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CONTROLLABILITY FOR A CLASS OF DEGENERATE FUNCTIONAL
DIFFERENTIAL INCLUSIONS IN A BANACH SPACE

Y. C. Liou, V. Obukhovskii and J. C. Yao*

Abstract. We study the controllability problem for a system governed by a
degenerate semilinear functional differential inclusion in a Banach space with
infinite delay. Notice that we are not assuming that the generalized semigroup
generated by the linear part of inclusion is compact. Instead we suppose
that the multivalued nonlinearity satisfies the regularity condition expressed in
terms of the Hausdorff measure of noncompactness. It allows to obtain the
general controllability principle in the terms of the topological degree theory
for condensing multivalued operators. Two realizations of this principle are
considered.

1. INTRODUCTION

The investigation of controllability problems for systems governed by differential
and functional differential inclusions in Banach spaces attracts the attention of many
researchers (see, e.g., [3, 6, 7, 12, 18, 19] and references therein). Notice that
recently some controllability results were obtained also for inclusions with infinite
delay (see, e.g., [10, 16]).

Let us mention, however, that some of these works (see, e.g., [16]) contain
the assumption of compactness of the semigroup generated by the linear part of
inclusion, as well as the supposition of the controllability of corresponding linear
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system, i.e., the invertibility of the linear controllability operatorW. But it is known
(see [20, 21]) that in infinite-dimensional case these hypotheses are in contradiction
to each other.

In the present paper, extending some results of [18], we consider systems gov-
erned by degenerate (Sobolev type) functional differential inclusions with infinite
delay assuming that the linear part of inclusion generates an arbitrary generalized
C0-semigroup. At the same time we suppose that the multivalued nonlinearity
satisfies a regularity condition expressed in terms of the Hausdorff measure of non-
compactness. Let us mention that the solvability of some boundary value problems
for functional differential inclusions of that type was studied in the paper [2].

The paper is organized as follows. In Section 2 we give the necessary preliminar-
ies from the fields of multivalued maps, measures of noncompactness, condensing
operators and the corresponding topological degree theory. We present also neces-
sary information concerning multivalued linear operators and generalized semigroups
which they generate. At last, we present the axiomatic descrition of phase space
given by Hale and Kato [13]. In Section 3 we describe the problem and introduce
main assumptions. We define the multivalued operator Γ whose fixed points are
generating solutions of the problem. We study the properties of Γ, in particular, we
prove that it is condensing w.r.t. an appropriate vector-valued measure of noncom-
pactness (Proposition 6). This approach allows to apply the technique of topological
degree theory for condensing multivalued operators (see, e.g., [17, 8, 15]) and to
obtain a general controllability result (Theorem 4). Two examples demonstrating
the realization of this principle are presented.

2. PRELIMINARIES

2.1. Multimaps and Measures of Noncompactness

Let X be a metric space, Y a normed space, P (Y ) denote the collection of all
nonempty subsets of Y . We denote:

K (Y ) = {D ∈ P (Y ) : D is compact} ;

Kv (Y ) = {D ∈ K (Y ) : D is convex} .
We recall some notions (see e.g. [9, 15] for further details).

Definition 1. A multivalued map (multimap) F : X → P (Y ) is upper
semicontinuous (u.s.c.) if F−1 (V) = {x ∈ X : F (x) ⊂ V} is an open subset of
X for every open set V ⊂ Y.

Sometimes we will denote a multimap by the symbol F : X � Y.
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Definition 2. Let E be a Banach space and (A,≥) a partially ordered set.
A function β : P (E) → A is called a measure of noncompactness (MNC) in E if

β (coΩ) = β (Ω) for every Ω ∈ P (E) .

A MNC β is called:

(i) monotone, if Ω0, Ω1 ∈ P (E) , Ω0 ⊆ Ω1 implies β (Ω0) ≤ β (Ω1) ;
(ii) nonsingular, if β ({a} ∪ Ω) = β (Ω) for every a ∈ E , Ω ∈ P (E);
(iii) invariant with respect to reflection through the origin, if β (−Ω) = β (Ω) for

every Ω ∈ P (E);
(iv) semiadditive, if β (Ω0 ∪ Ω1) = max {β (Ω0) , β (Ω1)} for every Ω0, Ω1 ∈

P (E) ;

If A is a cone in a normed space, we say that the MNC β is
(v) algebraically semiadditive, if β (Ω0 + Ω1) ≤ β (Ω0) + β (Ω1) for every

Ω0, Ω1 ∈ P (E) ;
(vi) regular, if β (Ω) = 0 is equivalent to the relative compactness of Ω.
(vii) real, if A is [0,+∞] with the natural order.

As an example of MNC satisfying all above properties we can consider the Hausdorff
MNC

χ (Ω) = inf {ε > 0 : Ω has a finite ε-net} .

Another examples can be presented by the following real measures of noncom-
pactness defined on the space of bounded continuous functions C([a, b];E) on finite
or infinite interval [a, b] with the values in a Banach space E:

(i) the modulus of fiber noncompactness

ϕ(Ω) = sup
t∈[a,b]

χE(Ω(t)),

where χE is the Hausdorff MNC in E and Ω(t) = {y(t) : y ∈ Ω};

(ii) the modulus of equicontinuity defined as

modC (Ω) = lim
δ→0

sup
y∈Ω

max
|t1−t2|≤δ

‖y (t1)− y (t2)‖ .

