - f)(1 + fuv(1 - f)) \in R_{\infty}^{-1}$

Therefore R is a QB_{∞} -ring.

Corollary 2.2. Let *R* be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) For any regular $x \in R$, there exists $u \in R_{\infty}^{-1}$ such that ux is an idempotent.

Proof. (1) \Rightarrow (2) For any regular $x \in R$, it follows by Theorem 2.1 that there exists a $u \in R_{\infty}^{-1}$ such that x = xux. So $ux \in R$ is an idempotent.

 $(2) \Rightarrow (1)$ For any regular $x \in R$, there exists a $u \in R_{\infty}^{-1}$ such that ux is an idempotent. Clearly, we have a $y \in R$ such that x = xyx and y = yxy. From yx + (1 - yx) = 1, we get uyx + u(1 - yx) = u. As in the proof of Theorem 2.1, we can find a $z \in R$ such that $y + (1 - yx)z = u \in R_{\infty}^{-1}$. Hence, x = x(y+(1-yx)z)x = xux. According to Theorem 2.1, we complete the proof.

Lemma 2.3. Let R be a ring and $x \in R$. Then the following are equivalent:

- (1) There exists a $v \in R_{\infty}^{-1}$ such that x = xvx.
- (2) x = xyx = xyu, where $y \in R, u \in R_{\infty}^{-1}$.
- (3) x = xyx = uyx, where $y \in R, u \in R_{\infty}^{-1}$.

Proof. (1) \Rightarrow (2) Since xy + (1 - xy) = 1 with $y \in R_{\infty}^{-1}$, it follows by [7, Lemma 4.4] that $x + (1 - xy)z \in R_{\infty}^{-1}$ for a $z \in R$. Hence x = xy(x + (1 - xy)z) = xyu, where $u = x + (1 - xy)z \in R_{\infty}^{-1}$.

 $(2) \Rightarrow (1)$ Suppose that x = xyx = xyu, where $y \in R, u \in R_{\infty}^{-1}$. Let e = xy. Then $e \in R$ is an idempotent. Since xy + (1 - xy) = 1, we have that euy + (1 - xy) = 1, and so euy(1 - e) + (1 - xy)(1 - e) = 1 - e. This implies that $e + (1 - xy)(1 - e) = 1 - euy(1 - e) \in U(R)$. Therefore we get $x + (1 - xy)(1 - e) = (1 - euy(1 - e))u \in R_{\infty}^{-1}$. In view of [7, Lemma 4.4], we can find a $z \in R$ such that $w := y + z(1 - xy) \in R_{\infty}^{-1}$. Thus, x = x(y + z(1 - xy))x = xwx.

(1) \Rightarrow (3) Since yx + (1 - yx) = 1 with $y \in R_{\infty}^{-1}$, it follows by [7, Lemma 4.4] that $x + z(1 - yx) \in R_{\infty}^{-1}$ for a $z \in R$. Then x = (x + (1 - yx)z)yx = uyx, where $u = x + z(1 - yx) \in R_{\infty}^{-1}$.

(3) \Rightarrow (1) Suppose that x = xyx = uyx, where $y \in R, u \in R_{\infty}^{-1}$. Let e = yx. Then $e \in R$ is an idempotent. Since yx + (1 - yx) = 1, we have that yue + (1 - yx) = 1, and so (1 - e)yue + (1 - e)(1 - yx) = 1 - e. Hence, $e + (1 - e)yue = 1 - (1 - e)yue \in U(R)$. Thus, we get $x + u(1 - e)yue = u(1 - (1 - e)yue) \in R_{\infty}^{-1}$. By virtue of [7, Lemma 4.4], we have a $z \in R$ such that $w := y + (1 - yx)z \in R_{\infty}^{-1}$. Therefore x = x(y + (1 - yx)z)x = xwx, as asserted.

Theorem 2.4. Let *R* be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) Whenever x = xyx, there exists $u \in R_{\infty}^{-1}$ such that x = xyu.
- (3) Whenever x = xyx, there exists $u \in R_{\infty}^{-1}$ such that x = uyx.

