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WEAK CONVERGENCE THEOREM BY A MODIFIED
EXTRAGRADIENT METHOD FOR NONEXPANSIVE
MAPPINGS AND MONOTONE MAPPINGS

L. C. Ceng', S. Huang®* and A. Petrusel

Abstract. In this paper, we introduce a modified extragradient method for
finding a common element of the set of fixed points of a nonexpansive mapping
and the set of solutions of the variational inequality problem for a monotone
and Lipschitz continuous mapping. Our modified extragradient method is a
variant of the so-called extragradient method. We obtain a weak convergent
theorem for two sequences generated by this modified extragradient method.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm | - ||. Let C be
a nonempty closed convex subset of H and let Fio be the metric projection of H
onto C. A mapping A : C — H is called monotone if

(Au — Av,u—v) >0, Yu,veC.
The variational inequality problem is the problem of finding v € C such that

(Au,v —u) >0, VYveC.
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The set of solutions of the variational inequality problem is denoted by 2. A
mapping A : C' — H is called a-inverse-strongly-monotone if there exists a positive
real number « such that

(Au— Av,u —v) > af|Au — Av|?, Vu,v € C;

see Refs. 1-2. It is obvious that each a-inverse-strongly-monotone mapping A is
monotone and Lipschitz continuous. A mapping S : C' — C' is called nonexpansive
if

|Su— Sv|| < ||lu—v|, Yu,veC,

see Ref. 3. We denote by F'(S) the set of fixed points of S. For finding an element
of F(S) N Q under the assumption that a set C' C H is nonempty, closed and
convex, a mapping S : C' — C' is nonexpansive and a mapping A : C' — H is a-
inverse-strongly-monotone, Takahashi and Toyoda (Ref. 4) considered the following
iterative scheme:

o) { xo=x € C,

Tngl = ATy + (1 — ay)SPo(x, — A\yAzy,), Yn >0,

where {«,, } is a sequence in (0, 1), and {\,,} is a sequence in (0, 2«). They proved
that if F/(S) N Q # (), then the sequence {x,,} generated by (I) converges weakly
to some point of F'(S) N 2. On the other hand, to solve the variational inequality
problem in the finite-dimensional Euclidean space R"™ under the assumption that a
set C' C R™ is nonempty, closed and convex, a mapping A : C — R" is monotone
and k-Lipschitz continuous and €2 is nonempty, Korpelevich (Ref. 5) first introduced
the following so-called extragradient method:

rg=x € C,
(I1) Tp = Po(xy, — NAxy,),
Tny1 = Po(zy, — ANAZy,), Yn >0,

where A € (0,1/k). He showed that the sequences {x,, } and {Z,,} generated by this
extragradient method converge to the same point z € §2. Recently, motivated by Ko-
rpelevich’s extragradient method, Nadezhkina and Takahashi (Ref. 10) constructed
an iterative scheme to find an element of F'(S) N Q and presented the following
weak convergence result.

Theorem 1.1. See Theorem 3.1 in Ref. 10. Let C' be a nonempty closed
convex subset of a real Hilbert space H, A : C — H a monotone and k-Lipschitz
continuous mapping and S : C' — C' a nonexpansive mapping such that F/(S)N§) #
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(0. Let {x,} and {y,} be the sequences generated by

rg=x € C,
(1) Yn = Po(zn — MAxy),
Tpgl = ATy + (1 — o) SPo(xn — AAy,), Yn >0,
where {\,} C [a,b] for some a,b € (0,1/k) and {a,} C [c,d] for some c,d €

(0,1). Then the sequences {x,} and {y,} converge weakly to the same point
z € F(S)NQ, where z = limy, .o Pr(s)non.

Inspired by Nadezhkina and Takahashi’s results (Ref. 10), the authors (Ref.
12) introduced another iterative scheme for finding an element of F'(S) N Q and
obtained the following strong convergence theorem.

Theorem 1.2. See Theorem 3.1 in Ref. 12. Let C be a nonempty closed
convex subset of a real Hilbert space H, A : C — H a monotone and k-Lipschitz
continuous mapping and S : C' — C' a nonexpansive mapping such that F(S)NQ #
(0. Let {x,} and {y,} be the sequences generated by

rg=x € C,

Yn = PC(xn - )\nAxn)v

Tnt1 = @nxo + (1 — ay)SPo(xn — AMAyy), Yn >0,
where {\,} and {a,} satisfy the conditions: (a) {\,k} C (0,1 — 9) for some
§ € (0,1), and (b) {ow} C (0,1), Y 7 gy = 00, limy o0 ay = 0. Then {z,}

and {y,} converge strongly to the same point P p(s)na(7o) provided lim,, .o |2, —
Tnt1l| = 0.

