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CONVERGENCE OF THE g-NAVIER-STOKES EQUATIONS

Jaiok Roh

Abstract. The 2D g-Navier-Stokes equations have the following form,

aa—ltl—yAu—i—(u-V)u—i—Vp:f, in Q

with the continuity equation
V:(gu) =0, in,

where g is a smooth real valued function. We get the Navier-Stokes equations,
for g = 1. In this paper, we investigate solutions {u,, p,} of the g-Navier-
Stokes equations, as g — 1 in some suitable spaces.

1. INTRODUCTION

We consider the 2-dimensional g-Navier-Stokes equations, for periodic boundary
conditions on the domain © = (0,1) x (0, 1),

(1.1) g—?—yAu—i—(u-V)u—i—Vp: f in Qx(0,7),

(1.2) V-(gu)= 0 in Qx (0,7).

Here v and f are given, and the velocity u and the pressure p are the unknowns.
For the details of the derivation of the g-Navier-Stokes equations, one can refer [5].
We assume that g(x) € Cpg.(2) and 0 < m < g(z,y) < M, for all (z,y) € Q.
Now, we define the Hilbert space L2, (€, g) = L2..(Q, R?, g) as the set L2 .(2)
with the scalar product and the norm,

<u,v>,= u-v)gdx and u 2:<u,u> .
g o g g
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190 Jaiok Roh
Similarly, we define H.,.(, g) as the set H},(Q2) under the norm,

2

1
lullz (g, = [(wu)g + > (D, D) ]2
i=1

For periodic boundary conditions, we use;
Hy = CLrz (agfue Cp(Q) : V-gu=0, /Qu dx =0}

Vg:{ueH;er(Q,g) : V.-gu=0, /udx:O}
)
Q = CLp, (09{Ve: 6 € Ch(Q,R)},

where H, is endowed with the scalar product and the norm in L%er(Q, g), and V,
is the space with the scalar product and the norm given by

(1.3) <u,v>y,= /(Diu -Div)gdx and | u H%/q =<u,u>y, .
Q .
Also, for a given v € L2_.(€, g), one obtains
k 1
(1.4) v=u+-—+Vp, forue Hy, Vpe @, k=—-—5— [ vdx
9 Ja ;5 dx Jo

and a orthogonal projection P : L2 (Q,g) — Hgy, as Pyv = u. Then we have

QCH gi. One note that the space () does not depend on g.
For a linear operator, we consider Aju = P;(—Aju) where

1 1
-Ajqu=——(V-gV)u=—-Au—-—(Vg-V)u
g g
For u € D(A,) = V, N H?(2), we have

(A Afu, = (A ), = (B (g9l wy = [ (Vu- Tuyg dx

1
g Q

which implies
12 2 2
(1.5) [Ajull, = I Vullg=lulfy, for ueV,

In addition, for u € D(Ag‘) and 0 < a < 1, we have some positive constant 5=

d(a, m, M) such that

2 2 N
(1.6) A ully < | AFull, and | ugaeqy <0 | Agull,
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where )1 is the first eigenvalue of A,.
We take the orthogonal projection P into (1.1) to get

du

(1.7) o

+ Aju+ By(u,u) =q on H,,

where Aju = Pj(—Agu), By(u,u) = Py(u-V)u, q = P[f — é(Vg -V)u].
For the g-Navier-Stokes equations, one can also refer [7-9]. With ¢ = 1 in
(1.1)-(1.2), we get the 2-dimensional Navier-Stokes equations,

(1.8) %—uAv—i—(v-V)v—i—Vp = f in Qx(0,7),

(1.9) V.v=0 in Qx(0,T).

One can refer [1, 2, 3, 4, 10, 11] and [12] for the Navier-Stokes equations.

In this paper, we will prove that a solution {ugy, pg} of (1.1)-(1.2) with initial
condition uy(0) converges to a solution {v,p} of (1.8)-(1.9) with initial condition
Piuy(0) in the following sense: for a weak solution

u, — v in L*0,T; HY(Q)), in L*(0,T;L*()),
Vp, — Vp in H1(Q x (0,T)),

where 0 < T' < o0, as g — 1 in W1*°(Q), and for a strong solution
u, — v in L*0,T; HX(Q)), in L*(0,T; H(Q)),
Vpy — Vp in L*(Q x (0,7)),

where 0 < T' < o0, as g — 1 in W2>2(Q).