Proof. (1) \Rightarrow (2) Suppose that x = xyx. In view of Theorem 2.1, we can find a $v \in R_{\infty}^{-1}$ such that x = xvx. By Lemma 2.3, we have a $u \in R_{\infty}^{-1}$ such that x = xvx = xvu. Let e = xv. Then $e = e^2 \in R$. Since xy + (1 - xy) = 1, we have that euy + (1 - xy) = 1; hence, euy(1 - e) + (1 - xy)(1 - e) = 1 - e. This implies that $e + (1 - xy)(1 - e) = 1 - euy(1 - e) \in U(R)$, and so $x + (1 - xy)(1 - e) = (1 - euy(1 - e))u \in R_{\infty}^{-1}$. Let w = (1 - euy(1 - e))u. Then x = xyx = xy(x + (1 - xy)(1 - e)) = xyw.

- $(2) \Rightarrow (1)$ is clear by Lemma 2.3 and Theorem 2.1.
- $(1) \Leftrightarrow (3)$ is proved in the same manner.

1034

Corollary 2.5. Let *R* be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) Whenever $x \in R$ is regular, there exist an idempotent $e \in R$ and $a \ u \in R_{\infty}^{-1}$ such that x = eu.
- (3) Whenever $x \in R$ is regular, there exist an idempotent $e \in R$ and $a \ u \in R_{\infty}^{-1}$ such that x = ue.

Proof. (1) \Rightarrow (2) Since $x \in R$ is regular, there exists a $y \in R$ such that x = xyx. In view of Theorem 2.4, we have a $u \in R_{\infty}^{-1}$ such that x = xyu. Let e = xy. Then $e \in R$ is an idempotent and x = eu, as required.

 $(2) \Rightarrow (1)$ Given regular $x \in R$, we have a $y \in R$ such that x = xyx. By assumption, we have a $u \in R_{\infty}^{-1}$ and an idempotent $e \in R$ such that x = eu. Since xy + (1 - xy) = 1, euy + (1 - xy) = 1. As in the proof of Theorem 2.4, we have that $x + (1 - xy)(1 - e) = (1 - euy(1 - e))u \in R_{\infty}^{-1}$. This implies that x = xyx = xyw, where $w := (1 - euy(1 - e))u \in R_{\infty}^{-1}$. In view of Lemma 2.3 and Theorem 2.4, we conclude that R is a QB_{∞} -ring.

 $(1) \Leftrightarrow (3)$ is symmetric.

Corollary 2.6. Let R be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) Whenever $\varphi : aR \cong bR$ with $a, b \in R$, there exists $u \in R_{\infty}^{-1}$ such that $b = \varphi(a)u$.
- (3) Whenever φ : $Ra \cong Rb$ with $a, b \in R$, there exists $u \in R_{\infty}^{-1}$ such that $b = u\varphi(a)$.

Proof. (1) \Rightarrow (2) Whenever $\varphi : aR \cong bR$ with $a, b \in R$, we have $r, s \in R$ such that $b = \varphi(ar)$ and $a = \varphi^{-1}(bs)$. Thus, $a = \varphi^{-1}(\varphi(ar)s) = ars$. Since rs + (1 - rs) = 1, there exists a $z \in R$ such that $r + (1 - rs)z = u \in R_{\infty}^{-1}$. Hence, $au = a(r + (1 - rs)z) = ar = \varphi^{-1}(b)$, and therefore $b = \varphi(a)u$.

 $(2) \Rightarrow (1)$ Given any regular $x \in R$, there exists a $y \in R$ such that x = xyx. Clearly, we have a *R*-isomorphism $\varphi : xyR \cong yxR$ given by $\varphi(xyr) = y(xyr)$ for any $r \in R$. By assumption, we have that $yx = \varphi(xy)u$ for a $u \in R_{\infty}^{-1}$, i.e., yx = yxyu = yu. Thus, x = xyx = xyu. As $yx \in R$ is an idempotent, it follows by Corollary 2.5 that *R* is a QB_{∞} -ring.

 $(1) \Leftrightarrow (3)$ is symmetric.

3. Extensions

The purpose of this section is to give extensions of Theorem 2.4. As shown below, we also obtain new characterizations of exchange QB-rings. Let R be a ring and $a, b \in R$. The symbol $a \natural b$ means that RaRbR is a nilpotent ideal of R.

