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CONTINUITY OF RESTRICTIONS OF (a, k)-REGULARIZED
RESOLVENT FAMILIES TO INVARIANT SUBSPACES

Sen-Yen Shaw and Hsiang Liu

Abstract. Let X be a Banach space which is continuously embedded in
another Banach space Y and is an invariant subspace for an (a, k)-regularized
resolvent family R(-) of operators on Y. It is shown that the restriction of
R(-) to X is strongly continuous with respect to the norm of X if and only
if all its partial orbits are relatively weakly compact in X. This property is
shared by many particular cases of (a, k)-regularized resolvent families, such
as integrated solution families, integrated semigroups, and integrated cosine
functions.

1. INTRODUCTION

Let Y be a Banach space with norm | - ||y and let X C Y be a linear subspace.
Suppose X is equipped with a norm || - || x such that (X, || - || x) becomes a Banach
space and such that (X, || - || x) is continuously embedded in Y, i.e., the identity map
from (X, | - |lx) onto (X, | - |lyv) is continuous, or equivalently, ||z|y < M||z| x
for some M > 0 and all z € X. Let B(Y) and B(X) denote the Banach algebras
of all bounded linear operators on Y and on X, respectively.

For a Cy-semigroup {7'(:);t > 0} C B(Y) of linear operators on Y which
leaves X invariant, S.C. Hille [3] gives a characterization of strong continuity of
the restricted semigroup {7'(t)x := T'(t)|x;t > 0} € B(X) in terms of norm and
weak compactness of the partial orbits

O (1) ={T(t)xz;0<t<7}C X

for r >0andall z € X.
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The purpose of this paper is to prove this same property for cosine operator
functions and more generally for an (a, k)-regularized resolvent family.
Let a,k € L}, .([0,00)) be positive functions, and let A be a densely defined

closed linear operator in Y. Consider the Volterra equation of convolution type
t
V E(a, A) u(t) = / a(t — 8) Au(s)ds + (1), t > 0.
0

A strongly continuous function { R(¢); ¢t > 0} € B(Y") is called an (a, k)-regularized
resolvent family on Y for VE(a, A) if it satisfies the conditions:

(R1) R(0) = k(0)I;

(R2) R(t)y € D(A) and AR(t)y = R(t)Ay for all y € D(A) and ¢t > 0;

(R3) (ax R)(t)y € D(A) and R(t)y = k(t)y + (a* R)(t)Ay for all y € D(A)
and ¢ > 0.

It is easy to see that (a x R)(t)y € D(A) and
R(t)y =k(t)y+ A(ax R)(t)y forall y e Y and t > 0. (1.1)

The notion of a (a, k)-regularized resolvent family was introduced and studied
in [6, 7, 8]. See also [5, 14]. It contains «-times integrated solution families
(k(t) = t*/T(a + 1)) [9], resolvent families (k(¢) = 1) [10], a-times integrated
semigroups (a = 1, k(t) = t*/T'(a + 1)) [4], Co-semigroups (e = k = 1) [2], and
a-times integrated cosine functions (a(t) = ¢, k(t) = t*/T'(a + 1)) [13] as special
cases. In each of these particular cases, the operator A is just the generator of the
respective family.

In particular, a (¢, 1)-regularized resolvent family for VE(¢, A) is just a cosine
operator function {C(t);¢ > 0} (cf. [12, 15]), which is defined as a strongly
continuous function on [0, co) satisfying

C(0)=Tand C(s+1t)+C(s—t) =2C(s)C(t) forall s >t > 0.

By extending C(-) to the whole real line R as an even function, we see that the
above equality holds for all s, € R.