It should be mentioned that these MNCs satisfy all above-mentioned properties
except regularity.
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To formulate the next assertion, recall the following notions. A multifunction
Φ : [0, T ] → P (E) is said to be: (i) integrable if it admits a selection φ,

φ(t) ∈ Φ(t) for a.e. t ∈ [0, T ],

belonging to the space L1([0, T ];E) of Bochner integrable functions; (ii) integrably
bounded if there exists a function µ ∈ L1

+([0, T ]) such that

‖Φ(t)‖ := sup
ψ∈Φ(t)

‖ψ‖ ≤ µ(t) for a.e. t ∈ [0, T ].

For an integrable multifunction Φ : [0, T ] → P (E), let us denote by SΦ the set of
all its integrable selections. Then for any t ∈ [0, T ] the multivalued integral of Φ
on [0, t] is defined in the following way:∫ t

0
Φ(s)ds = {

∫ t

0
φ(s)ds : φ ∈ SΦ}.

Proposition 1. (See Theorem 4.2.3 of [15]). Let E be a separable Banach
space and Φ : [0, T ] → P (E) an integrable, integrably bounded multifunction such
that

χE (Φ(t)) ≤ q(t) for a.e. t ∈ [0, T ],

where q(·) ∈ L1
+([0, T ]). Then

χE

(∫ t

0
Φ(s)ds

)
≤
∫ t

0
q(s)ds

for all t ∈ [0, T ].

Let E , E ′ be Banach spaces with MNCs β and β ′ respectively, J : E → E′ a
bounded linear operator.

Definition 2. (cf. [1]). The value

‖J ‖(β′,β) = inf{C : β′ (JΩ) ≤ Cβ (Ω) ; Ω ⊂ E is a bounded set}

is called the (β ′, β)-norm of J .

In particular, if β, β′ are the Hausdorff MNCs χ, χ′, the value ‖J ‖(χ′,χ) is
denoted by ‖J ‖(χ) and is called the χ-norm of J . The χ-norm may be evaluated
by the formula ([1])

‖J ‖(χ) = χ′ (J S) = χ′ (JB)
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where S is an unit sphere and B is an unit ball in E . The above formula easily
implies

‖J ‖(χ) ≤ ‖J ‖ .
Definition 4. A multimap F : X ⊆ E → K (E) is called condensing with

respect to a MNC β (or β-condensing) if for every bounded set Ω ⊆ X that is not
relatively compact we have

β (F (Ω)) � β (Ω) .

Let D ⊆ E be a nonempty convex closed set; V ⊂ D be an bounded relatively
open set, β a monotone nonsingular MNC in E and F : V → Kv (D) an u.s.c.
β-condensing multimap such that x /∈ F (x) for all x ∈ ∂V , where V and ∂V
denote the relative closure and the boundary of the set V.

In such a setting, the relative topological degree

degD
(
i− F , V )

of the corresponding multivalued vector field i−F satisfying the standard properties
is defined (see, for example, [17, 8, 15]). In particular, the condition

degD
(
i−F , V ) 
= 0

implies that the fixed points set FixF = {x : x ∈ F(x)} is a nonempty subset of
V.

The application of the topological degree theory yields the following fixed point
principles which we will use in the sequel.

Theorem 1. (cf. [15], Corollary 3.3.1). Let Q be a bounded convex closed
subset of E and F : Q → Kv(Q) an u.s.c. β-condensing multimap. Then FixF 
=
∅.

Theorem 2. (cf. [15], Theorem 3.3.4). Let a ∈ V be an interior point and F :
V → Kv(D) an u.s.c. β-condensing multimap satisfying the boundary condition

x− a /∈ λ (F (x)− a)

for all x ∈ ∂V and 0 < λ ≤ 1. Then FixF 
= ∅.
2.2. Multivalued linear operators

We begin with some necessary definitions and results from the theory of multi-
valued linear operators. Details can be found in [4, 5], and [11].

Let E be a complex Banach space.

Definition 5. A multivalued map (multimap) A : E → 2E is said to be a
multivalued linear operator (MLO) on E if:
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(1) D (A) = {x ∈ E : Ax 
= ∅} is a linear subspace of E;
(2) {

Ax+ Ay ⊂ A (x+ y) , ∀x, y ∈ D (A) ;

λAx ⊆ A (λ x) , ∀λ ∈ C , x ∈ D (A) .

It is an easy consequence of the definition to note that Ax + Ay = A (x+ y)
for all x, y ∈ D (A) and λAx = A (λ x) for all x ∈ D (A), λ 
= 0. It is also clear
that A is a MLO on E if and only if its graph GA is a linear subspace of E×E. A
MLO A is said to be closed if GA is the closed subspace of E×E. The collection
of all closed MLO’s in E will be denoted by ML (E) .

