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NON LIMIT-POINT DIFFERENTIAL EXPRESSIONS
WITH ESSENTIAL SPECTRUM

Marian P. Roque and Bernd Schultze

Abstract. It shall be shown that there exist real symmetric differential expres-
sions of every even order with a nonempty essential spectrum which are not
in the limit-point case.

1. MAIN RESULT

Theorem. Let n > 1. The symmetric differential expression

My = (−1)ny(2n) + (x2y′)′ (1)

satisfies the following properties:

1. Its deficiency index is d(M) = n + 1.
2. Its essential spectrum is nonempty.

2. THEORETICAL AND HISTORICAL BACKGROUND

First we give a brief review of some basic facts concerning linear operators
generated by ordinary differential expressions and their spectral properties which
can be found in [2] and [8]. Given an ordinary differential expression of the form

My =
m∑

k=0

rky
(k),
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where rk are functions on an interval I , rk ∈ Ck(I, C) for every k = 0, ..., m and
for all x ∈ I, rm(x) �= 0. We define the maximal operator T1(M) generated by M
in L2(I) as:

D(T1(M)) = { y | y ∈ ACn(I) ∩ L2(I) andMy ∈ L2(I)}

T1(M)y = My =
m∑

k=0

rky
(k).

The operator TR(M) in L2(I) is the restriction of T1(M) to those y ∈ D(T1(M))
with compact support in the interior of I and are infinitely differentiable. Since
TR(M) ⊆ T1(M) and the maximal operator T1(M) is closed, it follows that TR(M)
is closable and a unique minimal closed extension for TR(M) exists. This operator
is called the minimal operator associated with M in L2(I) and will be denoted by
T0(M).

The spectral properties of M we shall be considering consist of the essential
spectrum of M , denoted by σe(M), and the nullities of M , denoted by nul(M − λ)
which are defined as follows :

σe(M) = {λ ∈ C | range T0(M − λIL2) is not closed}
nul(M − λ) = dim ker(T1(M − λIL2)) for λ ∈ C,

where IL2 is the identity on L2(I). It is well-known that the essential spectrum as
defined here with the minimal operator is the same one as that of the one defined
with the maximal operator and all linear operators in between generated by M .
Therefore, it should be noted that the essential spectrum defined above depends
only on the expression M and not on the operators generated by M . In [1] and
[10], conditions for the existence of the essential spectrum have been determined.For
these notions the asymptotic behaviour of the coefficients rk at infinity is crucial in
the case I = [1,∞).

Let us now consider real symmetric expressions of order m = 2n which are of
the form

My =
n∑

k=0

(−1)k(pky
(k))(k). (2)

where pk ∈ Ck(I, R) for k = 0, . . . , n and pn > 0 on I = [1,∞). For these
expressions, σe(M) ⊆ R. Since the nullities of M are constant in C \ R, we
consider the nullity only for λ = i. We refer to this nullity as the deficiency index
of M and denote it by d(M). Expressions of the form (2) on L2[1,∞) satisfy the
following properties:

1. n ≤ d(M) ≤ 2n

2. If d(M) = 2n, then σe(M) = ∅.
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Expression M is said to be in the limit-point case if d(M) = n and in the limit
circle case when d(M) = 2n. The above property means that if an expression is
in the limit circle case, then it must have an empty essential spectrum. Hence, if
the expression M has a nonempty essential spectrum, its deficiency index should
be less than 2n. Glazman[3] and Kodaira[6] were able to show that an expression
need not be in the limit-point or limit circle case. Glazman gave explicit examples
of expressions M with n < d(M) < 2n. In fact, he showed that for every integer k

with n ≤ k ≤ 2n, there is an expression M such that d(M) = k. However, he did
not consider the existence of the essential spectrum in his results. For a long time,
there was no known example of an expression with a nonempty essential spectrum
which is not in the limit point case. Schultze [9] gave the first example of such an
expression for n = 2. It is of the form

My = (y′′)′′ + (xy′)′,

and has d(M) = 3. In [11], an example for n = 3 was given and it is of the form

My = −(y(3))(3) − (xy′′)′′

and has d(M) = 4. Although exact evaluation of the essential spectra of the above
expressions has not been achieved, these expressions have nonempty essential spectra
according to [1] and [10].

In [11, p. 499], Schultze made the following conjecture: For all n, k ∈ N

with n ≤ k < 2n, there exist expressions M of order 2n with nonempty essential
spectrum such that d(M) = k.

Our main result partially confirms this conjecture for arbitrary n with k = n+1.
The proof is based on the theory of asymptotic expansions of solutions and the above
mentioned existence result of the essential spectrum.

3. PROOF OF THE THEOREM

First we prove a lemma for the differential expression

My = (−1)ny(2n) + (x2y′)′.