Theorem 3.1. Let R be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) Whenever x = xyx, there exists a $u \in R_{\infty}^{-1}$ such that x = xyu = uyx.
- (3) Whenever x = xyx, there exists a $u \in \mathbb{R}_{\infty}^{-1}$ such that xyu = uyx.

Proof. (1) \Rightarrow (2) Given any x = xyx, then we have x = xzx, z = zxz, where z = yxy. Since R is a QB_{∞} -ring, it follows by Theorem 2.1, there exists a $v \in R_{\infty}^{-1}$ such that z = zvz. Let u = (1 - xz - vz)v(1 - zx - zv). One easily checks that $(1 - xz - vz)^2 = 1 = (1 - zx - zv)^2$. Hence $u \in R_{\infty}^{-1}$. Clearly,

$$xzu = -xzv(1 - zx - zv)$$

= $-xzv + xzx + xzv$
= xzx
= x .

and

$$uzx = (1 - xz - vz)v(-zvzx)$$

= $-(1 - xz - vz)vzx$
= $-vzx + xzx + vzx$
= xzx
= xzx
= x .

Thus, x = xzu = x(yxy)u = xyu and x = uzx = u(yxy)x = uyx. As a result, we see that x = xyu = uyx.

$$(2) \Rightarrow (3)$$
 is trivial.

(3) \Rightarrow (1) Given x = xyx, there exists a $u \in R_{\infty}^{-1}$ such that xyu = uyx. In view of [7, Lemma 2.1], we can find a $v \in R$ such that $(1 - uv)\natural(1 - vu)$ and $u \equiv uvu \pmod{Q(0)}$. Construct two maps

$$\varphi: xR \oplus (1 - xy)R \to yxR \oplus (1 - yx)R;$$

$$\varphi(xr + (1 - xy)s) = yxr + u(1 - xy)s \text{ for any } s, t \in R$$

and

$$\begin{split} \phi : yR \oplus (1-yx)R &\to xR \oplus (1-xy)R, \\ \phi \big(yr + (1-yx)s) &= xyr + (1-xy)v(1-yx)s \text{ for any } s, t \in R. \end{split}$$

One easily checks that $x\varphi(1)x = x\varphi(x) = xyx = x$. Furthermore, we see that

$$1 - \phi(1)\varphi(1) = 1 - \phi(\varphi(1))$$

= 1 - \phi(yxy + u(1 - xy))
= 1 - (xy + (1 - xy)vu(1 - xy))
= (1 - xy)(1 - vu)(1 - xy).

Likewise, we have that $1 - \varphi(1)\phi(1) = (1 - yx)(1 - uv)(1 - yx)$. Thus, $R(1 - \varphi(1)\phi(1))R(1 - \phi(1)\varphi(1))R \subseteq R(1 - uv)R(1 - vu)R$. As $(1 - uv)\natural(1 - vu)$, we deduce that $(1 - \varphi(1)\phi(1))\natural(1 - \phi(1)\varphi(1))$. Hence, $\varphi(1) \in R_{\infty}^{-1}$. According to Theorem 2.1, we complete the proof.

Let R be a ring and $a, b \in R$. We say that a and b are pseudo-similar, denoted by $a \overline{\sim} b$, if there exist $x, y \in R$ such that a = xby, b = yax, x = xyx and y = yxy. We now generalize [6, Theorem 13] and [13, Theorem 3.6] to exchange QB_{∞} -rings.

Corollary 3.2. Let R be an exchange QB_{∞} -ring. Then $a \overline{\sim} b$ with $a, b \in R$ implies that there exist $u, v \in R_{\infty}^{-1}$ such that a = ubv.

Proof. Suppose that $a \\angle b$ with $a, b \\\in R$. Then we have $x, y \\\in R$ such that a = xby, b = yax, x = xyx and y = yxy. In view of Theorem 3.1, there exists a $u \\in R_{\infty}^{-1}$ such that x = xyu = uyx. One easily checks that ax = a(xyu) = (xby)xyu = (xby)u = au and xb = (uyx)b = (uyx)(yax) = (uyxy)ax = u(yax) = ub. In addition, ax = (xby)x = x(yax)yx = x(yax) = xb. Thus, we can find a $u \\in R_{\infty}^{-1}$ such that au = xb = ub. Since y = yxy, it follows from Theorem 3.1 that y = yxv for a $v \\in R_{\infty}^{-1}$. Therefore a = xby = xbyxv = xyaxyv = xyaxv = xbv = ubv, as asserted.