The main theorem (Theorem 2.4), to be proved in Section 2, asserts that when an
(a, k)-regularized resolvent family R(-) on Y for VE(a, A) leaves the subspace X
invariant, the restricted family R(-)x forms an (a, k)-regularized resolvent family
on X for VE(a, Ax) if and only if for all x € X and 7 > 0 the partial orbits

O, (1) ={R(t)xx;0<t<71}C X

are relatively weakly compact in X. Here Ax denote the part Ax of A in X (i.e.,
D(Ax) ={z € X;2z € D(A)and Az € X} and Axz = Az for x € D(Ax))
and X, denote the weak topology of the Banach space X.
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Clearly the necessity part of the above theorem is obvious. The sufficiency part
comprises two implications: the first one from the X ,,-compactness of partial orbits
to the X,,-continuity of the orbits, and the second one from the X,,-continuity to the
norm continuity. It will be seen in Proposition 2.3 that the first implication holds for
any strongly continuous operator functions which leave X invariant. But the second
implication seems not to hold in general. The proof of the second implication in
Theorem 2.4 involves the operator A and condition (R3). However, a proof of the
second implication without involving the generator A is possible for Cy-semigroups
and cosine operator functions. One can refer to [2, Theorem 5.8] and [16, p. 233]
for such proofs for Cy-semigroups. For cosine operator functions we will give in
Theorem 3.1 an alternative proof without using the generator A.

2. MAIN ResuLT

Forar > 0 letu : [0,7] — Y be a strongly continuous function such that
ul0, 7] := {u(t);t € [0,7]} C X.

Lemma 2.1.

(i) If {zo} C X is a net X,,-convergent (X, being the weak topology of X) to
some z € X, then {z,} is also Y,,-convergent to z.

(i) Every Y,,-closed subset of X is also X ,,-closed, and every [0, 7] x Y,-closed
subset of [0, 7] x X is also [0, 7] x X ,-closed.

(iii) Let w : [0,7] — X be X,-continuous as well as Y,,-continuous. If u(-) is
X,-Riemann integrable (i.e., there is a unique € X such that (z,z*) =
Jo (u(t), z*), existing as a Riemann integral), then it is also Y",-Riemann
integrable, and X,- [ u(t)dt = Y- [ u(t)dt.

Proof. (i) For any y* € Y*, the functional z* := y*|x is continuous on
(X, ]|+ Ix) because the topology of X is stronger than the topology of Y restricted
to X. Hence z* € X* and so we have (z,,y*) = (24, 2*) — (z,2%) = (z,y*).
This means that z,, is Y,,-convergent to z.

(i) and (iii) follow from (i). ]

Lemma 2.2. Let (S,0) be a Hausdorff topological space. A function v :
[0,7] — S is continuous if and only if »[0, 7] is relatively compact in S and the
graph G(u, [0, 7]) := {(¢t,u(t)); 0 <t < 7} is closed in [0, 7] x S.

Proof. Necessity. The mappings t — wu(t) and ¢ — (¢, u(t)) are continuous
functions from [0, 7] to S and to [0, 7] x .S, respectively. Hence u[0, 7] is compact
in S and G(u, [0, 7]) is compact and hence closed in [0, 7] x S.
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Sufficiency. For any t, € [0, 7] and for any sequence {t,} C [0, 7] such that
tn, — to, the relative compactness of «[0, 7] implies that {¢,,} contains a subsequence
{tn, } such that u(t,, ) converges to some z € S. By the closedness of G(u, [0, 7])
in [0, 7] x S, we must have that = = wu(tg). Then w(¢,) must converge to u(t),
otherwise we can choose a subsequence of {u(¢,)} which contains no subsequence
with limit u(t¢). This is a contradiction. Since {t,} is arbitrary, this shows that
u(+) is continuous at ¢.

Let S(-) = {S(t);t > 0} be a strongly continuous function of linear operators
on Y, and suppose X is invariant under S(-). Then S(:)x = {S(¢)|x;t > 0} is
a function of operators on (X, || - [[x). As shown by Lemma 2.1, for each z € X
the orbit O, (7) := {S(t)x;0 < t < 7} of S(-)xx is weakly closed in X, and the
graph of S(-)xz is weakly closed in [0, co) x X. However, S(-)x is not necessarily
continuous. The following theorem gives characterizations for S(-)x to be strongly
continuous.

