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ON A CERTAIN ITERATED MIXED INTEGRAL EQUATION

B. G. Pachpatte

Abstract. In this paper we study the stability and asymptotic behavior of
solutions of a nonlinear iterated Volterra-Fredholm integral equation by using
the well known Krasnoselskii’s fixed point theorem.

1. INTRODUCTION

Consider the following iterated Volterra-Fredholm integral equation

(1.1) x (t) = h (t) +
n∑

i=1

Aix (t) +
n∑

i=1

Bix (t) ,

where

(1.2) Aix (t) =

t∫
0


 t1∫

0

...


 ti−1∫

0

ai (t, t1, ..., ti) fi (t1, ..., ti, x (ti)) dti


 ...


 dt1,

(1.3) Bix (t) =

∞∫
0


 t1∫

0

...


 ti−1∫

0

bi (t, t1, ..., ti) gi (t1, ..., ti, x (ti)) dti


 ...


 dt1,

for i = 1, ..., n, t ∈ J = [0,∞) and h : J → Rn, ai, bi : Ji+1 → R,, fi, gi : Ji ×
Rn → Rn are continuous functions, in which Ji =

{
(t1, ..., ti) ∈ Ri : 0 ≤ ti ≤ ...

≤ t1 < ∞} , R = (−∞,∞) and Rn the n-dimensional Euclidean space. Let |.| de-
note any appropriate norm in Rn and let BC [0,∞) be the collection of all bounded
continuous functions from [0,∞) into Rn with the sup-norm defined by ‖φ‖ =
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sup
t ≥ 0

|φ (t)| for φ ∈ BC [0,∞) . For ε > 0 , let S (ε) = {φ : φ ∈ BC [0,∞) ,

‖φ‖ ≤ ε} .
The special versions of the equations of the form (1.1) arise naturally in the

study of boundary value problems on the infinite half line. In fact in [3], Gamidov
observed that the study of certain boundary value problems of differential equations
can be reduced to the study of special version of the equation (1.1). The problems
of existence and other properties of solutions of the special versions of equation
(1.1) have been studied by many authors by using different techniques, see [1, 2,
5, 6, 7, 9-11] and the references cited therein. In [7] the authors have studied
the stability and asymptotic behavior of solutions of equation (1.1) when n = 1
and a1 (t, t1) , b1 (t, t1) are n by n matrices. Motivated by many physical problems
arising in wide variety of applications, governed by both ordinary differential and
integral equations (see [9, 12], in this paper we study the stability and asymptotic
behavior of solutions of more general equation (1.1) by using the fixed point theorem
due to Krasnoselskii [5].

2. STATEMENT OF RESULTS

In the proofs of our results we make use of the following fixed point theorem of
Krasnoselskii [5] which combines both the Contraction mapping principle and the
Schauder fixed point theorem (see also [4,8]).

Theorem K. Let S be a bounded, closed, convex subset of a Banach space
and let A and B be operators satisfying:

(i) Ax + By ∈ S whenever x, y ∈ S;
(ii) A is a contraction on S;
(iii) B is completely continuous on S.

Then the equation Ax + Bx = x has a solution on S.
For convenience, we list the following hypotheses used in our discussion.

(H1) For i = 1, ..., n

sup
t ≥ 0

t∫
0


 t1∫

0

...


 ti−1∫

0

|ai (t, t1, ..., ti)| dti


 ...


 dt1 ≤ Mi < ∞.

(H2) For i = 1, ..., n

sup
t ≥ 0

∞∫
0


 t1∫

0

...


 ti−1∫

0

|bi (t, t1, ..., ti)| dti


 ...


 dt1 ≤ Ni < ∞.
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(H3) For i = 1, ..., n

fi (t1, ..., ti, 0) ≡ gi (t1, ..., ti, 0) ≡ 0.

(H4) For i = 1, ..., n and each γi > 0, there exists δ > 0 such that

|fi (t1, ..., ti, x (ti))− fi (t1, ..., ti, y (ti))| ≤ γi |x (ti) − y (ti)| ,

for all |x| , |y| ≤ δ and uniformly in t1, ..., ti.