2. PRELIMINARIES

In this section we will introduce useful lemmas in [5] and [6]. We define a
trilinear form

2
bg(u, v, w) = Z /Qui(Divj)wjgdx

ij=1

where u, v, w lie in appropriate subspaces of Lger(Q, g). Then one obtains b(u, v, w)

= —b(u, w, v) so that b,(u, v, v) = 0 for sufficient smooth functions u, v,w € H,.
Moreover, we have the following estimates.
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Lemma 2.1. Let o;,i = 1,2, 3 be nonnegative real numbers that satisfy
o +ar+az3>1

and the vector (a1, g, ag) is not equal to (1,0, 0), nor (0,1,0), nor (0,0, 1). Then
there are positive constants v;=v;(m, M, a1, as, a3, Q), for i = 1,2 such that

0w, v, w)[ <y [ gon |V [ greaen | W [ gros

where u € H*, v € H*t gnd w € H®3, and

(ag+1)

21 a3
b(u, v, w)| <72 [| A u [y Ag = v [[ [l Ag* w |,

forallu eV, v e Vg(OQH) and w € V3.

We define that -
IEI2, = /O I £0t) |2 d.

Lemma 2.1. We assume that || Vg |2, < # and f € L%(0, 00; L%(Q, g)).
Let u = u(t) be a weak solution of (1.7) on [0, T) with initial condition wy. Then
the followings hold:

(i) Forug € Hg, one has

2 - 2 2
2.1) Fa(t) g < e uo 5+ azll £ 113,

forall0 <t <T and

t 2

: 2 2
t | Agu(s) ||, ds < 2|l u(t1) || + 22| £ |35,
1
for0<t; <t<T.

(if) Forug € Vy, there exist constants, 1 = ri(m, M, ), ro = ro(m, M, f) and
Ly = Li(m, M, f)(L;y does not depend on ug) such that for 0 <t < T,

1 2 1 2
(2.2) | Agu(t) |, < <1 + || Aguo Hg) e Mt L L.

One should recall that we denote by Hy, Vi, Py, Ay instead of Hy, V,, Py, Ay
for the constant function g = 1.



Convergence of the g-Navier-Stokes Equations 193

Lemma 2.3.  Assume that Vp € Q and p € H3(Q)). Then we have

P (Vp(t)] = SRy [Vp(t)] =0
PI-AVp(1)] = BV (-2p(1)] = 0

Lemma 2.4. We have PyPy(v) = v for v.€ Hy and PyPi(u) = u for
uecH,

Lemma 2.5. For given u € Hg, we can write as
(2.3) u=v + Vp, forve Hy, VpeQ
and there exist constants c3 = cs(m, M) and cy = c4(m, M) such that

Q4 NApll < el Valelull, 12la@ < call Vol [Tul

In addition, we have c5 = c5(m, M) and c¢ = c¢(m, M) such that
2.5 NApl < e IValllvIh T2 la@ < el Vol VI

Lemma 2.6. We assume that [, é dx = 1. Then, for u € L*(Q) we have
k
(26) Plpgu:Plu_Pl(_)7
g

where k = [qu dx. As a result, P\Pju = Piu if [ u dx =0.
Furthermore, for u € L?(Q) and w € Hy we have

1
2.7) [{(PrByu, w)| < [(u, w)[+ — || k|| || w.

Next, we want to see the relationship between the norms in H, and H; as well
as in V, and V7.

Lemma 2.7. Letuc Hy withu=v+Vp, for veH;, VpeQ.
Then the followings hold;
(1) We have

1 2 2 1 2
8) BV — a2
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(2) Foru €V, we have
u=v + Vp, veVy, Vpea,
and

I Vu | =l Vv [*+ || V(Va) |

371'2

In addition, if | Vg |2, < = then we have

1 2 1 2 1 1 2
(2.9) Ll Agully < Afvil < — [ Agull,,

where
472

—.
M (4m* + ]| Vg [15)

h=Uh(g) =
(3) Foru e D(A,), we have

u=v-+ Vp, v eD(A4), Vpe Q.

In addition, i || Vg ||, < m

o then we have

2 2 2
la | Agu [[g <[] Ayv |7 <3 [| Agu ||y,

where
A7tm?
ly = l2(g) = 2\2’
M (27T2m + 27| Vg |l + c6ll Vg Hoo)
and 9
ma/N +2|| V
l3:l3(g):( VA 2 Vg o)

m3\{ ’

X{ is the smallest eigenvalue of A,.