Proposition 2.3. The following conditions satisfy the relations: (a) = (b) =
(©) < (d).
(a) S(-)x is strongly continuous on X.
(b) Foreach z € X and for all 7 > 0, O, (1) := {S(¢t)z;0 < ¢t < 7} is compact
in X.
(c) Foreach x € X and for all 7 > 0, O,(7) is relatively X ,,-compact (resp.
bounded, when X is reflexive).

(d) S(-)x is weakly continuous on X.

Proof. “(a) = (b) = (c)” and “(d) = (c)” are obvious.

(€) = (d). Since S(-)x is strongly continuous in Y, G(S(-)z, [0, 7]) is strongly
compact, and hence it is a [0, 7] x Y,,-compact subset of [0, 7] x X. By Lemma
2.1, G(S(-)x,[0,7]) is [0, 7] x X,,-closed. This fact together with (c) implies (d),
by Lemma 2.2. n

Leta, k € L}Oc[o, o0) be positive functions, and let A be a densely defined closed
operator in Y. Let R(-) = {R(t);t > 0} be a (a, k)-resolvent family on Y for
VE(a, A). Suppose X is invariant under R(-). Then R(:)x = {R(t)|x;t > 0} isa
function of operators on (X, || - ||x). The following theorem gives characterizations

for R(-)x to be a (a, k)-resolvent family of operators on X.

Theorem 2.4.  For a (a, k)-resolvent family R(-) of operators on Y for
VE(a, A) such that X is invariant under R(-), the following conditions are equiv-
alent:

(a) R(-)x is strongly continuous on X.
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(b) Foreach z € X and forall 7 > 0, O,(7) := {R(t)z;0 < t < 7} is compact
in X.

(c) Foreach x € X and for all 7 > 0, O,(7) is relatively X ,,-compact (resp.
bounded, when X is reflexive).

(d) R(-)x is weakly continuous on X.

Moreover, in this case A x is a densely defined operator in X and R(-) x is a
(a, k)-resolvent family of operators on X for VE(a, A x).

Proof. Because of Proposition 2.3, it remains to prove “(d) = (a)”.

(d) = (a). First note that the X,,-continuity of R(-)xz implies that O, () is
X,,-compact, and hence so is its X,-closed convex hull T0¥(O,(7)), by Krein’s
theorem.

For every z € X, we consider the vectors z, : (a*l o Jo alr=s)R(s)zds, r >
0, defined as Riemann integrals in || - ||y. Then z, € D(A), by (1.1). =, is also
equal to the Pettis integral

" 1
Xw-/o ma(r —s)R(s)xxds (€ X)

of the X,-continuous function R(-) xx on [0, r], which exists and lies in 0™ (O, (7)) (C
X) by the X continuity of R(-)xz, the X,,-compactness of c0“(O,(7)), and the
fact that (a*l Gl Jo a(r—s)ds =1 (cf. [11, Theorem 3.27]). Thus z, € D(A)NX.
Since (a*1)(r)Az, = Afo a(r — s)R(s)xzds = R(r)x — k(r)x € X, z, belongs
to D(Ax) and (a* 1)(r)Axz, = R(r)xx — k(r)z.