(H5) For i = 1, ..., n and each ξi > 0 , there exists η > 0 such that

|gi (t1, ..., ti, x (ti))− gi (t1, ..., ti, y (ti))| ≤ ξi |x (ti) − y (ti)| ,

for all |x| , |y| ≤ η and uniformly in t1, ..., ti.

(H6) For i = 1, ..., n and all t ∈ J,

∞∫
0


 t1∫

0

...


 ti−1∫

0

|bi (t + k, t1, ..., ti)− bi (t, t1, ..., ti)| dti


 ...


 dt1 → 0,

as |k| → 0.

Our main results are given in the following theorems.

Theorem 1. Suppose that the hypotheses (H1) − (H6) are satisfied. Then
there exists a number ε0 > 0 such that to any ε ∈ (0, ε0] , there corresponds a
δ > 0 such that ‖h‖ < δ, there exists a unique solution x(t) of equation (1.1) on
J satisfying ‖x‖ ≤ ε.

Theorem 2. In addition to the assumptions of Theorem 1, if h (t) → 0 and
for each T > 0 and i = 1, ..., n

(H7)

lim
t → ∞

T∫
0


 t1∫

0

...


 ti−1∫

0

|ai (t, t1, ..., ti)| dti


 ...


 dt1 = 0,

and
(H8)

lim
t → ∞

T∫
0


 t1∫

0

...


 ti−1∫

0

|bi (t, t1, ..., ti)| dti


 ...


 dt1 = 0,
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then the solution x(t) of equation (1.1) satisfies

lim
t → ∞ x (t) = 0.

3. PROOFS OF THEOREMS 1 AND 2

To prove Theorem 1, fix ξi > 0 such that
n∑

i=1
ξiNi < 1. By (H3) and (H5) we

may pick η > 0 such that for |x| ≤ η and i = 1, ..., nwe have |gi (t1, ..., ti, x (ti))| ≤

ξi |x (ti)| uniformly in t1, ..., ti. Let γi =

(
1−

n∑
j=1

ξjNj

)

2 n Mi
, i = 1, ..., n and choose

δ > 0 such that (H4) holds for all |x| , |y| ≤ δ uniformly in t1, ..., ti. Let ε0 =
min (η, δ). Define the operators A and B on S (ε) as follows :

Ax (t) = h (t) +
n∑

i=1

Aix (t) ,

Bx (t) =
n∑

i=1

Bix (t) .

For ε ∈ (0, ε0], in the first step we show that there exists δ > 0 such that Ax+By ∈
S (ε) for all x, y ∈ S (ε) provided that ‖h‖ ≤ δ. Note that for all t ≥ 0 we have

|Ax(t) + By(t)|

≤ |h (t)| + γ1 ‖x‖
t∫

0

|a1 (t, t1)|dt1 + γ2 ‖x‖
t∫

0


 t1∫

0

|a2 (t, t1, t2)| dt2


 dt1

+... + γn ‖x‖
t∫

0


 t1∫

0

...


 tn−1∫

0

|an (t, t1, ..., tn)| dtn


 ...


 dt1

+ξ1 ‖y‖
∞∫

0

|b1 (t, t1)|dt1 + ξ2 ‖y‖
∞∫
0


 t1∫

0

|b2 (t, t1, t2)| dt2


 dt1

+... + ξn ‖y‖
∞∫
0


 t1∫

0

...


 tn−1∫

0

|bn (t, t1, ..., tn)| dtn


 ...


 dt1

≤ δ + ε {γ1M1 + γ2M2 + ... + γnMn} + ε {ξ1N1 + ξ2N2 + ... + ξnNn}

= δ +
ε

2n


1 −

n∑
j=1

ξjNj+1 −
n∑

j=1

ξjNj + ... + 1 −
n∑

j=1

ξjNj


+ ε

n∑
j=1

ξjNj

= δ +
ε

2


1 −

n∑
j=1

ξjNj


+ ε

n∑
j=1

ξjNj ≤ ε,
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provided δ ≤ ε
2

{
1−

n∑
j=1

ξjNj

}
, which proves that Ax + By ∈ S (ε) .