Definition 6. The inverse A−1 of a MLO is defined as:

(1) D
(
A−1

)
= R (A) ;

(2) A−1y = {x ∈ D (A) : y = Ax} .

It is obvious that (y, x) ∈ GA−1 if and only if (x, y) ∈ GA and hence A−1 ∈
ML (E) if A ∈ML (E) .

Denote by L (E) the space of all single-valued bounded operators on E.

Definition 7. The resolvent set ρ (A) of a MLO A is defined as the collection
of all λ ∈ C for which:

(1) R (λI −A) = D
(
(λI − A)−1

)
= E ;

(2) (λI −A)−1 ∈ L (E) .

Definition 8. The operator-valued function R (·, A) : ρ (A) → L (E)

R (λ, A) = (λI − A)−1

is called the resolvent of a MLO A.

Remark 1. If E is a real Banach space and A is a MLO on E , we may
consider the complexification Ẽ = E + iE and Ã defined by

G
Ã

= {(x, y1) + i (x, y2) : x ∈ D (A) , y1, y2 ∈ Ax}.

Then we set, by definition, ρ (A) = ρ(Ã).

Let U : R+ = [0,+∞) → L (E) be a C0-semigroup of operators, i.e., we
suppose the following conditions:

(i) U (t+ s) = U (t)U (s) , ∀t, s ∈ R+;
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(ii) for each x ∈ E, the function t→ U(t)x is continuous on R+.

Notice that the usual condition U (0) = I is absent here. From assumption (i)
it follows that U (0) = P ∈ L (E) is the projector. In case P 
= I the semigroup
U is called generalized (or degenerate).

It is easy to verify that there exist constants C ≥ 1 and γ ≥ 0 such that

(0.1) ‖U (t) ‖L(E) ≤ Ceγt, t ∈ R+.

Therefore, for each λ ∈ Cγ = {µ ∈ C : Reµ > γ} the bounded linear operator
R (λ) may be defined by the following Laplace transformation:

R (λ)x =
∫ ∞

0
U (τ) xe−λτdτ.

The function R : Cγ → L (E) satisfies Hilbert equality and it is the resolvent
of a certain (unique) A ∈ ML (E) . This MLO A is called the generator of the
generalized semigroup U.

Let E∗ be the dual space of E. For A ∈ ML (E) , we denote by A∗ a MLO
on E∗ defined in the following way: for h, g ∈ E∗, the relation h ∈ A∗ (g)
means that g (y) = h (x) for all pairs (x, y) ∈ GA. It is easy to verify that
A∗0∗ = {h ∈ E∗ : D (A) ⊂ Kerh} = D (A)

⊥
.

Consider the following assumptions on A ∈ML (E) .

(A1) functionals from A∗0∗ are separated by vectors of A0, i.e., for each h ∈
A∗0∗, h 
= 0∗ there exists y ∈ A0 such that h(y) 
= 0;

(A2) the Hille–Yosida condition: there exist a constant C > 0 and γ ∈ R such
that Cγ ⊂ ρ (A) and

‖R (λ, A)n ‖L(E) ≤
C

(Reλ− γ)n
, n = 1, 2, ... λ ∈ Cγ .

Remark 2. In [4] it was shown that each of the following conditions implies
(A1): (i) the space E is reflexive; (ii) dimA0 = dimA∗0∗ <∞.

The following result holds true (cfr. [4, 11]).

Theorem 3. Conditions (A1) and (A2) are necessary and sufficient for A ∈
ML (E) to be the generator of a C0-semigroup U. Moreover, the semigroup U is
generalized iff A is not single-valued. In this case the space E may be represented
as E = E1 ⊕E1, where E0 = D (A), E1 = A0 and the restriction of U (t) on E 0

defines the usual C0-semigroup on E0 whereas the restriction on E1 vanishes.
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2.3. Phase space

We will employ the axiomatical definition of the phase space B, introduced by
J. K. Hale and J. Kato (see [13, 14]). The space B will be considered as a linear
topological space of functions mapping (−∞, 0] into a Banach space E endowed
with a seminorm ‖ · ‖B .

For any function yt : (−∞; T ] → E and for every t ∈ (−∞; T ], yt represents
the function from (−∞, 0] into E defined by

yt(θ) = y(t+ θ), θ ∈ (−∞; 0].

We will assume that B satisfies the following axioms.

(B) If y : (−∞; T ] → E is continuous on [0; T ] and y0 ∈ B, then for every
t ∈ [0; T ] we have

(i) yt ∈ B;
(ii) function t �→ yt is continuous;
(iii) ‖yt‖B ≤ K(t) sup

0≤τ≤t
‖y(τ)‖ + N (t)‖y0‖B, where K(·), N (·) : [0;∞) →

[0;∞) are independent on y, K(·) is strictly positive and continuous, and
N (·) is bounded.

We may consider the following examples of phase spaces satisfying all above
properties.

(1) For ν > 0 let B = Cν be a space of continuous functions ψ : (−∞; 0] → E

having a limit lim
θ→−∞

eνθψ(θ) with

‖ψ‖B = sup
−∞<θ≤0

eνθ‖ψ(θ)‖.