Hence D := {a/ = {&DWy -2 ¢ X,r > 0} and span(D) are subsets of

(axk)(r)
D(Ax). Clearly, the X,,-continuity of R(-)xx at 0 imply that

A _ ra,r—s s)xx — k(s)x, *)|ds
(o} 0.0} < s [t = MRG0~ Koy,

< sup [[(R(s)xx — k(s)z,2")[ — 0
0<s<r
as r — 01 for all 2* € X*, i.e., 2/ — x weakly as r — 0". Hence D is X,-
dense in X and the same are span(D) and D(Ax). As linear subspaces of X, both
span(D) and D(Ax) are also strongly dense in X, by the Hahn-Banach theorem.
Since the weak continuity of R(-)x implies it is locally bounded, to show that
R(-) x is strongly continuous, it remains to show that | R(t+h) x z, — R(t) x .|| x —
Oash—0(witht+h>0)forallze X,t>0,and r > 0.
Since R(:)xx, is assumed to be X,-continuous, by the above argument and
(R3), we see that the Pettis integral X, fo a(t — s)R(s)x Axx,ds exists and
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t
R(t)xar — k() = B(t)zy — k(t)z, = / a(t — $)R(s) Az, ds
0
t
= Xw-/ a(t — s)R(s)x Axx,ds.
0
It follows that for any fixed ¢ > 0 and all |h| < 1 such that¢+h >0
(R(t+ h)xz, — R(t)xxp, ")
t+h
- | / a(t +h — s)(R(s)x Axar, &%) ds
0
t
—/ a(t — s)(R(s)XAer,x*Ms‘
0

<

t+h
/ a(t+h — s)(R(s)xAxxz,,x*)ds
t

+

/O (a(t+h—s) — alt — 5)) (B(s)x Axan, 2°)ds

< (/Oha(s)ds—I—/Ot\a(t—i—h—s)—a(t—s)\ds)

sup [ R(s)x|[[| Ax | x|
0<s<t+1

for all z* € X*, so that

[R(t+ ) xxr — R(8) x v x

< (/Oha(s)ds—I—/Ot\a(t—i—h—s)—a(t—s)\ds)

- sup [[R(s) x| Axa |l x,
0<s<t+1

which converges to 0 as A — 0, by Lebesgue’s Dominated Convergence Theorem.
Hence R(-)xx is strongly continuous at t.

Finally, to show that R(-)x is a (a, k)-resolvent family for VE(a, Ax), let x €
D(Ax). Thenz € D(A)NX and Az € X so that R(s)xx = R(s)z € D(A)NX
and AR(s)xxz = AR(s)x = R(s)Ax = R(s)Axz = R(s)xAxx € X, which
means that R(s)xxz € D(Ax) and AxR(s)xz = R(s)xAxx for all z € D(Ax).
Moreover, by (R3) we have
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X- /Ot a(t — s)AxR(s)xxzds = X- /Ot a(t — s)R(s)x Axzds

- /Ot a(t — s)R(s)Axds = R(t)x — k(t)x

Y
R(t)xx — k(t)x

for x € D(A,). Hence R(:)x is a (a, k)-resolvent family of operators on X for
VE(a, Ax). The proof is complete.

Corollary 2.5. The assertion of Theorem 2.4 still holds if R(-) is replaced
with an a-times integrated semigroup 7'(+) or an a-times integrated cosine function
C(-).

3. ANOTHER PROOF FOR THE CAStE oF CosINE OPERATOR FUNCTIONS

Let C(-) = {C(t);t € R} be a strongly continuous cosine operator function on
Y with infinitesimal generator A, and suppose X is invariant under C(-). Then
C()x = {C(t)|x;t € R} is a cosine function of operators on (X, || - ||x). The
following theorem is a special case of Corollary 2.5 (except the inclusion of condition
(b”)). Moreover, the part “(d) = (a)” is to be proved without using the generator A.

Theorem 3.1. For a strongly continuous cosine operator function C(-) on Y’
such that X is invariant under C(-), the following conditions are equivalent:

(a) C(-)x is strongly continuous cosine operator function on X.

(b) Foreach z € X andforall 7 > 0, O,(7) := {C(t)z;0 < t < 7} is compact
in X.

(t/) For each z € X there exists a 7o > 0 such that O,.(7) is compact in X.

(¢) Foreach x € X and for all 7 > 0, O,(7) is relatively X ,,-compact (resp.
bounded, when X is reflexive).