The method of showing that its deficiency index is n + 1 consists of determining a
fundamental system of formal solutions for the equation

My − iy = (−1)ny(2n) + x2y′′ + 2xy′ − iy = 0.

According to the Poincaré, Birkhoff, Trjitzinsky, Turrittin theory ([7, p.95],[4, Satz
A], [12-14), there exists a fundamental system of formal solutions which are not
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necessarily convergent series satisfying the above equation algebraically. Here they
are of the form eaxr ∑∞

s=0 asx
j− r

2
s. To each of these formal solutions there exists a

holomorphic solution having this formal solution as asymptotic expansion.This last
property then enables us to determine the deficiency index of M .

Lemma. Let
(−1)ny(2n) + (x2y′)′ − iy = 0, (3)

where n > 1. Then (3) has formal solutions of the following forms:

(i) y =
∞∑

s=0

asx
j−s where j2 + j − i = 0 and defining the empty product as 1,

as =




(−1)kn
∏2nk−1

l=0 (j − l)∏k
l=1 2nl(2j − 2nl + 1)

, s = 2nk for some k ∈ N0

0, otherwise
(4)

and

(ii) y = eaxr
∞∑

s=0

asx
j− r

2
s where r = n

n−1 , a = 1
r (−1)

n
2(n−1) , j = 2n−1

−2n+2 ,

a0 = 1, and for some function f

as =

{
f(s, a, j, r, n, as−2, . . . , a2), s even

0, s odd.
(5)

Proof. We show that there is a solvable recursion for the constants as such that
the given formal series satisfies (3) formally. In (i) we are even able to determine
the as explicitly.

Let y be given by (i). Then

(−1)n(y(n))(n) + (x2y′)′ − iy = (−1)ny(2n) + x2y
′′

+ 2xy′ − iy

= (−1)n
∞∑

s=0

as

2n−1∏
l=0

(j − s − l)xj−s−2n

+
∞∑

s=0

as((j − s)(j − s − 1) + 2(j − s) − i)xj−s.

We show that the coefficient of xj−s is zero for any s ∈ N0.
If s = 0, . . . , 2n− 1, the coefficient of xj−s is given by

as((j − s)(j − s − 1) + 2(j − s) − i) = −ass(2j − s + 1) = 0
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since j2 + j − i = 0 and as = 0 for 0 < s ≤ 2n − 1.
For s ≥ 2n, the coefficient of xj−s is now given by

(−1)nas−2n

2n−1∏
l=0

(j−(s−2n)−l)+as((j−s)(j−s−1)+2(j−s)−i)

= (−1)nas−2n

s−1∏
l=s−2n

(j−l)− ass(2j − s + 1).

(6)

If s �= 0(mod 2n), then as = as−2n = 0.
If s = 2nk for some k ∈ N then s − 2n = 2n(k − 1) and (6) can be expressed

as

(−1)na2n(k−1)

2nk−1∏
l=2n(k−1)

(j − l)− a2nk(2nk)(2j − 2nk + 1)

and this is equal to 0 since

a2n(k−1) =
(−1)(k−1)n

∏2n(k−1)−1
l=0 (j − l)∏k−1

l=1 2nl(2j − 2nl + 1)

and

a2nk =
(−1)kn

∏2nk−1
l=0 (j − l)∏k

l=1 2nl(2j − 2nl + 1)
.

Hence, for y satisfying (i), (−1)n(y(n))(n) − (−x2y′)′ − iy = 0.
Suppose y is of the form (ii), then for any n ∈ N and u =

∑∞
s=0 asx

j− r
2
s

y(n) =
n∑

m=0

(
n

m

)
(eaxr

)(n−m)u(m)

= eaxr
n∑

m=0

n−m∑
l=0

(
n

m

)
cl,n−malrlxlr−(n−m)

∞∑
s=0

asJs,mxj− r
2
s−m

= eaxr
∞∑

s=0

n∑
m=0

n−m∑
l=0

asa
lrlCl,n,mJs,mxj+lr−n− r

2
s

= eaxr
∞∑

s=0

n∑
l=0

n−l∑
m=0

asa
lrlCl,n,mJs,mxj+lr−n− r

2
s

where cl,n−m are constants, Cl,n,m =
(

n
m

)
cl,n−m, Js,0 = 1 and for m > 0, Js,m =∏m−1

λ=0 (j− r
2s−λ). In particular, ck,k = 1, ck−1,k =

k(k − 1)
2

(r−1) and c0,k = 0
for k > 0. Then
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(−1)n(y(n))(n) − (−x2y′)′ − iy

= eaxr
[(−1)n

∞∑
s=0

2n∑
l=0

2n−l∑
m=0

asa
lrlCl,2n,mJs,mxj+lr−2n− r

2
s

+ a2r2
∞∑

s=0

asx
j+2r− r

2
s + ar(r − 1)

∞∑
s=0

asx
j+r− r

2
s

+ 2ar

∞∑
s=0

as(j − r

2
s)xj+r− r

2
s +

∞∑
s=0

as(j − r

2
s)(j − r

2
s − 1)xj− r

2
s

+ 2ar

∞∑
s=0

asx
j+r− r

2
s + 2

∞∑
s=0

as(j − r

2
s)xj− r

2
s − i

∞∑
s=0

asx
j− r

2
s].