Theorem 3.3. Let R be an exchange ring. Then the following are equivalent :

- (1) R is a QB_{∞} -ring.
- (2) Whenever x = xyx, there exists some $a \in R$ such that $y + a \in R_{\infty}^{-1}$ and $1 + xa \in U(R)$.

Proof. (1) \Rightarrow (2) Since x = xyx, it follows from yx + (1 - yx) = 1 that there exists a $z \in R$ such that $y + (1 - yx)z \in R_{\infty}^{-1}$. Let a = (1 - yx)z. Then $y + a \in R_{\infty}^{-1}$. In addition, we have $1 + xa = 1 + x(1 - yx)z = 1 \in U(R)$.

(2) \Rightarrow (1) Given x = xyx, then x = xzx and z = zxz, where z = yxy. By assumption, we have a $c \in R$ such that $x + c \in R_{\infty}^{-1}$ and $1 + zc \in U(R)$. Thus, $1 + z(u - x) \in U(R)$ for a $u \in R_{\infty}^{-1}$. Let w = 1 + z(u - x). Then $zuw^{-1} + (1 - zx)w^{-1} = 1$. As $uw^{-1} \in R_{\infty}^{-1}$, it follows from [7, Lemma 4.4] that $v := z + (1 - zx)w^{-1}t \in R_{\infty}^{-1}$ for a $t \in R$. As a result, $x = xzx = x(z + (1 - zx)w^{-1}t)x = xvx$. According to Theorem 2.1, R is a QB_{∞} -ring.

Corollary 3.4. Let *R* be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) Whenever $x \in R$ is regular, there exist $a \ e \in r.ann(x)$ and $a \ u \in R_{\infty}^{-1}$ such that y = e + u.

Proof. (1) \Rightarrow (2) Given any regular $x \in R$, there exists a $y \in R$ such that x = xyx. Since yx + (1 - yx) = 1, we can find a $z \in R$ such that $u := y + (1 - yx)z \in R_{\infty}^{-1}$. Thus, y = (yx - 1)z + u. Let e = (yx - 1)z. Then y = e + u, where $e \in r.ann(x)$ and $u \in R_{\infty}^{-1}$.

 $(2) \Rightarrow (1)$ Given any regular $x \in R$, there exist a $e \in r.ann(x)$ and a $u \in R_{\infty}^{-1}$ such that y = e + u. Let a = -e. Then $y + a \in R_{\infty}^{-1}$ and $1 + xa = 1 \in U(R)$, as required.

Corollary 3.5. Let *R* be an exchange ring. Then the following are equivalent:

(1) R is a QB_{∞} -ring.

(2) Whenever x = xyx, there exists $u \in R_{\infty}^{-1}$ such that $1 - x(y+u) \in U(R)$.

Proof. (1) \Rightarrow (2) Whenever x = xyx, then -x = (-x)(-y)(-x). By Theorem 3.3., there exists $a \in R$ such that $-y + a \in R_{\infty}^{-1}$ and $1 - xa \in U(R)$. Let -y + a = u. Then $1 - x(y + u) \in U(R)$, as required.

 $(2) \Rightarrow (1)$ Whenever x = xyx, there exists $u \in R_{\infty}^{-1}$ such that $1 - x(y+u) \in U(R)$. Let a = -(y+u). then $1 + xa \in U(R)$ and $y + a = -u \in R_{\infty}^{-1}$. According to Theorem 3.3, we complete the proof.

As in the proof of Theorem 3.1 and Theorem 3.3, we see that an exchange ring R is a QB-ring if and only if whenever x = xyx, there exists a quasi invertible $u \in R$ such that x = xyu = uyx if and only if whenever x = xyx, there exists some $a \in R$ such that y + a is quasi invertible and 1 + xa is invertible.

4. PSEUDO UNIT-REGULARITY

In this section, we characterize exchange QB_{∞} -rings by virtue of pseudo unitregularity.

Lemma 4.1. Suppose that ax + b = 1 with $a = a^2, b, x \in R$. Then there exist $a \ z \in R$ and $a \ u \in U(R)$ such that xu + zbu = 1.