(2) (Spaces of ”fading memory”). Let B = Cρ be a space of functions ψ :
(−∞; 0] → E such that

(a) ψ is continuous on [−r; 0], r > 0;
(b) ψ is Lebesguemeasurable on (−∞; r) and there exists a positive Lebesgue

integrable function ρ : (−∞;−r) → R+ such that ρψ is Lebesgue in-
tegrable on (−∞; r); moreover, there exists a locally bounded function
P : (−∞; 0] → R+ such that, for all ξ ≤ 0, ρ(ξ + θ) ≤ P (ξ)ρ(θ) a.e.
θ ∈ (−∞;−r). Then,

‖ψ‖B = sup
−r≤θ≤0

‖ψ(θ)‖+

−r∫
−∞

ρ(θ)‖ψ(θ)‖dθ

.
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A simple example of such a space is given by ρ(θ) = eµθ, µ ∈ R.

3. CONTROLLABILITY PROBLEM

Let M : D (M) ⊆ E → E be a bounded linear operator and L : D (L) ⊆
E → E a closed linear operator in a real separable Banach space E satisfying the
condition

(ML)D (L) ⊆ D (M) and M (D (L)) ⊆ R (M) .

We will consider the nonlinear control system governed by a degenerate (Sobolev
type) functional differential inclusion in E of the form

(3.1)
dMx (t)
dt

∈ Lx(t) + F (t,Mxt) +Bu (t) , t ∈ [0, T ] := J

where the function x : (−∞, T ] → E satisfies the initial condition

(3.2) Mx0 = ψ̃ ∈ B .

With the change y (t) = Mx (t) we can rewrite system (3.1) - (3.2) into the
following form

(3.3)
dy (t)
dt

∈ Ay(t) + F (t, yt) + Bu(t), t ∈ J,

(3.4) y0 = ψ̃ ∈ B ,

where A = LM−1. It is clear that A ∈ ML (E) if M is not invertible and that
D (A) = M (D (L)) .

It will be supposed that:

(A) A = LM−1 satisfies conditions (A1) , (A2) of Section 2.2

and whence A is the generator of a C0-semigroup U. It should be mentioned that
to guarantee condition (A2) , it is sufficient to assume that:

(i) [Ly,My] ≤ γ‖My‖2, ∀y ∈ D (L) for some γ ∈ R, where [, ] is a semi-scalar
product in E
and

(ii) (ii) R (λ0M − L) = E for some λ0 > γ.

(See [4]).
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We will denote
U = sup

t∈J
‖U(t)‖ .

In the sequel, we consider the phase space B of functions ψ : (−∞, 0] → E0,
with E0 = D (A) = M (D (L)), satisfying all axioms of Section 2.3.

We will assume that the multivalued nonlinearity F : J × B → Kv(E) obeys
the following conditions:

(F1) for each ψ ∈ B, the multifunction F (·, ψ) : J → Kv(E) admits a measurable
selection;

(F2) for a.e. t ∈ J, the multimap F (t, ·) : B → Kv(E) is u.s.c.;
(F3) for each nonempty, bounded set Ω ⊂ B, there exists a function αΩ ∈ L1

+(J)
such that

‖F (t, ψ)‖E := sup{‖z‖E : z ∈ F (t, ψ)} ≤ αΩ(t)

for a.e. t ∈ J, ψ ∈ Ω;
(F4) there exists a function k ∈ L1

+(J) such that for each nonempty bounded set
Ω ⊂ B

χ(F (t,Ω)) ≤ k(t)ϕ(Ω)

for a.e. t ∈ J, where χ is the Hausdorff MNC in E and ϕ(Ω) is the modulus
of fiber noncompactness of the set Ω.

Remark 3. It is known (see, e.g., [9, 15]) that condition (F1) is fulfilled if
the multifunction F (·, ψ) is measurable for each ψ ∈ B.

Remark 4. Under conditions (F1) − (F3) for every continuous function v :
J → B the multifunction F (t, v(t)) is integrable (the proof is analogous to the one
of Theorem 1.3.5 in [15]).

By the symbol C((−∞, T ];E0) we will denote the linear topological space of
functions y : (−∞, T ] → E0 such that y0 ∈ B and the restriction y|J is continuous,
endowed with a seminorm

‖y‖C = ‖y0‖B + ‖y‖C ,

where the last norm is the usual sup-norm in the space C(J;E0).
For ψ̃ ∈ B from initial condition (3.2), we consider the set

D = {y ∈ C(J;E0) : y(0) = ψ̃(0)}
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which is obviously convex and closed.
Further, for any y ∈ D we define the function y[ψ̃] ∈ C((−∞, T ];E0) :

y[ψ̃](t) =

{
ψ̃(t), −∞ < t < 0,

y(t), 0 ≤ t ≤ T .

Then, clearly for t ∈ J :

y[ψ̃]t(θ) =

{
ψ̃(t+ θ), −∞ < θ < −t,
y(t+ θ), −t ≤ θ ≤ 0 .

We consider a map π : J ×D → B defined by

π(t, y) = y[ψ̃]t.