(7)

The powers of x are of the form j + lr − 2n − r
2s where 0 ≤ l ≤ 2n. The highest

power for a fixed s is j + 2r − r
2s occurring when l = 2n. If we let k = 2n − l,

then we can now express j + lr − 2n − r
2s as j + r(2− k − s

2), 0 ≤ k ≤ 2n and
(7) can now be expressed as

∞∑
s=0

2n∑
k=0

asFk(s)xj+r(2−k−s/2)

where Fk(s) comes from the terms (−1)n
∑2n−l

m=0 alrlCl,2n,mJs,m from y(2n) and
the other terms, from 2xy′ and x2y′′. In particular,

F0(s) = (−1)na2nr2n + a2r2 (8)

F1(s) = (−1)na2n−1r2n−1n[(2n − 1)(r − 1) + 2j − rs)]

+ar(2j − r(s − 1) + 1)

F2(s) = (−1)n
2∑

m=0

a2n−2r2n−2C2n−2,2n−mJs,m

+
(
j − r

2
s
) (

j − r

2
s − 1

)
+ 2 − i

(9)

and for 2 ≤ k ≤ 2n

Fk(s) = (−1)n
k∑

m=0

a2n−kr2n−kC2n−k,2n−mJs,m.

Since a = r−1(−1)
n

2(n−1) , F0(s) = 0 for any s. Moreover, since j = 2n−1
−2n+2 , F1(0)

= 0 and F1(s) �= 0 for any s > 0.
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Let a0 = 1. We define as = 0 for s < 0 and s odd. For s even and s ≥ 2, we
define as as

as = −[F1(s)]−1
2n∑
i=2

as+2−2iFi(s + 2 − 2i). (10)

We now show that the coefficient
∑2n

k=0 asFk(s) of xj+r(2−k−s/2) is 0 for 0 ≤ k ≤
2n and s ≥ 0.

The highest power of x is j + 2r and its coefficient is F0(0) = 0. The powers
of x can also be expressed as xj+r(2−l/2), where l = 2k + s, and its coefficient is
given by

2n∑
i=0

al−2iFi(l − 2i). (11)

If l is odd, then al−2i = 0 for every i and (11) is equal to 0.
Suppose l is even. Since F0(s) = 0 and

al−2 = −[F1(l − 2)]−1
2n∑
i=2

Fi(l − 2i)al−2i

then (11) is also equal to 0 for l even. This proves the assertion.

As mentioned above, to these formal solutions

y = eaxr
∞∑

s=0

asx
j− r

2
s, (12)

there exist holomorphic solutions of (3) having these formal solutions as asymptotic
expansions. ¿From these asymptotic expansions, it follows that the holomorphic
solutions are linearly independent and we can determine if they are in L2 or not.
We now prove the Theorem.

Proof of the Theorem. First note that M is of the form (2) hence, it is symmetric.
Moreover, M has a nonempty essential spectrum since it satisfies condition [E] in
[10] namely:

E . If M is symmetric and rk(x) = O(xk) as x → ∞ for k = 0, . . . , m, then
σe(M) �= ∅.

Let My = (−1)ny(2n) + (x2y′)′. The Lemma gives the formal solutions of
My − iy = 0 which are of the form (12). The first form, where r = 2, a = 0, and
j2 + j − i = 0, gives two holomorphic solutions and only one of these is in L2.
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In the second form, r = n
n−1 , and we have

a = r−1(−1)
1

2(n−1) .

This gives 2n − 2 formal solutions, two of which are purely imaginary. Among
the 2n − 4 solutions, n − 2 have negative real parts, hence, the corresponding
holomorphic solutions are in L2. For a = i and a = −i, we consider the value of
j. Since

j =
2n − 1
−2n + 2

< −1/2,

we get two more holomorphic solutions in L2.Then among the so obtained linearly
independent 2n holomorphic solutions of (3), exactly 1 + (n − 2) + 2 of these are
in L2. This implies d(M) = n + 1.

Hence, for every n > 1, there exists an expression M which is not in the
limit-point case. .
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