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ON THE CORES OF SCALAR MEASURE GAMES

Man-Chung Ng, Chi-Ping Mo, and Yeong-Nan Yeh

Abstract. A CV M(k) game is a game of the form f ◦ λ, where λ is a
k-dimensional non-atomic measure and f is a continuously differentiable
function on Rk. For a convex CV M(1) game, we characterize the “least
upper bound” and “greatest lower bound” of the core elements in terms
of the distribution function. We also show that the core of a convex
CV M(1) game expands as the underlying measure λ changes in a “convex
manner”. These results provide a partial geometric picture for the core
and its variations of a convex CV M(1) game.

1. Introduction

A game V with a continuum of players is a bounded real-valued function
defined on Σ, the set of all Borel subsets of I = [0, 1], such that V (∅) = 0.
The elements of Σ are interpreted as coalitions of players; for each coalition
S, V (S) gives the maximum payoff achieved by the efforts of all members in the
coalition. With this interpretation, we shall assume that V is non-negative
and that V is not identically zero throughout this paper. For S ∈ Σ, we
denote by S∗ the indicator function of S. Let B be the Banach space spanned
by the set Σ∗ = {S∗ : S ∈ Σ} with the sup norm. Then the space of all
bounded additive functions on Σ, denoted by BA, is isometrically isomorphic
to the norm-dual of B. A payoff of the game V is an element µ ∈ BA with
µ(I) = V (I). The core CV of the game V consists of all payoffs µ such that
no coalition can improve upon, i.e., µ(S) ≥ V (S) for each S ∈ Σ. The core
is a convex and compact set (in the B topology). The assumption that V is
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non-negative implies that any element in the core is also non-negative. In fact,
µ ∈ CV must be monotonic in the sense that µ(S) ≤ µ(T ) whenever S ⊆ T .

Since Σ is a σ-algebra, we can endow a measure λ with it1. Then a special
class of symmetric games (with respect to the measure λ) can be defined as
follows:

Definition 1. V is called symmetric (with respect to λ) if V (S) = V (T )
for all S and T such that λ(S) = λ(T ).

It is clear that V is symmetric if and only if there is a unique real-valued
function f : [0, λ(I)] −→ R such that V (S) = f ◦ λ(S) for all S ∈ Σ, and
f(0) = 0. We shall follow Aumann and Shapley [1974] and call such V a scalar
measure game (See Aumann and Shapley [1974], p. 14). More generally, we
can define:

Definition 2. Let 0 be the origin in Rk and λ be a k-dimensional vector
measure on (I, Σ) such that its range, denoted by Range(λ), is of full dimen-
sion in Rk. The class of all k-dimensional vector measure games V M(k) (with
respect to λ) consists of all games V of the form: V (S) = f ◦λ(S), where f is
a non-negative real-valued function defined on Rk with f(0) = 0.

Let CV M(k) be the class of all games V = f ◦ λ ∈ V M(k) such that f is
continuously differentiable on Rk, and that λ is a non-atomic vector measure2

on I. The Shapley value of a game V = f ◦ λ ∈ CV M(k) is a payoff φV of V
given by the following formula (Aumann and Shapley [1974], p. 23)

φV (S) =
∫ 1

0
fλ(S)(tλ(I))dt,(1)

where fλ(S) is the derivative of f in the direction λ(S) ∈ Rk. In the case
k = 1, the Shapley value is in the core if and only if for each S ∈ Σ such that
λ(S) > 0, v(S)

λ(S) is bounded above by v(I)
λ(I) .

Due to space limitation, the focus of this paper is mostly on the case k = 1,
which carries quite strong geometric intuition. In the second section, we be-
gin with Schmeidler’s [1972] result that the core of any convex game consists

01 Of particular interest is the Lebsegue measure on Σ. We also recall that a measure is a
non-negative countably additive function in BA.
02 We recall that an atom of a vector measure λ is a coalition S ∈ Σ such that λ(S) 6= 0,
and for each proper subset T of S, either λ(T ) = 0 or λ(S − T ) = 0. If λ has no atom,
then it is called a non-atomic measure. It is clear that any measure which is absolutely
continuous with respect to the k-dimensional Lebsegue measure on I must be non-atomic.
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entirely of countably additive elements if the game satisfies some type of con-
tinuity condition. It is quite obvious that every convex game in CV M(1)
satisfies this condition, so that each core element can be represented by a
distribution function. In Section 3, for a convex game in CV M(1), we char-
acterize the “least” upper bound, and the “greatest” lower bound for all the
distribution functions in the core. This shows a clear geometric picture for
the “shape” of the core. Finally, we prove a theorem on expanding core as we
change the underlying measure λ.