Notice that π(·, y) is continuous by axiom (B)(ii).
Moreover, we claim that π(t, ·) is Lipschitz continuous in the seminorm ‖ · ‖B

uniformly with respect to t ∈ J. In fact, denoting

(3.5) K = max
t∈J

K(t)

for the function K(·) from axiom (B)(iii), we obtain for any y, y′ ∈ D by the same
axiom

‖π(t, y)−π(t, y′)‖B = ‖y[ψ̃]t− y′[ψ̃]t‖B ≤ K‖y− y′‖C +N (t)‖y[ψ̃]0 − y′[ψ̃]0‖B
= K‖y − y′‖C .

Now we may consider the superposition multioperator PF : D � L1 (J;E) :

(3.6)
PF (y) = SF (·,π(·,y))

=
{
f ∈ L1 (J;E) : f (t) ∈ F (t, π(t, y)) = F (t, y[ψ̃]t) a.e. t ∈ J

}
.

By applying Remark , PF is well defined. Moreover, using the uniform Lipschitz
continuity of π(t, ·) and applying Lemma 5.1.1 of [15] we have the following
property of weak closedness of PF .

Lemma 1. Let {yn} be a sequence in D converging to y0 ∈ D and suppose
that a sequence {fn} ⊂ L1([0, T ];E), fn ∈ PF (yn), n ≥ 1 weakly converges to a
function f0. Then f0 ∈ PF (y0).

Further, we suppose that the control function u (·) is given in L2 (J; U), where
U is the Banach space of controls.
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At last, B : U → E is a bounded linear operator.

Definition 9. A function x : (−∞, T ] → E is called a mild solution to problem
(3.1) - (3.2) if the function y(t) = Mx(t) satisfies initial condition (3.2) and on
interval J it has the form

y (t) = U(t)y(0) +
∫ t

0
U (t− s) f (s) ds+

∫ t

0
U (t− s)Bu (s) ds ,

where f ∈ PF (y) and u ∈ L2 (J; U).

We will consider the controllability problem for the above system, i.e., assuming
that an initial function ψ̃ ∈ B and a point x∗ ∈ E0 are given, we will study conditions
which guarantee the existence of a mild solution x to problem (3.1) - (3.2) satisfying

(3.7) Mx (T ) = x∗ .

A pair (x, u) satisfying (3.1) , (3.2) , (3.7) will be called a solution of control-
lability problem (3.1) , (3.2) , (3.7) .

Toward this goal we will suppose the standard assumption on the controllabil-
ity of the corresponding linear problem. More exactly, we assume that the linear
controllability operator W : L2 (J; U) → E0 given by

Wu =
∫ T

0
U (T − s)Bu (s) ds

has a bounded inverse

W−1 : E0 → L2 (J; U) /KerW .

Let us mention, that we may suppose, w.l.o.g., that

W−1 : E0 → L2 (J; U) ,

(see [3, 19]).
LetM1,M2 be positive constants such that

‖B‖ ≤ M1

and ∥∥W−1
∥∥ ≤ M2 .

Let us consider the multivalued operator Γ : D � D of the following form

Γ (y) =
{
z ∈ D : z (t) = U(t)ψ̃(0)

+
∫ t

0
U(t−s)

[
f (s)+BW−1

(
x∗−U(T )ψ̃(0)−

∫ T

0
U (T−τ) f (τ) dτ

)
(s)
]
ds :

: f ∈ PF (y)} .
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It is easy to see that each fixed point y ∈ Γ (y) of the multioperator Γ naturally
generates a solution (x, u) of controllability problem (3.1) , (3.2) , (3.7) .

To investigate the properties of the multioperator Γ, we will need some notions
and results.

Proposition 2. (cf. Theorem 5.1.2 and Corollary 5.1.2 of [15]). Let S :
L1 (J;E) → C (J;E) be an abstract operator satisfying the following conditions:
(S1′) there exists ∆ ≥ 0 such that

‖Sf − Sg‖C ≤ ∆ ‖f − g‖L1 , ∀f, g ∈ L1 (J;E) ;

(S2) for each compact set K ⊂ E and sequence {fn} ⊂ L1 (J;E) such that
{fn (t)} ⊂ K for a.e. t ∈ J , the weak convergence fn ⇀ f0 implies Sfn → Sf0.

If PF : D � L1 (J;E) is the superposition multioperator given by (3.6) then
the composition S◦PF : D � C (J;E) is an u.s.c. multimap with compact values.

Definition 10. The sequence {fn} ⊂ L1 (J;E) is said to be semicompact if it
is integrably bounded and the set {fn(t)} is relatively compact in E for a.e. t ∈ J.

Proposition 3. (Theorem 5.1.1 of [15]). Let S : L1 (J;E) → C (J;E)
be an operator satisfying conditions (S1 ′) and (S2) . Then for every semicompact
sequence {fn} ⊂ L1 (J;E) the sequence {Sfn} is relatively compact in C(J;E).

Definition 11. The bounded linear operator G : L1 (J;E) → C (J;E0) defined
as

(Gf) (t) =
∫ t

0
U (t− s) f (s) ds

is called Cauchy operator.
Following Lemma 4.2.1. of [15] one may verify the following assertion.