3. MAIN THEOREMS
In this section we assume fQ é dx =1 for simple calculations.
3.1. Weak Solutions

Let us define the set A, with the metric inherited from W1°(Q) as g € A,, if
(1) g(x) € C.() with 0 <m < g(z,y) < M, for all (z,y) € Q.

per
3.2

2) 119 e < 257
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Theorem 3.1. Assume that g € Ay, and £ € L*(0,00; L*(Q, g)) with [, f dx
= 0. Let (uy(t), py(t)) be a weak solution of (1.1) — (1.2) with ug = uy(0) € Hy,.
And (v(t), p(t)) be a weak solution of (1.8) — (1.9) with v(0) = Pyug € Hy. Then
we have

(3.1) u, —v in L*0,T; H(Q)), in L>(0,T; L*(Q)),
(3.2) Vp, — Vp in HY(Q),
Jor Q =Q x(0,T) and for 0 < T < o0, as || Vg ||, — 0.

Proof. Foru, € Hy, we have v, € H; and Vg, € Q such that u, = v, + Vg,.
Since ug(t) is a strong solution of equations (1.1) — (1.2) for ¢t > t; > 0, by lemma
and lemma , we obtain

dv
(3.3) d—tg + A1vy+ Pi(vy-V)vy+ Pi(vy - V)V, + PPy (Vg - V)v, = Pif,

forall t >ty > 0. Let vy — v = w then we get
d
(3.4) d—v:—f—Alw—i—Pl(vg-V)w+P1(w-V)v—i—Pl(vg-V)ng—i—Png(ng-V)Vg:()

for t > ty > 0. So, we have

1 2
sall w P+ AFw [ < [{(w-V)v, w)|[+[{(vg - V) Vg, W)

(3.5) + (P1Py(Vgy - V)vg, w)|
= |I| + |[I| + |III], for t >ty > 0.

First, we obtain
1] = [{(w-V)v,w)| <2|w [ [| Vw | [ Vv ||
(36) 1 1 2 1 2 9
< glhAtw il +4fApv ] w [
Also, by lemma , (1.6), (2.1), (2.4) and the Young inequality, we get

(1| = (Vg - V)Vag, W)l < il v [l dg [l w 1l
(37) 1 1 2 9 1 2
< M ARw |+ erll Vg Il Af v |l

for some constant c7 = c7(m, M, || vo ||, || f [|5,). Similar to [I]], by (2.7) we get

1
(11 = [{P1By(Vag - V)vg, w)| < [((Vag - V)vg, W)+ — | k|| || w |

(38) 1 1 2 9 1 2 1
< g ATw L +esl Vo llsll Afvg I + —l k[l w
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for some constant cs = cg(m, M, || vo |, || £ [|,5), where k = [,(Vgy - V)v, dx.
Since we have

Ikl =] /Q(ng-v)vg dx| < [| Vg || [ Vvg |

by (1.5), (2.5) and the Young inequality, we obtain

o=
<
s}

1 T2 1 2
G9) = 7l Afw | + 5l Afvg | | w|* + coll Vg |IZ] A

for some constant cg = co(m, M, || vo ||, || £ [|5.5)-
Therefore, from (3.5), (3.6), (3.7) and (3.9) we have

1 1 2 1 2 9
thH w ||? +llAfw | < (4l Afv ] +5 H AQVg | )HWH
+ (er 409l Vg H | AQVg H

for all t > ty > 0. So, we can rewrite as

d
I w P < Bs@) w I+ Bs(t)

where
1 2 1 2
Bs(t) = 8l Afv(®) [| + ] Afvy(®) |
1 2
9 1
Be(t) = 2 (c7+co)| Vg ISl Afvg(t) ] -
By the Gronwall inequality and taking lim;, .o we obtain
I w0 P < RO (o) P+ [ o]

for all £ > 0. One note that by the classical theory of the Navier-Stokes equations,
there exist constant c19 = c1o(/| vo ||, [| £ ||, 5) such that for all 0 < ¢ < T,

1
(3.12) / H 12 H d8<610

Also, with g € A, by lemma and lemma we have some positive constant ¢;; =
c11(m, M, || vo ||, || £ ||52) such that for all 0 <t < T,

t 1 2 1 t 1 2
(3.13) /HM%@HwS—/HM%@stm-
0 m Jo
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Since || w(0) || = 0, we have some constant ci5 = c¢12(m, M, || vo ||, || £ l2.2)
such that
(3.14) | w(t) ||* < el Vg |, forall 0 <t <T.