In this paper, we consider a modified extragradient method which is a variant
of the extragradient method, i.e.,

xo=1x € C,

Yn = PC[(l - ﬁn)(xn - )\nAxn) + ﬁnPC(xn - )\nAxn)]v
Tyl = A&y + (1 — ap)SPo(xn — A\Ay,), Yn >0,

o
where {ay} € (0,1),{B,} C [0,1] and {A,} C (0, 1/k) such that Y 7 < oo
n=0
It is shown that {x,,} and {y,,} generated by the above scheme converge weakly
to the same point z € F'(S) N Q, where 2 = lim,, ., Pp(s)nen. It is easy to see
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that if 3,, = 0 for all n > 0, then this iterative scheme reduces to (1). Our main
result is the improvement and extension of Nadezhkina and Takahashi’s result in
Ref. 10.

Y

Throughout the rest of this paper, we denote by “—’
convergence and the weak convergence, respectively.

and “—7 the strong

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-,-) and norm || - |. It is
known that

A+ (1 =Nyl = M+ @ =N)lyl> =A@ =Nz —y|? Yo,y € H A€ [0,1].

Let C be a nonempty closed convex subset of H. Then, for any x € H, there exists
a unique nearest point in C', denoted by Pox, such that

lo - Pex| <z —yl, VyeC.

The mapping Pc is called the metric projection of H onto C. Then Po is a
nonexpansive mapping of H onto C' characterized by the following properties (see
Ref. 3 for more details): Pox € C and for all x € H,y € C,

(2) (x — Pox, Pox —y) > 0,
and
(3) lz =yl > ||z — Pox||* + |ly — Pox|*.

Let A : C — H be a mapping. It is easy to see from (2) that the following
implications hold:

(4) z€Q & = Po(xT—NAzx), YA > 0.

Note that H satisfies the Opial property (Ref. 6): for any sequence {z,} C H
with x,, — z, the inequality

liminf ||z, — z|| < liminf ||z, — y||
n—oo n—oo

holds for every y € H with y # =. A set-valued mapping 7' : H — 2¥ is called
monotone if, for all z,y € H, f € Tz and g € Ty we have (x —y, f — g) > 0.
A monotone mapping T : H — 2 is maximal if its graph G(T') is not properly
contained in the graph of any other monotone mapping. A monotone mapping 7" is
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maximal if and only if for (z, f) € Hx H, (x—y, f—g) > 0 forall (y,g) € G(T),
then f € Tx. Let A: C — H be a monotone and k-Lipschitz continuous mapping
and let Nov be the normal cone to C atv € C, i.e., Nov ={w € H : (v—y,w) >
0, Yy € C}. Define a set-valued mapping 7 : H — 2 by

Av+ Nev, ifveC,
Tv =
0, if v &C.

Then T is maximal monotone and 0 € T'v if and only if v € Q; see Ref. 7.
The following lemmas will be used in the sequel.

Lemma 2.1. Let H be a real Hilbert space, let {c,} be a sequence of real
numbers such that 0 < a < oy, < b <1 foralln >0, and let {v,} and {w,} be
sequences in H such that

limsup ||v,|| < ¢, limsup ||wy,]| < cand lim [|a,v, + (1 — ap)wy| = ¢
n—00 n—00 n—00
for some ¢ > 0. Then lim,,_. ||vy, —wy]|| = 0.

Lemma 2.2. Let H be a real Hilbert space and let D be a nonempty closed
convex subset of H. Let {x,} be a sequence in H. Suppose that, for all u € D,

[en1 = ull < [lzg —ull,  Vn > 0.
Then the sequence { Ppxy} converges strongly to some z € D.

Remark 2.1. Lamma 2.1 was proved by Schu (Ref. 8) in a uniformly convex
Banach space and Lamma 2.2 was proved by Takahashi and Toyoda (Ref. 4).

Lemma 2.3. Demiclosedness Principle. See Ref. 3. Assume that S is a non-
expansive self-mapping of a nonempty closed convex subset C' of a real Hilbert
space H. If F(S) # 0, then I — S is demiclosed, that is, whenever {x,} is a
sequence in C converging weakly to some x € C and the sequence {(I — S)x,}
converges strongly to some vy, it follows that (I — S)x = y. Here I is the identity
operator of H.

