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Abstract. We construct Mond-Weir and Wolfe types of nondifferentiable mul-
tiobjective second order symmetric dual problems with cone constraints over
arbitrary closed convex cones. Weak, strong, and converse duality theorems
for weakly efficient solutions are established under the assumptions of second
order invex and pseudo-invex functions. Several known results are obtained
as special cases of our symmetric duality.

1. INTRODUCTION

In the literature of mathematical nonlinear programming there are a large num-
ber of papers ([4-7, 14, 17-19, 21]) discussing symmetric duality theory for the first
and second order cases. The symmetric duality theory for a problem involving the
square root of a positive semidefinite quadratic function is introduced by Ahmad
[1] and Ahmad and Husain [2]. The square root of a positive semidefinite quadratic
form is one of the few cases of a nondifferentiable function for which one can write
down the sub or quasi differentials explicitly. Mond and Schechter [16] replaced
the square root of a positive semidefinite quadratic function by a somewhat more
general function, namely the support function of a compact convex set, for which the
subdifferential may be simply expressed. Some authors ([8, 11, 16, 22]) established
symmetric duality relations for a problem involving the support function. Our re-
search focus on symmetric duality in nondifferentiable multiobjective programming
problems with cone constraints.

In the first order case, Suneja et al. [20] formulated a pair of multiobjective
symmetric dual programs of Wolfe type over arbitrary cones in which the objec-
tive function was optimized with respect to an arbitrary closed convex cone by
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assuming the involved function to be cone-convex. Recently, Khurana [9] intro-
duced cone-pseudo-invex and strongly cone-pseudo-invex functions and established
duality theorems for a pair of Mond-Weir type multiobjective symmetric dual over
arbitrary cones. More recently, Kim and Kim [10] studied two pairs of nondifferen-
tiable multiobjective symmetric dual problems with cone constraints over arbitrary
closed convex cones, which are Wolfe type and Mond-Weir type.

In the second order case, Mishra [13] formulated a pair of multiobjective second
order symmetric dual nonlinear programming problems under second order pseudo-
invexity assumptions on the involved functions over arbitrary cones and established
duality results. Subsequently, Mishra and Lai [15] introduced the concept of cone-
second order pseudo-invex and strongly cone-second order pseudo-invex functions
and formulated a pair of Mond-Weir type multiobjective second order symmetric
dual programs over arbitrary cones and established duality relations. Very recently,
Kim et al. [12] established nondifferentiable multiobjective second order symmetric
duality theorems involving cone constraints by second order invexity and pseudo-
invexity conditions.

In this paper, we formulate nondifferentiable multiobjective second order sym-
metric dual problems with cone constraints over arbitrary closed convex cones. In
order to establish the strong duality, we give necessary optimality conditions. Weak,
strong, and converse duality theorems for weakly efficient solutions are established
under the assumptions of second order pseudo-invex functions. And we present
some special cases of our duality results.

2. PRELIMINARIES

Now we will give some definitions and preliminary results needed in next sec-
tions.

Definition 2.1. A nonempty set K in R
k is said to be a cone with vertex zero

if x ∈ K implies that λx ∈ K for all λ � 0. If, in addition, K is convex, then K

is called a convex cone.

Consider the following multiobjective programming problem:

(KP) Minimize f(x)

subject to −g(x) ∈ Q, x ∈ C,

where f : R
n → R

k, g : R
n → R

m and C ⊂ R
n, Q is a closed convex cone with

nonempty interior in R
m.

Definition 2.2. A feasible point x is a K-weakly efficient solution of (KP ) if
there exists no other x ∈ X such that f(x) − f(x) ∈ intK.
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Definition 2.3. ([13]) Let f : X(⊂ R
n)× Y (⊂ R

m) → R be a twice differen-
tiable function.

(i) f is said to be second order invex in the first variable at u for fixed v, if there
exists a function η1 : X × X → X such that for r ∈ R

n,

f(x, v)− f(u, v) � ηT
1 (x, u)[∇xf(u, v) +∇xxf(u, v)r]− 1

2
rT∇xxf(u, v)r.

(ii) f is said to be second order pseudo-invex in the first variable at u for fixed
v, if there exists a function η1 : X × X → X such that for r ∈ R

n,

ηT
1 (x, u)[∇xf(u, v) + ∇xxf(u, v)r] � 0 ⇒ f(x, v)− f(u, v)

+
1
2
rT∇xxf(u, v)r � 0.

f is second order pseudo-incave at u ∈ C1 with respect to r ∈ C1, if −f is
second order pseudo-invex at u ∈ C1 with respect to r ∈ C1.

Definition 2.4. ([16]) Let B be a compact convex set in R
n. The support

function s(x|B) of B is defined by

s(x|B) := max{xT y : y ∈ B}.

The support function s(x|B), being convex and everywhere finite, has a subd-
ifferential, that is, there exists z such that

s(y|B) ≥ s(x|B) + zT (y − x) for all y ∈ B.

Equivalently,

zTx = s(x|B).

The subdifferential of s(x|B) is given by

∂s(x|B) := {z ∈ B : zT x = s(x|B)}.

For any set S ⊂ R
n, the normal cone to S at a point x ∈ S is defined by

NS(x) := {y ∈ R
n : yT (z − x) ≤ 0 for all z ∈ S}.