2. Games in CV M

To every game V , we can define an extended real number |V |, called the
norm of V , by

|V | = sup
{∑

i

aiV (Si) : (ai, Si) is a finite sequence in

R+ × Σ such that
∑

i

aiS
∗ ≤ I∗

}
.

(2)

For each game V with finite norm, the exact envelope of V is a game defined
by

V (S) = min{µ(S) : µ ∈ BA, µ ≥ V and µ(I) = |V |} for all S ∈ Σ.(3)

Definition 3. A game V is called balanced if |V | = V (I). It is called
exact if V = V . It is called convex if V (S) + V (T ) ≤ V (S ∪ T ) + V (S ∪ T ) for
all S, T ∈ Σ.

It is clear that for any convex game V = f ◦ λ ∈ CV M(1), the Shapley
value φV (S) = λ(S)V (I)

λ(I) ≥ V (S) by convexity of f for each S ∈ Σ. Hence, the
Shapley value of a convex game in CV M(1) always lies in its core.

Definition 4. A game V is continuous at S ∈ Σ if V (Sn) −→ V (S) for
any monotone sequence {Sn} in Σ such that

⋃
n Sn = S. If V is continuous at

each S ∈ Σ, then V is said to be continuous.

Proposition 1. (Shapley [1971], Schmeidler [1972]) A game V has a non-
empty core if and only if it is balanced. Every convex game is exact, and every
exact game is balanced.

Proposition 2. (Schmeidler [1972]) Let V be an exact game. Then every
element in the core of V is countably additive if and only if V is continuous
at I.
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Theorem 1. Every exact (hence convex) game in CV M(k) has a non-
empty core with countably additive elements only.

Proof. We first prove that every game in CV M(k) is continuous at I
for all k. Let V = f ◦ λ ∈ CV M(k), and {Sn} be any monotone sequence
in Σ such that

⋃
n Sn = I. Countable additivity of λ implies that λ(I) =

limn λ(Sn). Continuity (continuous differentiability is not required here) of f
implies that f ◦ λ(I) = limn f ◦ λ(Sn). Hence, the assertion of Theorem 1
follows immediately from Propositions 1 and 2.

It is easy to show that a game V = f ◦ λ ∈ CV M(1) is convex if and
only if the derivative f ′ is non-decreasing on Range(λ).3 The implication of
Theorem 1 is that there is a measure on Σ such that every element of an
exact game in CV M(1) is absolutely continuous with respect to it. We can,
then, via the Radon-Nikodym theorem, represent every element in the core by
a real-valued function on I. In fact, the following theorem shows that for a
game V = f ◦ λ, λ is exactly the measure we are seeking.

Theorem 2. Let V = f ◦ λ ∈ CV M(1) be an exact game. Then for each
µ ∈ CV , there is a non-negative Borel measurable function gµ (unique up to
the measure λ) such that

µ(S) =
∫

S
gµdλ .

Proof. Because of Theorem 1 and the Radon-Nikodym theorem, we are
left with proving that µ is absolutely continuous with respect to λ. We first
recall that any element in the core is non-negative since µ ≥ V ≥ 0. Now, let
S ∈ Σ with λ(S) = 0. Then

µ(I)− µ(S) = µ(I − S) ≥ V (I − S) = V (I) = µ(I) ,

which implies µ(S) ≤ 0. It follows that µ(S) = 0, and hence µ is absolutely
continuous with respect to λ.

According to Theorem 2, for an exact game in CV M(1), we may identify
each µ ∈ CV with its density function gµ. Two measures µ1 and µ2 in the core
will always be regarded as equivalent if µ1 = µ2 except on a measurable set
E, with λ(E) = 0.

Definition 5. A measurable auto-map π on I is measure-preserving for λ
if it is one-one, onto, and λ(S) = λ(π(S)) for each S ∈ Σ. (Note we have used
the notation π(S) = {π(x) : x ∈ S}. )

03 Curiously, for k > 1, there is no corresponding statement in either directions.



On the Cores of Scalar Measure Games 175

It is clear that the set of all measure-preserving maps for λ forms a
group consisting of idempotent elements only. An easy example of a measure-
preserving map for the Lebesgue measure on I is the function π(x) = 1 − x.
We note that π−1 = π.

Theorem 3. Let π be any measure-preserving map for λ. Then for any
game V ∈ CV M(1), µ ∈ CV implies µ ◦ π ∈ CV . In fact, gµ◦π = gµ ◦ π.

Proof. Let µ ∈ CV and π be a measure-preserving map for λ. Then for
each S ∈ Σ, we have

(µ ◦ π)(S) = µ(π(S)) ≥ V (π(S)) = V (S).