Proposition 4. The Cauchy operator G satisfies properties (S1 ′) − (S2).

Consider now the operator S : L1 (J;E) → D defined by

(3.8)

(Sf) (t) = U(t)ψ̃(0)

+
∫ t

0
U (t− s)

[
f (s) + BW−1

(
x∗ − U(T )ψ̃(0)

−
∫ T

0
U (T − τ) f (τ) dτ

)
(s)
]
ds .

Lemma 2. The operator S satisfies properties (S1 ′)− (S2).
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Proof. Since S can be represented as

(Sf) (t) = U(t)ψ̃(0) + (Gf) (t) + (S1f) (t) ,

where

(S1f) (t)=
∫ t

0
U (t−s)BW−1

(
x∗−U(T )ψ̃(0)−

∫ T

0
U (T−τ) f (τ) dτ

)
(s) ds

it is sufficient, by Proposition 4, to prove the assertion only for the operator S1. To
verify property (S1′) let us take any functions f, g ∈ L1 (J;E). Then we have for
t ∈ J

‖(S1f) (t) − (S1g) (t)‖E

=
∥∥∥∥∫ t

0
U (t− s)BW−1

(∫ T

0
U (T − τ) (g (τ) − f (τ)) dτ

)
(s) ds

∥∥∥∥
≤ UM1

∫ t

0

∥∥∥∥W−1

(∫ T

0
U (T − τ) (g (τ)− f (τ)) dτ

)
(s)
∥∥∥∥ds

≤ UM1

∥∥∥∥W−1

(∫ T

0

U (T − τ) (g (τ) − f (τ)) dτ
)∥∥∥∥

L1(J;U)

≤ UM1

√
T

∥∥∥∥W−1

(∫ T

0
U (T − τ) (g (τ)− f (τ)) dτ

)∥∥∥∥
L2(J;U)

≤ UM1M2

√
T

∥∥∥∥∫ T

0
U (T − τ) (g (τ) − f (τ)) dτ

∥∥∥∥
E

≤ U2M1M2

√
T ‖f − g‖L1 .

So we have
‖S1f − S1g‖C ≤ U2M1M2

√
T ‖f − g‖L1 .

To check up property (S2) let us represent the operator S1 in the form

S1f = G
(
BW−1

(
x∗ − U(T )ψ̃(0) − θGf

))
where θ : C (J;E0) → E0, θy = y (T ) is a bounded linear operator. Then the
assertion follows from Proposition 4 and the boundedness of the linear operators
W−1, B and G.

Now, as an immediate consequence of Proposition 2 and Lemma 2 we have the
following assertion.

Proposition 5. The multioperator Γ is u.s.c. and has compact convex values.
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Now our goal is to give conditions under which the multioperator Γ is condens-
ing. Let

(3.9) N = sup
0<t≤T

‖U(t)‖(χ)

It is clear that N ≤ U . Let N1 ≥ 0 be a constant such that

(3.10) ‖B‖(χ) ≤ N1

(obviously we may assume N1 ≤ M1). At last, denoting by χU the Hausdorff
MNC in the space U, we suppose that there exists a function κ (·) ∈ L1

+ (J) such
that for each bounded set Ω ⊂ E0 we have

χU

(
W−1 (Ω) (t)

) ≤ κ (t)χE (Ω) a.e. t ∈ J .

Now, let us assume that the following condition holds:

(C)
(
N + N 2N1

∫ T

0
κ (s) ds

)∫ T

0
k (τ) dτ < 1 ,

where k (·) is the function from condition (F4).

Remark 5. Notice that condition (C) is trivially satisfied when the nonlinearity
F is compact in the second argument, i.e., k(t) = 0 for a.e. t ∈ J .

Consider the MNC

(3.11) ν (Ω) = (ϕ (Ω) ,modC (Ω))

in the space C (J;E0) with values in the cone R2
+, where ϕ is the modulus of fiber

noncompactness and modC is the modulus of equicontinuity (see Section 2.1). The
MNC ν is monotone, nonsingular and regular.

Proposition 6. Under condition (C) the multioperator Γ is ν-condensing.

Proof. Let Ω ⊂ D be a bounded set such that

(3.12) ν (Γ (Ω)) ≥ ν (Ω)

in the sense of order generated by the cone R2
+. We will show that (3.12) implies

that Ω is relatively compact.
Let us estimate the value ϕ (Γ (Ω)). For any t ∈ J we have

(3.13) Γ (Ω) (t) ⊂ U(t)ψ̃(0) +G ◦ PF (Ω) (t) + S1 ◦ PF (Ω) (t)
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Then, applying (3.9) and (F4) we obtain

χE ({U (t− s) f (s) : f ∈ PF (Ω)}) ≤
≤ Nk (s)χE (Ω (s)) ≤ Nk (s)ϕ (Ω) .

By Proposition 1

(3.14)
χE (G ◦ PF (Ω) (t)) ≤ Nϕ (Ω)

∫ t

0
k (s) ds

≤ N
∫ T

0
k (s) ds · ϕ (Ω) .