Proof. Since ax + b = 1, we have ax(1 - a) + b(1 - a) = 1 - a; hence, $a + b(1 - a) = 1 - ax(1 - a) \in U(R)$. In view of [8, Lemma 3.1], there exists a $z \in R$ such that $x + zb \in U(R)$. Let $u = (x + zb)^{-1}$. Then xu + zbu = 1, as asserted.

Theorem 4.2. Let R be an exchange ring. Then the following are equivalent: (1) R is a QB_{∞} -ring. (2) Whenever x = xyx, there exists some $a \in R$ such that $x + a \in R_{\infty}^{r}$ and $1 + ya \in U(R)$.

Proof. (1) \Rightarrow (2) Whenever x = xyx, we see that $x \in R_{\infty}^{r}$ from Theorem 2.1. Choose a = 0. Then $x + a \in R_{\infty}^{r}$ and $1 + ya = 1 \in U(R)$.

 $(2) \Rightarrow (1)$ Assume that x = xyx. Then x = xzx and z = zxz, where z = yxy. By assumption, we have a $c \in R$ such that $x + c \in R_{\infty}^r$ and $u := 1 + zc \in U(R)$. Let a = xyc. Then $1 + ya = 1 + yxyc = 1 + zc \in U(R)$. In addition, x + a = x + xyc = xy(x + c). Also we see that

$$x + a = x + xyc$$

= $x + xyxyc$
= $x(1 + zc)$
= xu .

This implies $x = (x + a)u^{-1} = xy(x + c)u^{-1}$. As $x + c \in R_{\infty}^r$, we see that $(x+c)u^{-1} \in R_{\infty}^r$. Thus, we have a $v \in R_{\infty}^{-1}$ such that $(x+c)u^{-1} = (x+c)u^{-1}v(x+c)u^{-1}$. Since $(x + c)u^{-1}v + (1 - (x + c)u^{-1}v) = 1$, it follows by [7, Lemma 4.4] that $w := (x+c)u^{-1} + (1 - (x+c)u^{-1}v)t \in R_{\infty}^{-1}$ for a $t \in R$. Let $f = (x+c)u^{-1}v$. Then $(x + c)u^{-1} = (x + c)u^{-1}vw = fw$. Let e = xy. Then x = efw. Since efwy + (1 - xy) = xy + (1 - xy) = 1, by virtue of Lemma 4.1, we can find a $k \in U(R)$ and a $d_1 \in R$ such that $fwyk + d_1(1 - xy)k = 1$. By Lemma 4.1 again, we have a $l \in U(R)$ and a $d_2 \in R$ such that $ykl + d_2d_1(1 - xy)kl = 1$. In view of [7, Lemma 4.4], there exists a $d \in R$ such that $ykl + dd_2d_1(1 - xy)kl \in R_{\infty}^{-1}$. This implies that $q := y + dd_2d_1(1 - xy) \in R_{\infty}^{-1}$; hence, x = xyx = xqx. According to Theorem 2.1, R is a QB_{∞} -ring.

Corollary 4.3. Let *R* be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) Whenever x = xyx, there exist $a \ e \in r.ann(y)$ and $a \ u \in \mathbb{R}^r_{\infty}$ such that x = e + u.

Proof. $(1) \Rightarrow (2)$ is trivial from Theorem 2.1.

 $(2) \Rightarrow (1)$ Whenever x = xyx, there exist a $e \in r.ann(y)$ and a $u \in R_{\infty}^{r}$ such that x = e + u. This implies that $x - e = u \in R_{\infty}^{r}$ and $1 + ye = 1 \in U(R)$. Therefore we complete the proof by Theorem 4.2.

In [4, Theorem 2.9], Canfell showed that R has stable range one if and only if whenever aR + bR = dR, there exists a $y \in R$ and a $u \in U(R)$ such that a+by = du. Wei extended this result to exchange rings having weakly stable range one (cf. [12, Theorem 7] and [13, Theorem 2.4]). Now we can generalize Canfell's result in case of exchange QB_{∞} -rings.

Theorem 4.4. Let *R* be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) Whenever aR + bR = dR, there exist $u, v \in R^r_{\infty}$ such that au + bv = d.
- (3) Whenever Ra + Rb = Rd, there exist $u, v \in R^r_{\infty}$ such that ua + vb = d.