Hence, µ ◦ π ∈ CV . The second statement follows from:
∫

S
gµ ◦ πdλ =

∫

π(S)
gµd(λ ◦ π−1) =

∫

π(S)
gµdλ,

where π−1(S) = {x ∈ I : π(x) ∈ S}.

Theorem 3 has quite concrete geometric interpretation. Furthermore, for
any convex game in CV M(1), we can classify the “shape” of the core in terms
of distribution functions. This is the main purpose of the next section.

3. Convex Games in CV M(1)

Definition 6. For any measure µ on Σ, one can define the distribu-
tion function of µ on I by Fµ(x) = µ([0, x]) for x ∈ I.

It can be easily seen that Fµ has the following properties:

(P1) Fµ is a nondecreasing function;

(P2) Fµ is right continuous and has a left-hand limit everywhere;

(P3) Fµ(0) = 0 and Fµ(1) = µ(I).

It turns out the converse is also true. Given a distribution function F on I
with properties (P1), (P2), F (0) = 0, and F (1) finite, one can define4 a unique
measure γF on Σ such that γF ((x, y]) = F (y)− F (x) for any 0 ≤ x < y ≤ 1.

Since λ is a non-atomic measure on I, Fλ is a continuous function on I.
Assuming that Fλ is strictly increasing, we can define the following auto map
on I:

π̂(x) = {y ∈ I : Fλ(x) + Fλ(y) = λ(I)}, x ∈ I.(4)
04 This is a standard fact in probability theory. See, e.g., Shiryayev [1984].
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We now show that π̂ is a measure-preserving map for λ. Since Fλ(x) = λ(I)−
Fλ(π̂(x)), we have λ([0, x]) = λ([π̂(x), 1]). It can be readily seen that λ(S) =
λ ◦ π̂(S) for all open intervals S ∈ Σ. The collection Σ is the smallest σ-
algebra generated by all the open intervals in I. By Carathéodory’s extension
theorem, λ(S) = λ ◦ π̂(S) for all S ∈ Σ. Since Fλ is strictly increasing, π̂ is
one-one. Now, π̂(0) = 1, π̂(1) = 0 and so by the Intermediate Value Theorem,
π̂ is onto as well. It follows that π̂ is a measure-preserving map for λ.

For each monotonic game V ∈ CV M(1), we can define FV (x) = V ([0, x])
for each x ∈ I. Clearly, FV satisfies properties (P1) to (P3), and there is a
unique measure γFV

associated with it. Note that γFV
is different from V itself

unless V is countably additive.

Theorem 4. Suppose that V = f ◦ λ is a convex game in CV M(1) and
that Fλ is strictly increasing. Then for any µ ∈ CV , we have

FV (x) ≤ Fµ(x) ≤ V (I)− FV (π̂(x)) for each x ∈ I.(5)

Furthermore, the unique measures associated with FV (x) and V (I)−FV (π̂(x)),
respectively, are elements of the core.

Proof. Since a convex game must be monotonic, we know that FV is well-
defined. We first prove γFV

∈ CV . It is clear that for each S, γFV
(S) =

∫
S f ′dλ.

Thus, γFV
∈ CV if and only if

∫

S
f ′dλ ≥ f(λ(S)) for all S ∈ Σ.(6)

We observe that the collection of all subsets in Σ satisfying inequality (6)
is closed under finite disjoint union. Now suppose that S = (x, y] for some
0 ≤ x ≤ y ≤ 1. Then

∫ y

x
f ′dλ = f ◦ Fλ(y)− f ◦ Fλ(x)

≥ f(Fλ(y)− Fλ(x)) (by convexity and f(0) = 0)

= f ◦ λ((x, y]),

which is exactly inequality (6). Since λ is a non-atomic measure, and f ′ is
bounded on [0, λ(I)], inequality (6) holds for all closed intervals contained in
I as well. Hence, inequality (6) is true for any finite disjoint union of closed
intervals in I. Suppose that for some S ∈ Σ, inequality (6) is false. Let

ε = f ◦ λ(S)−
∫

S
f ′dλ > 0.
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Using the facts that λ is a non-atomic measure on Σ, f ′ is bounded on I, and
f is continuous, we can find a set T which is a finite disjoint union of closed
intervals in I such that

max
{
|f ◦ λ(S)− f ◦ λ(T )|,

∣∣∣∣
∫

S
f ′dλ−

∫

T
f ′dλ

∣∣∣∣
}

<
ε

2
.

This is a contradiction since f ◦ λ(T ) =
∫
T f ′dλ. Hence we have proved that

γFV
∈ CV .