So, by (2.1), (2.4) and (3.14), we get
Fag(t) = v(E) I = || vg(t) = v(t) |7 + Il ug(t) — vy (t) |I?

Fw () I+ 1| Vag(t) |1

2 2 2 2
< c2|l Vg Il + €ill Vg ool ug () 1P < easll Vg I,

for some positive constant c13 = c13(m, M, || vo ||, || £ [|5) and for all 0 < ¢ < T..
It means that

2 2 2
ug —v HLOO(O,T;LQ(Q)) i=ess sup |ug —v[|" < sl Vg [, — 0,
o<t<T
as g — 1 in WhHeo(Q).
Next, to prove the first part of (3.1), we take the integral from ¢, to T" and take
lim¢, o both sides of (3.10). Then, by (3.10), (3.12), (3.13) and (3.14), we obtain
Tl 2 2 2
/ | A7 w(s) || ds < (16c10c12+2ct11c12+4ercii+4egein)]] Vg 5,42 w(0) ||°.
0
Since || w(0) || = 0, we have

T 2
(3.15) / | AR w(s) || ds < euall Vg |2,
0

for some constant c14 = c1a(m, M, || vo ||, || £ [|5)-
Therefore, we obtain from (1.6), (2.5), (3.13) and (3.15) that

T T
/Ouug—vuzldss/o |y = vy + vy — v [5rds
T 2 2
<2 [ (ug vl + vy = v [, ) s
<9 ! Va, |I? 2 )d
= ) ” Qg”H1+”W”H1 S
T 2 v a3 2
<2 (HngH2+5HAwa>ds

T 1 2
2 2 N 5
<2 f (c%rr Vg 2] vy I2 + 8| Abw | )ds

< 2(6%611 + C145~2)H Vg Hgo
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which goes to zero as || Vg || — 0.
At last, to prove (3.2), one note that for all w € 1, we obtain % € Vy. So, we
obtain

;>g + (—(ug - V)uy, g>g —(f, g>g = 0.

Therefore, by proposition 1.1 in chapter I of Temam[11], we have suitable Vp, € @
such that

(3.16) Vpg =f —uj, + Auy — (ug - V)u,.
Also, by classical theory of the Navier-Stokes equations, we have
(3.17) Vp=f—v +Av— (v -V)v.

Hence, to prove (3.2), we claim for any w € H'(Q)

T
| /0 ' (Vpy — Vpowit) dt] < | /0 (o, — ', w(t)) dt]
T T
G.18 \/ (Auy—Av, w(b)) dt\ﬂ/ (uy - Vg (v - V)v, w(t)) di]
0 0
= [I| + |LI[ + [IT1] < C(g)|| W || g1(g) — O,

as || Vg ||, — 0, where C(g) is some constant which depends on g.
First, by using the integration by parts and (3.1), we obtain

T T
1) = | /0 (—A(u, - v), w(t))dt]| = /0 (Y (uy — v), Vw(t))|dt
T 3

( | v H?pdt> | llscgy — 0.

for any w € HY,.(Q), as || Vg ||, — 0.

per

Also, since v € L%(0,T; V1) and u, € L?(0,T;V,), by (3.1) we obtain

(3.19)

IN
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|I11]
T
= 1 [ g )y = (v Vpvaele) a

- | /0 (Ug=v) - V)ug, w(t)) di| +] /0 (v V) (ug—v), w(t)) dt

T , 3 T , 3
| W) Lo (/0 H ug—quldt) (/0 ™ HHldt)
1 1
T ) 3 T ) 5
£ W) o) ( /0 H ug—quldt) ( /0 HVHHldt) o

for any w € H!, (Q), as || Vg ||, — 0.

per
Next, one should note that we can assume w(7') = 0, because the set of w(t) €

H..(Q) with w(T) = 0 is dense in the space H}.,.(Q). So, by the integration by

per per
parts, we have

(3.20)

IN

T
11=1 [ (G = v wit)

621 < (g0~ v(0). wONI+] [ty —v. Fowlt)

T >
< [l ug(0)=v(O) [| f w(O) [ +1l w(t) | 11 (/0 [ug—v HZdt>
Since Pyuy(0) = v(0), as || Vg ||, — 0, we have
(3:22) [ ug(0) = v(0) || = | ug(0) = Pruy(0) [ < c6 || Vg [l | v(O) | = O.