Lemma 2.4. See Ref. 11. Let {an};°> and {b,}2, be two sequences of
nonnegative real numbers satisfying the inequality

ant1 < Qp +bp, Y0 > 0.

If ZZO:O by, converges, then lim,,_ oo a, exists.
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3. WEAK CONVERGENCE THEOREM

In this section, we use a modified extragradient method to find a common ele-
ment of the set of fixed points of a nonexpansive mapping and the set of solutions of
the variational inequality problem for a monotone and Lipschitz continuous mapping
in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H, A:C — H a monotone and k-Lipschitz continuous mapping and S : C' — C
a nonexpansive mapping such that F(S) N Q # 0. Let {x,} and {y,} be the
sequences generated by

g =x € C,
Yn = PC[(l - ﬁn)(xn - )\nAxn) + ﬁnPC(xn - )\nAxn)]v
Tnt1 = QnZp + (1 — an)SPo(xn — MAyy), Yn >0,

where {ay,} C [a,b], for some a,b € (0,1),{B,} C [0,1] and {\,} C [c,d], for
some c,d € (0,1/k), such that
(i) Y B < oo
n=0
(ii) {Axy} is bounded.

Then {x,} and {y,} converge weakly to the same point z € F(S) N Q) , where
z = limy, o0 PF(S)ﬁan-

Proof. We first claim that {z,,} is bounded. Indeed, put t,, = Pc(z, — A Ayn)
for all n > 0. Let 2* € F(S)N Q. Then z* = Po(z* — A\, Az*). Taking
T =Ty — AAy, and y = x* in (3), we obtain

tn = 2*|1* < |20 = AnAyn — 2** = |20 — AnAyp — ta1?
= [len = 2*[1” = 22 (Ayn, 7 — %) + A7 [ Aya |®
—ln = tall* + 220 (Ayn, T0 — tn) — A2 || Aynll?
5) = [len = 2*|” + 20 (Ayn, 2 — t) = |20 — ta®
= llen = 2*|” = llzn = tall* = 2X(Ayn — Az™, yo — 2¥)
=2\ (Ax™ Yy, — %) + 200 (AYn, Yn — tn)
< lwn =21 = 20 = yall* = llyn — tal®

+2<<Tn - )\nAyn — Yn, tn — yn>
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Now, observe that

(X — ApAxy, — Po(xn, — MAxy), Po(xn, — M\yAxy) — yn)
< len — AnAzn — Po(rn — AnAzn) ||| Po(en — AnAzn) — ynl|
< AAnllAzn|| + [|2n — Po(zn — AnAza)||Hen — AnAzy

—[(X = Bp)(zn — AnAzn) + BnPo(xn — AnAzn)]|
= BufAnllAznll + [[Pown — Po(@n — AnAn)|[H]zn — An Ay

—Po(xn — ApAxy)||
< 28p Al Azn|{Anl| Az + [ Poxn — Po(en — AnAzn) |}
< 2BpAnl| Az {220 ]| Azn [}
= 40, A% || Az

Further, from (2) we have

(Tn = AnAyn = Yn, tn — Yn)

= (Tn — MATy — Yn, tn — Yn) + (MAzp — M AYn, tn — Yn)

= ((1 = Bn)(@n — AndAzy) + BnPo(zn — AnAzn) = Y, tn — Yn)
+Bn{xn — AAxy — Po(xy — ApAxy), tn — yn)
+(AnAxy — M AYn, tn — Yn)

< Bulxn — MAxy, — Po(xn — ApAxy), ty — yn)
+(AnAxy — M AYn, tn — Yn)

= Bn{xn — \pAx, — Po(xn, — MAxy,), ty — Po(x, — A\ Axy,))
+Bn{xn — AAxy — Po(xy, — ApAxy), Po(xy, — ApAxy) — yn)
+(AnAxy, — M AYn, tn — Yn)

< Bulxn — MAxy, — Po(xn — AAxy), Po(xn — AAzy) — yn)
+(AnAxy, — M AYn, tn — Yn)

< BN Aza® + Ankl|zn = ynlllltn — ynl

1 1
< AP A2+ 502K i — g2+ S g —

231
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Thus, we deduce that for all n > 0
tn = 2*|* < llzn = 2*|1? = llzn = yal® = llyn — tall?

8B Azl® + Nk zn — ynl|* + llyn — tal|?