Proof. (1) \Rightarrow (2) Assume that aR + bR = dR. Then we can find some $s_1, s_2, x, y \in R$ such that $a = ds_1, b = ds_2$ and ax + by = 1. Thus, $ds_1x + ds_2y = d$. Let $s_3 = 1 - s_1x - s_2y$. Then $s_1x + s_2y + s_3 = 1$. This implies that $s_1R + s_2R + s_3R = R$. Since R is an exchange ring, by [11, Proposition 29.1], we can find orthogonal idempotents $e_1, e_2, e_3 \in R$ such that $e_1 = s_1z_1, e_2 = s_2z_2, e_3 = s_3$ for some $z_1, z_2, z_3 \in R$, where $e_1 + e_2 + e_3 = 1$. Let $z'_i = z_ie_i$. Then $e_i = s_iz'_i$. One easily checks that $z'_is_iz'_i = z'_ie_i = z'_i$. That is, $z'_i \in R$ is regular. In view of Theorem 2.1, z'_i is pseudo unit-regular. Observing that $az'_1 + az'_2 = d(s_1z'_1 + s_2z'_2) = de_1 + de_2 = d(e_1 + e_2 + e_3) = d$, as required.

 $(2) \Rightarrow (1)$ Given ax + b = 1 in R, then there exist pseudo unit-regular $w_1, w_2 \in R$ such that $aw_1 + bw_2 = 1$. Assume that $w_1 = w_1vw_1$ for a $v \in R_{\infty}^{-1}$. Since $vw_1 + (1 - vw_1) = 1$, it follows from [7, Lemma 4.4] that $w_1 + z(1 - vw_1) = u \in R_{\infty}^{-1}$ for a $z \in R$. This implies that $w_1 = (w_1 + z(1 - vw_1))vw_1 = ue$, where $e = vw_1 \in R$ is an idempotent. Thus, $aue + bw_2 = 1$, and so $(1 - e)aue + (1 - e)bw_2 = 1 - e$. As a result, we deduce that $w_1 + u(1 - e)bw_2 = ue + u(1 - e)bw_2 = u(1 - (1 - e)aue) \in R_{\infty}^{-1}$. By [7, Lemma 4.4] again, $a + bw_2z \in R_{\infty}^{-1}$ for a $z \in R$. Therefore R is a QB_{∞} -ring.

 $(1) \Leftrightarrow (3)$ is symmetric.

Corollary 4.5. Let *R* be an exchange ring. Then the following are equivalent:

- (1) R is a QB_{∞} -ring.
- (2) Whenever aR = bR, there exists $u \in R_{\infty}^r$ such that a = bu.
- (3) Whenever Ra = Rb, there exists $u \in R^r_{\infty}$ such that a = ub.

Proof. $(1) \Rightarrow (2)$ is trivial by Theorem 4.4.

 $(2) \Rightarrow (1)$ Whenever x = xyx, we have that xR = xyR. By assumption, there exists a $u \in R_{\infty}^{r}$ such that x = (xy)u. Thus, we can find a $v \in R_{\infty}^{-1}$ such that u = uvu. Since uv + (1-uv) = 1, by [7, Lemma 4.4], there exists a $z \in R$ such that $w := u + (1-uv)z \in R_{\infty}^{-1}$. This implies that u = uvu = u(u + (1-uv)z) = uvw. Let e = xy and f = uv. Then $e, f \in R$ are idempotents and x = efw. As in the proof of Theorem 4.2, $x \in R$ is pseudo unit-regular. According to Theorem 2.1, R is a QB_{∞} -ring.

 $(1) \Leftrightarrow (3)$ is proved in the same manner.

The class of exchange QB_{∞} -ring is very large. We end this paper by providing a class of such rings.

Example 4.6. Let R be an exchange QB-ring. Then the ring

$$T = \left\{ \left(\begin{array}{rrr} a & 0 & b \\ 0 & a & 0 \\ 0 & 0 & a \end{array} \right) \ | \ a, b \in R \right\}$$

is an exchange QB_{∞} -ring.