Also, by (3.1), the second term of (3.21) also goes to 0 as || Vg [|,, — 0. So,
from (3.21) and (3.22), || goes to zero as || Vg ||, — O.
Therefore, by (3.18), (3.19), (3.20) and (3.21), we complete the proof of (3.2)m

3.2. Strong Solutions

Let us define the set A, with the metric inherited from W2°°(Q) as g € A, if
g€ Ay and || g || 200 < My for some constant M.

Before we prove main theorem we will prove the following useful lemmas by
using equation (3.3).

Lemma 3.2. Assume that g € A and £ € L*(0,00; L*(2, g)) with [ f dx =
0. Let ug = vy + Vg4 be a strong solution of (1.1) — (1.2) with ug = uy(0) € V.
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1
Then there exists some constant c¢15 = c15(m, M, Mo, || AZv,(0) ||, || £ l5.9) such
that
1 2
(3.23) | Abve® || < s

forall 0 <t <T.

Proof. By taking the scalar product with A;v, to the equation (3.3) we obtain
1 2
%%H Afvg |l + || Arvy H2 < [(PrPy(Vag - V)vg, A1vg)|
(3.24) + [((vg - V)Vag, Arvg)| + (£, Arvy)|

= |I|+ |II|+ |I11|,
because ((vy - V)vgy, A1vy) = 0. From (1.6) and (2.9), Note

2

0202M2 1
00| AZv, || ,

ly

for some positive constant dp= do(m, M, «). So, by lemma , (1.6), (3.25) and the
Young inequality, we have

(1] = |((vg - V)ngvAg}zlgé\ = Vg Ll gg [l sl Arvg |l
YE0*6E M, 1 4
WMo sy,

(3.25) I gg I3 <

(3.26) 1
< 1l Ay |+

Also, by (2.7) we have
(3.27)

1
1] = KPPy (Vag - V)vg, Arvg)| < [(Vag - V)vg, Arvg)| + — [l k|| || Avvg |,

where k = [(Vqy - V)vg dx. Similar to [I]], we obtain

A

(Vg - V)vg, Aivg)l < vl gg s [ Ve | gl Avvy |

(3.28) 712(5453]\/[02 1 4

1 9 1
< gl vy 1P+ B0 Ay )
Since
Ik | =\/Q(ng-v)vg dx| < || Vg [| | Vvg [,
we have by (1.5), (2.5) and the Young inequality that
1 1
kA Avvg | < [ Vag ||| Vvg [ Avvg |l
(3.29)
1 2 C2M2 1 4
< gl Avvg [P+ =55 [ Afv |-
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Therefore, by (3.27), (3.28) and (3.29) we have

25452 2
V00 | S
2

1 1 4
(3.30) \f\s511A1Vgrr2+< - +m—>Mo2HAfng-

Also we have
1
(3.31) 111 = {8, Avvg)] < 5 Avvg 2+ 5] £
Hence, by (3.24), (3.26), (3.30) and (3.31) we obtain
d 1 2 1 9 1
(332 ATV | + Il Awve(t) 7 = 67(2) | Afvg(®) | + Bs(t)

which implies

1 1 2
(33 I ATV I B0 | Afvy(t) |+ s(t), 0<t<T,
where
4y25402  2c2 L 2
30 Br = (l—wm—‘ﬁ M| AZv,(8) |

Bs = 16| £(t) ||*.
Therefore, by (3.13), (3.33) and the Gronwall inequality, there exists a constant
1

c15 = cis(m, M, Mo, || A7vg(0) ||, || £ ]|, ) such that

1 2 T d 1 2 T
| AZvy(t) || < eo friedds [” Afvg(0) || +/ ﬁs(S)ds] <cs
0
forall0 <t <T. |

Lemma 3.3. Assume that g € A and £ € L*(0,00; L*(2, g)) with [ f dx =
0. Let ug = vy + Vg4 be a strong solution of (1.1) — (1.2) with ug = uy(0) € V.
1

Then there exists some constant c1g = c16(m, M, My, || AZv,(0) ||, | £ l5.2) such
that