) =l — 2|2 + (282 = D — yall® + 88202 Az |2
< lan — 2*? + 88N Az |1,
and hence
|zn41 = 2*|* = llanzs + (1 — an) Sty — 27|

= [lan(an — 2*) + (1 = ) (Sty — 27|
< agllan —2|* + (1 - an) [ty — 2|
< agllan —2*|* + (1 = an)|[tn — 272

(7) < agllan —2|* + (1 = an){l|zn — 2"

AR = Dllzn — yul® + 86770 Aznl|*}

= [l = 2[* + (1 = an) {03 = D)lzn = gl
+80p A [ Azl |*}

<l — 22 + 8B AG I Az .

Note that {Az,} is bounded and > °° 32 is convergent. Therefore, according to
Lemma 2.4,
¢ = lim ||z, — x|
n—oo

exists and hence the sequences {z, } and {t,,} are bounded. By (7),
(1= an)(1 = Xk e = yull* < llzg — 2*I* = lwnss — 27|
+8(1 — an) B2 || Az 2.
So we have for all n > 0,

2 !

2 = ynll* < = — (len = 27| = znia = 2*)1%)
(1 —an)(1 = AZK?)
8%
)\QkQHA‘rI’.nHZ

Since {ay,} C (a,b) C (0,1) and {\,} C (¢,d) C (0,1/k), we have

-y, — 0 asn— oo.
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On the other hand we obtain
1y — tal?
= | Pe[(1 = B) (2 — AnAwn) + BpPo(rn — AnAzn)] — Po(an — AnAyn)|®
<X = Ba) (@ — AnAzn) + BpPe(xn — AnAzn) — (20 — AnAyn)|®
= [|(1 = Bu)An(Ayn — Awn) + Bu[Pe(wn — AnAwn) — (20 — AnAya)]|1?
< (1= Ba)Aa | Ayn — Azal|* + Bl Pe(2n — AnAzn) = (20 — AnAyn) ||
< ANK [y = @nll* + Bud | Po(@n — AnAzn) — Potn |l + Anl| Ayall}?
< Nk yn = 2l + B (Anll Az | + Al Ayall)?
= Mok?llyn — zall + Ba X (| Azp | + || Aynl])?

)\2k2 ) )
< n —_ X2 ok
(-1 - )\%k2)(”xn 2|7 = flen g — 2"[|%)

832 \A kK2
T 1Azl + BaAi (| Azl + | Ayn)?.

Since >, 32 < 0o, we have lim,,—,« 3, = 0 and so
Yn —tn, — 0 as n — oo.

From
|20 = tall < 20 — Yl + lyn — tall,

we also have
Ty —tn, =0 asn— oo.

The Lipschitz continuity od A implies that

Ay, — At, — 0 asn — oo.

Since {x,,} is bounded, there is a subsequence {x, } of {x,,} that converges weakly
to some z.

We claim that z € F(S) N Q. We shall prove that z € Q. Since =, — ¢, — 0
and y,, —t, — 0, we have ¢,, — z and y,,, — 2. Let

Av+ New, if veC,
Tv =
if vgC.
Then T' is maximal monotone. Let (v, w) € G(T') so that

w € Tv=Av+ Ncv
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and hence w — Av € Ngv. This shows that
(v—u,w—Av) >0, YueC.
On the other hand, from

tn = Po(xn — MAyy) and v € C,

we have
<xn — AMAYn — by, ty — ’U> >0,
and hence
tn — Tn
(v—ty, ——— + Ay,) > 0.
An
Since
w— Av € Nev and t,, € C,
we have
(Vv =tn,, w) > (v—ty,, Av)
tn- - xn.
> (v —tp,, Av) — (v — tp,, % + Ayp)
g
- <’U ~ tnis Av — At”i> + <’U —tn;s Atni - Ayni>
tn- - xn.
—(v—ty,, ——
< " )\ni > t
> (0= t,, Aty, — Ayp,) — (0 — ty,, 201,
An;

Hence

(v—2z,w)y>0 asn; — 0.

Since 7' is maximal monotone, we have z € 7710 and hence z € Q.

Next, we will show that z € F(S). Indeed, let z* € F(S) N . By (6), for all

n >0,
1St — 2*(1? < ltn — 2*||* < [l — 2*||* + 862N | Az %,

which implies that
limsup || St,, — z*| < L.

n—oo
Moreover,
lim |l (zy —2%) + (1 — ap)(St, — 27)|| = lim ||xp — 2™ = 2.
n—oo n—oo
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By Lemma 2.1,
lim ||St, — x| = 0.
n—oo

Since
[S2n — zn|l < STy — Stull + [|Stn — 2a|| < [J2n — tall + [|Stn — zall,
we have
lim ||Sz, — x| = 0.
n—oo

By Lemma 2.3, I — S is demiclosed. Since z,, — z, it follows that z € F'(5).