In the next step we show that the operator A is a contraction. Let x, y ∈ S (ε) ,
then

|Ax (t) − Ay (t)|

≤
t∫

0

|a1 (t, t1)| |f1 (t1, x (t1)) − f1 (t1, y (t1))|dt1

+

t∫
0


 t1∫

0

|a2 (t, t1, t2)| |f2 (t1, t2, x (t2)) − f2 (t1, t2, y (t2))|dt2


dt1

+... +

t∫
0


 t1∫

0

...


 tn−1∫

0

|an(t, t1, ..., tn)| |fn(t1, ..., tn, x(tn))))

−fn(t1, ..., tn, y(tn))|dtn)...)dt1

≤
t∫

0

|a1 (t, t1)| γ1 |x (t1) − y (t1)| dt1

+

t∫
0


 t1∫

0

|a2 (t, t1, t2)| γ2 |x (t2)− y (t2)|dt2


dt1

+... +

t∫
0


 t1∫

0

...


 tn−1∫

0

|an (t, t1, ..., tn)| γn |x (tn)− y (tn)|dtn


 ...


 dt1

≤ (γ1M1 + γ2M2 + ... + γnMn) ‖x − y‖

=
1
2


1 −

n∑
j=1

ξjNj


 ‖x − y‖ ,

which implies ‖Ax − Ay‖ ≤ 1
2α ‖x − y‖ , where α = 1 −

n∑
j=1

ξjNj < 1, i.e. A is

a contraction on S (ε).
The operator B is clearly continuous on S (ε). Now we shall show that B is

completely continuous. Let {wm} be a sequence in S (ε). From the definition of
the operator B and the hypotheses (H2) , (H3) , (H5) we have

|Bwm (t)| ≤
∞∫
0

|b1 (t, t1)| |g1 (t1, wm (t1))| dt1
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+

∞∫
0


 t1∫

0

|b2 (t, t1, t2)| |g2 (t1, t2, wm (t2))| dt2


 dt1

+... +

∞∫
0


 t1∫

0

...


 tn−1∫

0

|bn (t, t1, ..., tn)| |gn (t1, ..., tn, wm (tn))| dtn


 ...


 dt1

≤
∞∫
0

|b1 (t, t1)| ξ1 |wm (t1)| dt1 +

∞∫
0


 t1∫

0

|b2 (t, t1, t2)| ξ2 |wm (t2)| dt2


 dt1

+... +

∞∫
0


 t1∫

0

...


 tn−1∫

0

|bn (t, t1, ..., tn)| ξn |wm (tn)| dtn


 ...


 dt1

≤ εξ1N1 + εξ2N2 + ... + εξnNn.

Hence we have

‖Bwm‖ ≤ ε

n∑
j=0

ξjNj.

This means that the sequence {Bwm} is uniformly bounded.
Now we shall show that the sequence {Bwm}is equicontinuous. From the

definition of operator B and hypotheses (H3) , (H5) , (H6) we have

|Bwm (t + k) − Bwm (t)|

≤
∞∫

0

|b1 (t + k, t1) − b1 (t, t1)| |g1 (t1, wm (t1))| dt1

+

∞∫
0


 t1∫

0

|b2 (t + k, t1, t2) − b2 (t, t1, t2)| |g2 (t1, t2, wm (t2))| dt2


 dt1

+... +

∞∫
0


 t1∫

0

...


 tn−1∫

0

|bn(t + k, t1, ..., tn)

−bn(t, t1, ..., tn)| |gn(t1, ..., tn, wm(tn))|dtn) ...) dt1,

which tends to zero as |k| → 0 uniformly, i.e. {Bwm} is equicontinuous (see also
[5, p. 19]). Now an application of Theorem K, we conclude that equation (1.1)
has a solution in S (ε) .

To prove the uniqueness of solutions of equation (1.1) in S (ε) , let x(t) and
y(t) be two solutions of equation (1.1) in S (ε) . and let z(t) be their difference.