T
(3.35) / | Avv, |? ds < ci6.
0
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Proof. First we note from (3.23) and (3.34) that

425462 2c3 1
Br(t) = (% + m—S Mg\ AZvy(t) |

425462 2¢2
C15 (%—'—m—g M02

2

(3.36)

for all 0 <t < T. So, by integrating from 0 to 7" both sides of (3.32) we obtain
from (3.13) that

| vy as
0
W ARO[ 4 [ (3 AFvo) |+ (o)) s

1 2 4 28452 262
< 4 Afvg(0) || +4eniers <% + m—S Mg +64[| £ [I35 < 16,

IN

for some positive constant cjg. ]

Lemma 3.4. For given u € L2, (Q)) we have

per
2 [1-g]
3.37 Pu— P < — —=—= k|,
(3.37) I Pyu— Prufl < = Vg |l [afl+—— |k |
wherek=fQu dx.

Proof. For any u € L?,.(Q), we can write as

‘per
k
(3.38) Pyu+ Vry + E =u=Piu+Vr +k, for Vry, Vrie@Q.
So, we have
1 1 \%
E(V-gV)rg:E(V-gu):v-u—i—?g-uandArl:V-u.

Now, one note é(v -gV)rg = Arg + (% - V)rg. Therefore, we get
Vg Vg

Ary —Arg=—>-u—(—-V)r,.
1 g g (g )rg

Hence, we have

2
IVre=Vrg [ < TA(r=rg) | < —1I Vo lloo [T ]l-
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So, we have from (3.38) that
k
| Pru— Pou || < || Vry = Vrg || + ] E_kH

2 [1-9ll
\% u || + k. |

IN

Remark 3.5. Letu = v+Vp, forue H*(Q),v € Hyand Vp € Q. Then we
have a constant dy = do(1m, M, ) such that || p || ga+z < 00 [|  lasq ool @ 774

where || g Hkoo = Zlgjgk | Dig oo
Theorem 3.6. Let g € Ay and £ € L*(0,00; L*(Q, g)) with [ f dx = 0. Let
(ug(t),pg(t)) be a strong solution of (1.1) — (1.2) with ug = uy(0) € V. And

(v(t),p(t)) be a strong solution of (1.8) — (1.9) with v(0) = Pyug € V1. Then we
have

(3.39) u, —v in L®(0,T; H(Q)), in L*(0,T; H*(Q))

(3.40) Vpg = Vp in L*(Q),
Jor @ =Q x(0,T) and for 0 <T < o0, as || ¢ H2,oo — 0

Proof. By taking the scalar product with A;w to both sides of (3.4) we have

1d
2di
Gay S N0 V)W A+ ((w- D)y, Arw)]
+ [{(vg- V)Vag, Aiw)| + [(PLPy(Vay - V)vg, Ayw)]

1 2
3 2
[ Afw || + | Aaw |

= |I|+ |II|+|II1]|+ |IV],
for all £ > 0. By lemma and the Young inequality we have
1
1] = K(vg- V)w, Ayw)[ <yl Arvy || || Afw || || Arw ||

(3.42) . . L
gl Aw [+ 8%l Awvg |7 | Afw || .

IN

Similar to |I| we obtain

1
(1] = [((w- V)v, Aiw)|[ < ol Afw || [| Ay [ || Arw ||

2

(3.43) . )
< gl Aiw I+ 831 Avv [* || AFw || -
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Next, by using lemma , (1.6), (2.1), (2.4) and (2.8), there exists some constant c;7
= 617(m7 M7 H Vo H7 H f H2’2) such that

(LI = [((vg- V)V, Aiw)| < mill vy [l goll 4o | ol Aaw ||
(3.44) 1 ) ) )
< glhw [P+ earll Vg llso |l Avvg [
By applying (2.7) we have
1
(3.45) [IVI=|(P1Py(VagV)vg, Aw)| <[{(VagV)vg, Aiw) [+ k [| || Arw ||

where k = [,(Vqy - V)v, dx. Similar to |[I1I], we obtain

(Vg - V)vg, Aiw)| < 71l g [l gall Vo [l | Arw ||
(3.46) . , , ,
< gl Arw 7+ earll Vg Il Avvy [