Let {x,,,} be another subsequence of {x,} such that z,,;, — 2’. Then 2’ €
F(S)NQ. We will show that z = 2’. Assume that z # z’. From the Opial condition
(Ref. 6) we have

lim ||z, — z|| = liminf||z,, — 2| < liminf ||z, — 2/|
n—oo n—oo 1— 00
= lim |z, — 2| = liminf [|z,,; — 2'||
n—00 j—o0
< liminf ||z,,;, — z|| = lim ||z, — 2|
j—00 n—00

This is a contradiction. Consequently, we have z = 2’. This assures that
Ty, =2z € F(S)NQ.

Since x,, — y, — 0 as n — oo, we have
yn — z € F(S)NQ.

Now, let up, = Pp(g)noZn- By (5) and the monotonicity of A, for u = F(S) N €,
we have ||t, — u|| < ||z, — u|| and so

|1 = ull® = lon(zn —u) + (1 = an)[SPe(zn — Andyn) — ul®
< apllzn, — uH2 + (o) [tn — uH2
<l — ull.

By Lemma 2.2, {w,} converges strongly to some z € F(S) N . Since (z —
U,y Uy, — Tp) > 0, it follows that (z— 2z, 29— z) > 0, and hence z = z;. This
completes the proof of Theorem 3.1. ]

Remark 3.1. We note that in Theorem 3.1, if 3,, = 0 for all n > 0, it follows
from (7) that
|n1 = 2*)1? < lzn — ¥, V0 >0.

Thus limy, o ||z, — || exists. Hence {z,,} is bounded and so is { Az, }. In this
case, we can remove the boundedness of {Ax,}. Consequently, Nadezhkina and
Takahashi’s Theorem 3.1 (Ref. 10) follows immediately from our Theorem 3.1.



236 L. C. Ceng, S. Huang and A. Petrusel

4. APPLICATIONS
In this section, we give two applications of Theorem 3.1.

Theorem 4.1. Let H be a real Hilbert space. Let A: H — H be a monotone

k-Lipschitz continuous mapping and let S : H — H be a nonexpansive mapping
such that F(S) N A7Y0 # (. Let {x,} and {y,} be the sequences generated by

g =x € H,
Yn = Tn — )‘nAxnv
Tpt1 = apTp + (1 — o) S(xy, — A\Ayy,), ¥Yn >0,
where {a,} C [a,b], for some a,b € (0,1), and {\,} C [c,d], fore some c,d €

(0,1/k). Then {x,} and {y,} converge weakly to the same point z € F(S)NA~10,
where z = limy, .00 Pr(s)na-10%n.

Proof. It is obvious that A~10 = Q and Py = I is the identity mapping of H.
Put 3,, = 0 for all n > 0. Then we have

= Tp — )‘nAxnv

and
Tl = QnTp + (1 — o) SPr(z, — A\Ay,)

= Ty + (1 — ap)S(xn — A\ Ayn).
Note that inequality (7) yields

|1 = 2*|* < g — 2.

This implies that {x,} is bounded and so is {Ax,}. Hence by Theorem 3.1 we
obtain the desired result. u

Remark 4.1. Notice that ['(S) N A~10 is contained in the set of solutions of
the variational inequality problem VI(F'(S), A). See also Yamada (Ref. 9) for the
case when A : H — H is a strongly monotone and Lipschitz continuous mapping
and S : H — H is a nonexpansive mapping.

Theorem 4.2. Let H be a real Hilbert space. Let A: H — H be a monotone
k-Lipschitz continuous mapping and B : H — 21 be a maximal monotone mapping
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such that A=10 N B710 # (. Let JP be the resolvent of B for each r > 0. Let
{z} and {y,} be the sequences generated by

g =x € H,
Yn = Tp — )‘nAxnv
Tt = any + (1 — an)JP (20 — A\Ayn), Y0 >0,
where {a,} C [a,b], for some a,b € (0,1), and {\,} C [c,d], fore some c,d €

(0,1/k). Then {x,} and {y,} converge weakly to the same point = € A~ 0NB~1(,
where z = limy,_,oc Py-10np-10Tn.

Proof. We have A~10 = Q and F(JP) = B~10. Putting Py = I, by Theorem
4.1 we obtain the desired result. [ |

Remark 4.2. Theorems 4.1 and 4.2 are essentially Nadezhkina and Takahashi’s
Theorems 4.1 and 4.2 (Ref. 10), respectively.
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