On a Certain Iterated Mixed Integral Equation 345

Using (H4) and (H5) we can estimate as

|z (t)| ≤
t∫

0

|a1 (t, t1)| γ1 |z (t1)| dt1 +

t∫
0


 t1∫

0

|a2 (t, t1, t2)| γ2 |z (t2)| dt2


 dt1

+... +

t∫
0


 t1∫

0

...


 tn−1∫

0

|an (t, t1, ..., tn)| γn |z (tn)| dtn


 ...


 dt1

+

∞∫
0

|b1 (t, t1)| ξ1 |z (t1)| dt1 +

∞∫
0


 t1∫

0

|b2 (t, t1, t2)| ξ2 |z (t2)| dt2


 dt1

+... +

∞∫
0


 t1∫

0

...


 tn−1∫

0

|bn (t, t1, ..., tn)| ξn |z (tn)| dtn


 ...


 dt1

≤ {γ1M1 + γ2M2 + ... + γnMn} ‖z‖ + {ξ1N1 + ξ2N2 + ... + ξnNn} ‖z‖

=
1
2


1 +

n∑
j=1

ξjNj


 ‖z‖ .

Taking the supremum over all t ∈ J in the above estimate we obtain a contradiction

‖z‖ ≤ 1
2


1 +

n∑
j=1

ξjNj


 ‖z‖ < ‖z‖ .

Hence ‖z‖ = 0, proving uniqueness of solutions of equation (1.1).
In order to prove Theorem 2, let γi be as in the proof of Theorem 1 and assume

the contrary. Then

µ =
lim sup
t → ∞ |x (t)| > 0.

Choose T so large that for t ≥ T we have |x (t)| ≤ µ
λ for fixed λ ,12

(
1 +

n∑
j=1

ξjNj

)

< λ < 1. Using these facts we can now estimate the solution x(t) of equation (1.1)
as

|x (t)| ≤ |h (t)| + εγ1

T∫
0

|a1 (t, t1)| dt1 + εγ2

T∫
0


 t1∫

0

|a2 (t, t1, t2)| dt2


 dt1

+... + εγn

T∫
0


 t1∫

0

...


 tn−1∫

0

|an (t, t1, ..., tn)| dtn


 ...


 dt1
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+εξ1

T∫
0

|b1 (t, t1)| dt1 + εξ2

T∫
0


 t1∫

0

|b2 (t, t1, t2)| dt2


 dt1

+... + εξn

T∫
0


 t1∫

0

...


 tn−1∫

0

|bn (t, t1, ..., tn)| dtn


 ...


 dt1

+
µ

λ
{γ1M1 + γ2M2 + ... + γnMn} +

µ

λ
{ξ1N1 + ξ2N2 + ... + ξnNn} .

Taking the lim sup in the above estimate we obtain

µ ≤ µ

λ

1
2


1 +

n∑
j=1

ξjNj


 < µ,

which is the desired contradiction. Hence lim
t → ∞ x (t) = 0 and the proof is

complete.
It is interesting to note that, Theorem 1 may be regarded as a stability result for

the solutions of equation (1.1) in the sence : For every sufficiently small ε > 0,
there exists a δ > 0 such that for every h ∈ S (ε) with ‖h‖ < δ, the solution x(t)
of equation (1.1) is in S (ε) i.e. ‖x‖ ≤ ε. We also note that Theorem 2 is a type of
asymptotic stability theorem for the solutions of equation (1.1).

In many situations Volterra integral equations occur as integrodifferential equa-
tions of the form (see [2, 5, 6])

(3.1) x′ (t) = f1 (t, x (t)) +

t∫
0

a (t, t2) f2 (t, t2, x (t2)) dt2,

for t ∈ [0,∞) , where a, f1, f2 are given real functions. By taking t = t1 in (3.1)
and integrating it from 0 to t ∈ [0,∞) we get the integral equation

(3.2)

x(t) = x(0) +

t∫
0

f1(t1, x(t1))dt1

+

t∫
0


 t1∫

0

a(t1, t2)f2(t1, t2, x(t2))dt2


 dt1.

Comparing (3.2) with (1.1) when n = 2 , we have h(t) = x(0) , a1 (t, t1) = 1 ,
a2 (t, t1,t2) = a (t1,t2) , b1 (t, t1) = 0 , b2 (t, t1, t2) = 0 . It is easy to observe that
the hypotheses (H1) , (H2) and (H6) are satisfied.
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In conclusion, we note that Krasnoselskii’s fixed point theorem [5] and its
variants given in [8] are very useful in establishing existence theorems for perturbed
operator equations. For some other applications, see [8,10].
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