Also, by (2.1), (2.4) and (2.8) we obtain

1 1
AT Avw | < — 1 ag gz | Vvg [T Arw ]
(3.47) "
2 2 2
< gl Aw I+ essll Vg llse [ Avvg 7
for some constant 13 = cis(m, M, || vo ||, || f [|55). So, from (3.45), (3.46) and

(3.47) we have
1 2 2 2
(3.48) [TV < ZIH AW [P + (17 + es) | Vo llso [ Arvg [

Therefore, from (3.41), (3.42), (3.43), (3.44) and (3.48), we have

1d 2

L 23 1
220 Az 21 A 2 2( A 2,04 2) A2
Gagy zal ATV gl Aw 7 < S (| Awvg [P+ A [F)IF AFw |

+ (2c17 +c1s) || Vo |51 Ay |7,

for all ¢ > 0. So, we have

d 1 2 1 2
Ly abw | <)l Afw | +Bu(), forall >0,

where

(3.50) Bo(t) = 1693 (Il Arvy(®) | + 1| Arv(o) |1)
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(3.51) Bro(t) = (derr + 2e18)|| Vg Il ]l Arvy(t) |
By the Gronwall inequality, we get
1 2 ¢ 1 2 ¢
s aiw@l =B B0 [ aiwo 1+ [ solsas).
0

for all £ > 0. Now, by (3.35) and the classical theory of the Navier-Stokes equa-

1
tions for periodic boundary conditions, there exists c19 = c19(m, M, My, || A vy ||,
| £ ]|2,5) such that

0

T T
659 [ o= [ 1693 (I 4y o) I+ ] Arvs) [2) ds < o
0
1
and there exists cag = cao(m, M, Mo, || Afvo ||, || £ [|55) such that

T T
G54 [ Bulsds= [ (err+ 209 Vo [ Arvys) |2 ds<ea] Vg
0 0

Therefore, from (3.52), (3.53) and (3.54) we have

2 2

1 1
| AFw(t) || < e [H AFw(0) |+ exll Vg || forallo < < T

which implies

— ol

2
(3.55) IV (vg(t) =v(®) I* = | AFw(t) || < ea0 €™ || Vg |5,

because w(0) = 0.
Next, by (2.1), (2.4) and (2.8), there exists constant co; = co1(m, M, || vo ||,
| £1l55) such that

(3.56) || V(ug —vy) |I* = 1| V(Vay) I < eall Vo 5] ug |I” < eaull Vo IIZ.-

Since [, ugdx = [ vdx =0 and ug,v € Hy,,

(Q), we have
g = v [l <2 V(ag =) [|.
So, we obtain from (3.55) and (3.56)

2 || V(ug —v) [IP<4( || V(ug —vg) [P+ || V(vg—v) )
4 (ca1 + €20 €)|| Vg ||2.

lug(t) = v(t) 70 <
<
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Next, to prove second part of (3.39), we take the integral from O to 7" both sides
of (3.49). Then, we obtain by (3.53), (3.54) and (3.55) that

3 (T
Z/ | Ayw(s) 2 ds </ Bo(s ]AQ ds—l—/ Bro(s
0
< (c19¢20€° + ¢20) || Vg |12,

1
because || A7 w(0) || = 0. So, by (1.6), we obtain

T 2 < T 2 482 2
G5 [ W) e ds <3 [ ] Arwls) |2 <50 (euneane™ + a0 | g I
0 0

Also, we obtain due to lemma , (2.9) and remark that

T
[ )09 s ds= [ ag s < [y s s

(3.58)
< &l /0 lug 130 ds < e 83 [l g 2

1
for some constant ¢ = c(m, M, || Afvo ||, ||  [|55). So, from (3.57) and (3.58), we
get

| ) = v(s) s
0

AN
)
N
\
N
o
«Q
=
|
<
=
=
QL
@
_|_
\
N
<
=
|
<
=
Q
@
—

=2 ([ )= vl Pyt = [ 1105 ) —0

which completes the proof of the second part in (3.39).
At last, to prove (3.40) one note by (3.16) and (3.17) that

(3.59) Vpy =f —uj, — Auy — (uy - V)u,
and
(3.60) Vp=£f—v —Av—(v-V)v.