(d) C(-)x is weakly continuous on X.

In this case, the infinitesimal generator of C(-) x is Ax, which is a densely
defined closed operator in X.

Proof. In view of Proposition 2.3, we need to prove “(b’) = (b)” and “(d) =
(@)”.

(b’) = (b). First, we note that the continuity of C(-)x implies that O, (7) is
closed in (Y, || - ||y), and hence is closed in (X, | - ||x) because (X, | - |x) is
continuously embedded in Y.
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For n > 2, we have for all 0 < r < 7
C((n— Do +1)xz = 2C((n — 1)70)xC(r)xz — C((n — )70 — 7) x
€ 2C((n — 1)70) xOx(70) — O((n — 1)70).
It follows that
O (7) C Ox((n = 1)70) U 2C((n = 1)70) x Or(70) — Or((n — 1)70)]

for all 7 € [0, n7). Since C((n — 1)79)x is a continuous operator on X, if O, (7o)
and O, ((n — 1)7p) are compact in X, then so is the set on the right hand side of
the above inclusion. Thus, as a closed subset of a compact set, O,(7) is compact
in X for all 7 € [0, n7y]. Hence, by induction, one can infer (b) from (b’).

(d) = (a). Note that the X,,-continuity of C(-)xz implies that O, (7) is X,,-
compact, and hence so is its X,,-closed convex hull €0 (O,(7)), by Krein’s theo-
rem.

To show that C'(-) x is continuous in norm || - || x on [0, c0) for every x € X,
we consider the vectors z, := 1 fo s)xxzds, r > 0, where the integrals are
defined as Pettis integrals, which exist and lie in c0”(O4(7)) (C X) by the X,,-
continuity of C(-)xz and the X,,-compactness of €0*(O,(7)) (cf. [11, Theorem
3.27]). Hence D := {z,;xz € X,r > 0} is a subset of X. The X,,-continuity of
C(-)xx at 0 also shows that z,, — = weakly as » — 0". Hence D is X,,-dense in
X and its linear span span(D) is weakly (and strongly) dense in X. For ¢ € R and
all z* € X*, we have

(CWxar.7) = (ar (COX)"") = 1 [ (Clo)xa, (COx)'a")ds
1
= ;/0 s)xx,x)ds

1
_ r/0< (t + 8)x + Cs — ) x)z, 27)ds

2r
_ 2i</tt+r N ><C(3)Xx,x*>ds

(C(t+h)xx, — C(t) xTp, %)

([ e
t+h+r t+ t
(L /t>

and hence
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for all |h| < 1.
Since the weak continuity of C(-)x implies it is locally bounded, we have

1O + k) xar — C(t) x| x
1
< g4hsup{||Cls)xlls sl < [t} + 1 +r}z]x — 0

as h — 0. Thus ||C(t + h)xx — C(t)xz||x — 0 as h — 0 for all =z € span(D).
Since span(D) is strongly dense in X and C(-) x is locally bounded, |C(t+h)xz—
C(t)xx||lx — 0holds forall x € X, i.e., C(t+h)x — C(t)x inthe strong operator
topology as h — 0.

Finally, we show that C(-)x is generated by Ax. Let B be the infinitesimal
generator of C'(-)x. Since the || - || x—topology of X is stronger than the || - ||y-
topology of X, clearly B C Ax. To show the converse, we need only to show
D(Ax) C D(B). Note that C(-) and C(-)x are exponentially bounded, so that for
sufficiently large A > 0 we have

AN = B) g = / eMO(t) xadt / eMO()zdt = AO2 — A) Lo
0 0

for all x € X, where the first Riemann integral is in the sense of || - || x and the

second one is in the sense of || - ||y. If z € D(Ax), then (A2 — A)x € X, and so

r=MN-A) N - Az =\ -B) '\ - Az € D(B).

Hence B = Ax and the proof is complete.
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