Applying (3.14) we can estimate χE (S1 ◦ PF (Ω) (t)) for t ∈ J. Indeed,we have

χE

({
U (t−s)BW−1

(
x∗−U(t)ψ̃(0)−

∫ T

0

U (T−τ ) f (τ ) dτ

)
(s) : f ∈ PF (Ω)

})

≤ NN1κ (s)χE

({∫ T

0
U (T − τ ) f (τ ) dτ : f ∈ PF (Ω)

})
≤ N 2N1

∫ T

0

k (s) ds · ϕ (Ω) · κ (s) .

So, by Proposition 1

χE (S1 ◦ PF (Ω) (t)) ≤ N 2N1

∫ T

0

k (s) ds · ϕ (Ω) ·
∫ t

0

κ (s) ds

≤ N 2N1

∫ T

0
k (s) ds ·

∫ T

0
κ (s) ds · ϕ (Ω) .

Therefore, by (3.13), for each t ∈ J we have

χE (Γ (Ω) (t)) ≤ χE (G ◦ PF (Ω) (t)) + χE (S1 ◦ PF (Ω) (t))

≤
(
N + N 2N1

∫ T

0
κ (s) ds

)∫ T

0
k (s) ds · ϕ (Ω) .

Hence

(3.15) ϕ (Γ (Ω)) ≤ qϕ (Ω) ,

where, by (C),

q =
(
N + N 2N1

∫ T

0
κ (s) ds

)∫ T

0
k (s) ds < 1 .
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Comparing (3.15) with (3.12) we come to the conclusion that

(3.16) ϕ (Ω) = 0 .

Now we show that modC (Ω) = 0, i.e., the set Ω is equicontinuous. Notice that
from

modC (Γ (Ω)) ≥ modC (Ω)

it follows that it is sufficient to verify that the set Γ (Ω) is equicontinuous. This is
equivalent to show that every sequence {zn} ⊂ Γ (Ω) satisfies this property.
Given a sequence {zn} there exists a sequence {yn} ⊂ Ω and a sequence of selec-
tions {fn}, fn ∈ PF (yn) such that

zn (t) = U(t)ψ̃(0) + (Gfn) (t) + (S1fn) (t) , t ∈ J .

Condition (F3) implies that the sequence of functions {fn} is integrably bounded.
By (3.16), the sequence {yn} satisfies the equality

χE ({yn (t)}) = 0 , ∀t ∈ J ,

hence, by condition (F4), we have

χE ({fn (t)}) = 0 for a.e. t ∈ J

and so the sequence {fn} is semicompact. Applying Propositions 3 and 4 and
Lemma 2 we come to the conclusion that the sequence {zn} is relatively compact
and, hence, equicontinuous.

We can now observe that the topological degree theory described in Section
2.1 can be applied to the multioperator Γ. We can formulate the following general
existence principle.

Theorem 4. Let V ⊂ D be a bounded open set such that y /∈ Γ (y) for all
y ∈ ∂V . If degD

(
i− Γ, V

) 
= 0 then problem (3.1) , (3.2) , (3.7) has a solution
(x, u) such that the function y(t) = Mx(t), t ∈ J is conained in V .

We will consider several realizations of this general principle. We will need the
following assertion.

Lemma 3. Let z ∈ λΓ(y) for some 0 < λ ≤ 1, i.e., z = λS(f), where
f ∈ PF (y) . Then for each t ∈ J we have the following estimate:

‖z(t)‖ ≤ U‖ψ̃(0)‖+ UM1M2

√
T
(
‖x∗‖ + U‖ψ̃(0)‖

)
+ U

∫ t

0
‖f(s)‖ds

+ U2M1M2

√
T

∫ T

0
‖f(τ)‖dτ.
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Proof. We have

z (t) = λU(t)ψ̃(0) + λ

∫ t

0

U (t− s) f (s) ds

+λ
∫ t

0
U (t− s)BW−1

(
x∗ − U(T )ψ̃(0) −

∫ T

0
U (T − τ) f (τ) dτ

)
(s) ds

and hence

‖z (t)‖ ≤ U
∥∥∥ψ̃(0)

∥∥∥+ U
∫ t

0
‖f (s)‖ ds

+UM1

∫ t

0

∥∥∥∥W−1

(
x∗ − U(T )ψ̃(0)−

∫ T

0
U (T − τ) f (τ) dτ

)
(s)
∥∥∥∥ ds

≤ U
∥∥∥ψ̃(0)

∥∥∥+ U
∫ t

0
‖f (s)‖ ds

+UM1

∥∥∥∥W−1

(
x∗ − U(T )ψ̃(0)−

∫ T

0
U (T − τ) f (τ) dτ

)∥∥∥∥
L1(J;U)

≤ U
∥∥∥ψ̃(0)

∥∥∥+ U
∫ t

0
‖f (s)‖ ds

+UM1

√
T

∥∥∥∥W−1

(
x∗ − U(T )ψ̃(0)−

∫ T

0
U (T − τ) f (τ) dτ

)∥∥∥∥
L2(J;U)

≤ U
∥∥∥ψ̃(0)

∥∥∥+ U
∫ t

0
‖f (s)‖ ds

+UM1M2

√
T

(
‖x∗‖+ U

∥∥∥ψ̃(0)
∥∥∥+ U

∫ T

0
‖f (s)‖ (τ) dτ

)
.