By (3.39), we obtain

T T
(3.61) / | Aty =) | dt g/ lug—v |2 dt —0,
0 0
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a5 || 9 llg. — 0.
Also, by (3.39), the Holder inequality and the Sobolev inequality, we obtain

Jo Il (g - Vyug = (v-V)v ||* dt

T
< 2 /0 I (ug = v) - Vg |+ (v V)(ug —v) |[* dt

(3.62) T ) ) )
<2 [ uy v e de | sup a0 30+ s (o) [
0 0<t<T 0<t<T
T
< 2e / [ug—v H?{z dt — 0,
0
1
for some constant cog = coo(m, M, || Afvo [, | £ 1), as || g [, . — 0. By (2.9)

note that for all g € A,
1 1 1
h | Agug(0) [| < [| Afvg(0) || = [| A7 v(0) |-

1
So, for all g € A4, we can have constant cgo depending on || A7 v(0) || rather than

on || A%ug(O) ||. Next, we want to prove
T
/0 | uy — v I dt — 0, as g — 1 in W>(Q).
Before we do that, one should remind that u, satisfies
(3.63) uy = Pyf — Py(—Auy) — Py((uy - V)uy)
and v satisfies
(3.64) vi=Pf — P(-Av) — P ((v-V)v).

Since [, f dx = 0, by lemma , we obtain

m2

T
4
R e A R A S F
(3.65) 0
4
2

IN

2 2
IVl 122 =0,

as || g |lgo — 0. By lemma and lemma , we have u, = v, + Vg, and

Py(Auy) = Py(Avy) and Pi(Auy) = Pi(Avy).
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So, we obtain due to lemma that

| Py(=Aug) — Pi(=Av) |

< || Py(~Aug) — Po(~Auy) || + || Po(~Auy) — Pi(-Av) |
= || Py(~Avy) = Pi(~Avy) | + || Pi(~Aug) — Pi(~AV) |
2
< 2 Vg ol =Avg ||+ ~Auy = v) |
2
< 2 Vg ool Vo g+ 1 (1 =) Il

which implies

T
/ | Py(—Auy) — Pi(=Av) ||* dt
(3.66) 0

4 2 T 2 T 2
< IVl [ ve e e [l v I de
m 0 0

Therefore, by lemma , (1.6) and (3.39), (3.66) goes to zero as || g ||, o, — 0.
Next, we get by lemma that

| Pg(ug ) V)ug —Pi(v-V)v|

3.67) = I By(ug-V)ug = By(v-V)v ||+ Fy(v-V)v = Pi(v-V)v|

2
< Hug - Vjug = (v-V)v [+ =] Vg oo | (v- V)V .

Also, by (3.62) we obtain

T T
(3.68) / | (uy - V)uy — (v V)v | dt < QC22/ lug—v |2, dt —0
0 0

as || g [l3,oc — 0. Moreover, by the Holder inequality, the Sobolev inequality and
the classical theory of the Navier-Stokes equations, we obtain

T T
6o [l v Edese [Vl de< e
0 0

1
for some constant co3 = co3(|| Afvo ||, [l f |5 5). Refer chapter 3 in Temma[12] for
the details of (3.69). Therefore, from (3.67), (3.68) and (3.69), we have

T
(3.70) / I Py(ug - V)yug — Pi(v-V)v || dt — 0, as || g [l — 0.
0
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So, from (3.63), (3.64), (3.65), (3.66) and (3.70) we obtain
r 2
(3.71) /0 |u, —v'[["dt -0, asg—1in W2(Q).

Hence, by (3.59), (3.60), (3.61), (3.62) and (3.71), we complete the proof of
(3.40). =

4. DIRICHLET PROBLEM

In this section, we consider for Dirichlet boundary conditions on bounded do-
main Q C R2. We assume that g satisfies g(x) € C*°(Q2) and 0 < m < g(x) < M,
for all x € Q). For a mathematical setting, we use

Hy = CL2qgtu € C5°(Q2) ; V- gu=0} and
Vy = {ueHol(Q,g) ; V.gu=0}.

Also, for a orthogonal projection, F, : L*(Q, g) — H,, we define Pyu =v € H,
where u = v + Vp and p is the solution of ;(V -gV)p = %(V - gu).

For the Poincar¢ inequality, there exists some constant ¢ > 0 such that for
ueclV,

L Vu 2 < ValP<eful®<eM |
Moreover, for lemma , we have better results,
PiPju= Pyu, forall ue L*Q),
which implies
(PiPyju,w) = (u,w), foru € L*(Q2) and w € H;.

Finally, we can obtain similar results for main theorems.
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