By Theorem 3, γFV
◦ π̂ ∈ CV . It is easy to check that its distribution

function is given by V (I)− FV ◦ π̂.
For the first part of the theorem, let µ be an element in CV . By definition,

Fµ(x) ≥ FV (x) for each x ∈ I. From Theorem 3, µ ◦ π̂ ∈ CV , and hence

Fµ(x) = V (I)− Fµ◦π̂(π̂(x)) ≤ V (I)− FV (π̂(x)) for each x ∈ I.

Definition 7. An element in the core of a game V is called a vertex if it
cannot be written as the convex combination of two distinct elements in the
core.

According to the above definition, if V = f ◦ λ ∈ CV M(1), then both γFV

and γFV
◦ π̂ are vertices. The convex hull of these two elements forms part of

CV . There are also other vertices. In the example below we show a method
of constructing some vertices.

Example. Consider the convex game V = f ◦ λ, where f(x) = x2 and λ
is the Lebesgue measure. Then π̂(x) = 1 − x in Theorem 4. All distribution
functions in the core are bounded by y = x2 and y = 1−f ◦π̂(x) = 1−(1−x)2.
Now for each 0 < a ∈ I, let us consider the measure-preserving map π̂a for λ
defined by

π̂a(x) =

{
a− x, if x ∈ [0, a];
x, if x ∈ (a, 1].

Through π̂a, we obtain the following density function for a distribution func-
tion which we call Fa:

gFa
(x) =





2(a− x), if x ∈ [0, a];

2x, if x ∈ (a, 1].

We claim that Fa is a vertex of the core. Suppose that there are two elements
F1 and F2 in the core such that Fa = αF1+(1−α)F2 for some α ∈ (0, 1). Since
F1 and F2 are bounded below by FV , we must have F1(x) = F2(x) = FV (x)
for all x ≥ a (since all distribution functions are right continuous). Since
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F1 ∈ CV , the distribution defined by F 1 = F1 ◦ π̂a ∈ CV . Then for each x ≤ a,
we have F 1(x) = V (a)− F1(π̂a(x)) and hence

F1(x) = V (a)− F 1(π̂a(x)) ≤ V (a)− FV (π̂a(x)) = Fa(x).

Similarly, F2(x) is bounded above by Fa on the range [0, a]. It follows that
F1 = F2 = Fa, a contradiction. Hence, Fa is a vertex of the core (c.f. Figure
1).

Remark. As regards the preceding example, let us consider a finite union
of disjoint intervals Ei ⊆ I, i = 1, 2, · · · , n. On each Ei, one can define a
measure-preserving map πi by renaming the players of Ei in the “opposite”
direction. Then define a measure-preserving map π on I by letting π = πi on
each Ei, and π be the identity map elsewhere. It is clear that the distribution
function with density function f ◦ π is a vertex.

For each V = f◦λ, and each 0 < y ∈ I, we can define a subgame Vy on [0, y]
by Vy(S) = V (S) for all S ⊆ [0, y] and S ∈ Σ. Then, we can easily prove that
any element in CVy can be extended to some element in CVx whenever y ≤ x.
The ideas of the proof are clear from Example 1 and the proof of Theorem
4. We now state another theorem in which we change the underlying measure
rather than the underlying subspace [0, y].

FIG. 1.
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Theorem 5. (Core Expansion) Let V1 = f ◦ λ, and V2 = f ◦ λ2 be
two convex games in CV M(1). Assume that Fλ1 and Fλ2 are both strictly
increasing on I, and the function h = F−1

λ1
◦Fλ2 is convex with λ1(I) ≤ λ2(I).

Then, there exists a one-one map Φ : CV1 → CV2.

Proof. Let b be the unique point in I satisfying h(b) = 1. Take a distribu-
tion F1 ∈ CV1 . Define the following distribution function:

F2(x) =

{
F1(h(x)) if x ≤ b;
FV (x) if x > b.

We claim that F2 is a distribution in CV2 . As in the proof of Theorem 4,
observing that the collection of all Borel measurable sets satisfying

γF 2
(S) ≥ V2(S) for each S ∈ Σ

is closed under finite disjoint union, it suffices to prove that for each 0 < x ≤
y ≤ 1,

F2(y)− F2(x) ≥ f(Fλ2(y)− Fλ2(x)).(7)

Inequality (7) is true from Theorem 4 if both x, y > b. Now consider the case
when both x, y ≤ b. In this case,

F2(y)− F2(x) = F1(h(y))− F1(h(x)) ≥ f ◦ Fλ1(h(y)− h(x))

≥ f ◦ Fλ2(y − x),

where the last inequality follows from the convexity of h, and the fact that
Fλ1 , Fλ2 and f are increasing. To complete the proof, note that when x ≤
b < y, [x, y] can be written as the disjoint union of two intervals [x, b], and
(b, y]. The map Φ, which maps F1 ∈ CV1 to F2 ∈ CV2 is clearly one-one.
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