We begin with the following situation.

Theorem 5. Under assumptions (A), (F1), (F2), (F4), and (C), suppose that
condition (F3) takes the following form:
(F3′) there exists a sequence of functions {ωn} ⊂ L1

+ (J), n = 1, 2, . . . such that

sup
‖ψ‖B≤n

‖F (t, ψ)‖ ≤ ωn (t) for a.e. t ∈ J, n = 1, 2, . . .

If

(Q) lim inf
n→∞

1
ξ(n)

∫ T

0
ωn (s) ds = 0,

where
ξ(n) = n−N‖ψ̃‖B
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and N is a upper bound of the functionN (·) from axiom B(iii), then controllability
problem (3.1) , (3.2) , (3.7) has a solution.

Proof. We will prove that there exists a closed ball BR ⊂ C (J;E0) such that
Γ (D ∩BR) ⊆ D ∩BR .
Supposing the contrary, we will have sequences {yn} , {zn} ⊂ D such that

zn ∈ Γ (yn) , ‖yn‖C ≤ 1
K
ξ(n), ‖zn‖C >

1
K
ξ(n)

for all n ≥ N‖ψ̃‖B, where K is defined by (3.5). Then

zn = S(fn)

for some fn ∈ PF (yn), n ≥ N‖ψ̃‖B.
From Lemma 3 we obtain the estimate

‖zn‖C ≤ C1 +C2

∫ T

0
‖fn (τ) ‖dτ

where

(3.17) C1 = U
∥∥∥ψ̃(0)

∥∥∥+ UM1

√
T
(
‖x∗‖ + U

∥∥∥ψ̃(0)
∥∥∥)

(3.18) C2 = U
(
1 + UM1M2

√
T
)
.

Further, for n ≥ N‖ψ̃‖B and τ ∈ J from axiom B(iii) we have the estimate

‖yn[ψ̃]τ‖B ≤ K‖yn‖C +N‖ψ̃‖B ≤ ξ(n) +N‖ψ̃‖B = n

and whence from fn(τ) ∈ F (τ, yn[ψ̃]τ ) and condition of the theorem it follows that

‖fn(τ)‖ ≤ ωn(τ), n ≥ N‖ψ̃‖B
But then

‖zn‖C ≤ C1 +C2

∫ T

0
ωn (τ) dτ

and

1 <
K ‖zn‖C
ξ(n)

≤ KC1

ξ(n)
+
KC2

ξ(n)

∫ T

0
ωn (τ) dτ ,

giving the contradiction.
It remains only to apply Theorem 1 to the restriction Γ : D ∩BR � D ∩ BR .
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In our second example, let us assume that condition (F3) has the following form:

(F3′′) there exist a function p(·) ∈ L1
+ (J) and a non-decreasing function

ζ : R+ → R+ such that

‖F (t, ψ)‖ ≤ p (t) ζ (‖ψ‖B) for a.e. t ∈ J .

Theorem 6. Under conditions (A), (F1), (F2), (F3 ′′), (F4), and (C) suppose
that there exists a constant L > 0 such that

(L)
L

C1 +C2ζ
(
KL+N‖ψ̃‖B

)∫ T
0 p (τ) dτ + ‖ψ̃(0)‖

> 1 ,

where the constants C1 and C2 are those given by (3.17), (3.18) and constants K
and N are the same as above.
Then controllability problem (3.1) , (3.2) , (3.7) has a solution.

Proof. Denote by a ∈ D the function identically equal to ψ̃(0). Let us
demonstrate that there exists an open bounded neighbourhood V of a in D with the
property that

(3.19) y − a /∈ λ (Γ (y) − a)

for all y ∈ ∂V and 0 < λ ≤ 1.
Suppose that y − a ∈ λ (Γ (y) − a) for some y ∈ D and 0 < λ ≤ 1, then y =
λS(f) + (1 − λ)a, f ∈ PF (y). Applying Lemma 3 and using the fact that the
unction ζ(·) is nondecreasing, we obtain the estimate

‖y‖C ≤ C1 + C2

∫ T

0
‖f (τ)‖ dτ + ‖a‖C

≤ C1 + C2ζ
(∥∥∥y[ψ̃]

∥∥∥
B

) ∫ T

0
p (τ) dτ + ‖ψ̃(0)‖

≤ C1 + C2ζ
(
K ‖y‖C +N

∥∥∥ψ̃∥∥∥
B

)∫ T

0

p (τ) dτ + ‖ψ̃(0)‖

or ‖y‖C
C1 +C2ζ

(
K ‖y‖C +N

∥∥∥ψ̃∥∥∥
B

) ∫ T
0 p (τ) dτ + ‖ψ̃(0)‖

≤ 1 .

So, ‖y‖C does not equal to the constant L, appearing in condition (L). Now, let us
take an relatively open set

V = {y ∈ D : ‖y‖C < L} .
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Notice that condition (L) implies a ∈ V. We see that condition (3.19) is fulfilled
and it remains only to apply Theorem 2.
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