Proof. Clearly,

$$J(T) = \left\{ \left(\begin{array}{ccc} a & 0 & b \\ 0 & a & 0 \\ 0 & 0 & a \end{array} \right) \ | \ a \in J(R), b \in R \right\}.$$

Then $T/J(T) \cong R/J(R)$, and so T/J(T) is a QB-ring. One easily checks that idempotents lift modulo J(T). Therefore T is an exchange ring by [11, Theorem

29.2]. For any
$$\begin{pmatrix} a & 0 & b \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} + J(T) \in (T/J(T))_{\infty}^{-1}$$
, then $\begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} + J(T) \in (T/J(T))_{\infty}^{-1}$. Thus, we see find some $a, b \in D$ and $w \in \mathbb{N}$ such that

 $J(T) \in (T/J(T))_{\infty}^{-1}$. Thus, we can find some $c, d \in \mathbb{R}$ and $m \in \mathbb{N}$ such that

$$\begin{pmatrix} T \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \begin{pmatrix} c & 0 & d \\ 0 & c & 0 \\ 0 & 0 & c \end{pmatrix} \end{pmatrix} T \begin{pmatrix} c & 0 & d \\ 0 & c & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \end{pmatrix} T \begin{pmatrix} m \\ \subseteq J(T). \end{pmatrix}^{m}$$

Hence, $\overline{(1-ac)} \natural \overline{(1-ca)}$ in R/J(R), i.e., $\overline{a} \in (R/J(R))_{\infty}^{-1}$. In view of [6, Lemma 4.1], we have a $d \in R_{\infty}^{-1}$ such that $a - d \in J(R)$. Write $(1 - du) \natural (1 - ud)$ for a $u \in R$. Then there exists some $m \in \mathbb{N}$ such that $(R(1 - du)R(1 - ud)R)^m = 0$. Hence,

$$\begin{pmatrix} T \begin{pmatrix} 1_T - \begin{pmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{pmatrix} \begin{pmatrix} u & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u \end{pmatrix} \\ T \begin{pmatrix} 1_T - \begin{pmatrix} u & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u \end{pmatrix} \begin{pmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{pmatrix} \end{pmatrix} T \end{pmatrix}^{2m} = 0.$$

This implies that $\begin{pmatrix} d & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{pmatrix} \in T_{\infty}^{-1}.$ Obviously,
 $\begin{pmatrix} a & 0 & b \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} + J(T) = \begin{pmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{pmatrix} + J(T).$

Therefore, $(J(T) + T_{\infty}^{-1})/J(T) = (T/J(T))_{\infty}^{-1}$. By [6, Lemma 4.1] again, T is a QB_{∞} -ring, as asserted.

REFERENCES

- 1. P. Ara, The exchange property for purely infinite simple rings, *Proc. Amer. Math. Soc.*, **132** (2004), 2543-2547.
- 2. P. Ara, G. K. Pedersen and F. Perera, An infinite analogue of rings with stable rank one, *J. Algebra*, **230** (2000), 608-655.
- P. Ara; G. K. Pedersen and F. Perera, Extensions and pullbacks in QB-rings, Algebra Represent. Theory, 8 (2005), 75-97.
- 4. M. J. Canfell, Completion of diagrams by automorphisms and Bass' first stable range condition, *J. Algebra*, **176** (1995), 480-503.
- 5. H. Chen, Elements in one-sided unit regular rings, *Comm. Algebra*, **25** (1997), 2517-2529.
- 6. H. Chen, On exchange QB-rings, Comm. Algebra, 31 (2003), 831-841.
- 7. H. Chen, On QB_{∞} -rings, Comm. Algebra, **34** (2006), 2057-2068.
- 8. K. R. Goodearl, Cancellation of low-rank vector bundles, *Pacific J. Math.*, **113** (1984), 289-302.
- T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Apll., 3 (2004), 301-343.
- 10. G. K. Pedersen, The λ -function in operator algebras, J. Operator Theory, **26** (1991), 345-381.
- 11. A. A. Tuganbaev, *Rings Close to Regular*, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
- 12. J. Wei, Exchange rings with weakly stable range one, *Vietnam J. Math.*, **32** (2004), 441-449.
- 13. J. Wei, Unit-regularity and stable range conditions, *Comm. Algebra*, **33** (2005), 1937-1946.

Huanyin Chen Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, P. R. China E-mail: huanyinchen@yahoo.cn