It is readily verified that for a compact convex set B, y is in NB(x) if and only if
s(y|B) = xTy, or equivalently, x is in the subdifferential of s at y.
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3. MOND-WEIR TYPE SYMMETRIC DUALITY

We consider the following pair of second order Mond-Weir type nondifferen-
tiable multiobjective programming problem:

(NMP) Minimize K(x, y, λ, w, p)

= f(x, y) + s(x|D)− (yTw)e − 1
2
[pT∇yy(λTf)(x, y)p]e

(1) subject to −[∇y(λTf)(x, y)− w + ∇yy(λTf)(x, y)p ∈ C∗
2 ,

(2) yT [∇y(λTf)(x, y)− w + ∇yy(λTf)(x, y)p] � 0,

x ∈ C1, w ∈ Ei, λ ∈ K∗, λT e = 1, e ∈ intK,

(NMD) Maximize G(u, v, λ, z, r)

= f(u, v)− s(v|E) + (uT z)e − 1
2
[rT∇xx(λTf)(u, v)r]e

(3) subject to ∇x(λTf)(u, v) + z + ∇xx(λTf)(u, v)r ∈ C∗
1 ,

(4) uT [∇x(λTf)(u, v) + z + ∇xx(λTf)(u, v)r] � 0,

v ∈ C2, z ∈ Di, λ ∈ K∗, λT e = 1, e ∈ intK,

where

(1) f : R
n × R

m → R
k is a three times differentiable function,

(2) C1 and C2 are closed convex cones in R
n and R

m with nonempty interiors,
respectively,

(3) C∗
1 and C∗

2 are positive polar cones of C1 and C2, respectively,
(4) K is a closed convex cone in R

k such that intK �= ∅ and R
k
+ ⊂ K,

(5) r, z are vectors in R
n, p, w are vectors in R

m,
(6) e = (1, · · · , 1)T is vector in R

k ,
(7) D = (D1, D2, · · · , Dk)T and E = (E1, E2, · · · , Ek)T , whereDi andEi(i =

1, · · · , k) are compact convex sets in R
n and Rm, respectively.

Let ∇x(λTf)(x, y) and ∇y(λTf)(x, y) are gradients of (λTf)(x, y) with re-
spect to x and y. Similarly, ∇xx(λTf)(x, y) and ∇yy(λTf)(x, y) are the Hessian
matrices of (λTf)(x, y) with respect to x and y, respectively.

Now we establish the symmetric duality theorems for (NMP) and (NMD).

Theorem 3.1. (Weak Duality) Let (x, y, λ, w, p) and (u, v, λ, z, r) be feasible
solutions of (NMP) and (NMD), respectively. Assume that,
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(i) (λTf)(·, y)+(·)Tz is second order pseudo-invex in the first variable for fixed
y with respect to η1,

(ii) −(λTf)(x, ·) + (·)Tw is second order pseudo-invex in the second variable
for fixed x with respect to η2,

(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2, then

G(u, v, λ, z, r)− K(x, y, λ, w, p) /∈ intK.

Proof. From (3) and η1(x, u) + u ∈ C1,

[η1(x, u) + u]T
[∇x(λTf)(u, v) + z + ∇xx(λTf)(u, v)r

]
� 0.

From (4), it yields

η1(x, u)T
[∇x(λTf)(u, v) + z + ∇xx(λTf)(u, v)r

]
� 0.

By the second order pseudo-invexity of (λTf)(·, y) + (·)Tz, we have

(5) (λTf)(x, v) + xT z − (λTf)(u, v)− uT z +
1
2
rT∇xx(λTf)(u, v)r � 0.

From (1) and η2(v, y) + y ∈ C2,

−[η2(v, y) + y]T [∇y(λTf)(x, y)− w + ∇yy(λTf)(x, y)p] � 0.

From (2), it yields

η2(v, y)T [∇y(λTf)(x, y)− w + ∇yy(λTf)(x, y)p] � 0.

By the second order pseudo-invexity of −(λTf)(x, ·) + (·)Tw, we obtain

(6) (λTf)(x, v)− vTw − (λTf)(x, y) + yTw +
1
2
pT∇yy(λTf)(x, y)p � 0.

From (5) and (6), we get

(7)
(λTf)(u, v)− xT z + uT z − 1

2
rT∇xx(λTf)(u, v)r

� (λTf)(x, y) + vTw − yTw − 1
2
pT∇yy(λTf)(x, y)p.

Using the fact that xT z � s(x|Di) and vTw � s(v|Ei) for i = 1, · · · , k, we get

xT z � λT s(x|D) and vT w � λT s(v|E).
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Finally, using these, we obtain

(8)
(λTf)(x, y) + λT s(x|D) − yTw − 1

2
pT∇yy(λTf)(x, y)p

� (λTf)(u, v)− λT s(v|E) + uT z − 1
2
rT∇xx(λTf)(u, v)r.

But suppose that G(u, v, λ, z, r)−K(x, y, λ,w, p) ∈ intK. Since λ ∈ K∗, it yields

[(λTf)(u, v)− λT s(v|E) + uT z − 1
2
rT∇xx(λTf)(u, v)r]

−[(λTf)(x, y) + λT s(x|D) − yT w − 1
2
pT∇yy(λTf)(x, y)p] > 0,

which is a contradiction to the inequality (8).

In order to prove the strong duality theorem, we can obtain the following nec-
essary optimality conditions for a point to be a weak minimum of (KP).

Lemma 3.1. If x is a K-weakly efficient solution of (KP), then there exist
α ∈ K∗ and β ∈ Q∗ not both zero such that

(αT∇f(x) + βT∇g(x))(x− x) � 0, for all x ∈ C,

βTg(x) = 0.

Equivalently, there exist α ∈ K ∗, β ∈ Q∗, β1 ∈ C∗ and (α, β, β1) �= 0 such that

αT∇f(x) + βT∇g(x) − βT
1 I = 0,

βTg(x) = 0,

βT
1 x = 0.

Proof. The first part of Lemma 3.1 is introduced by Bazaraa and Goode [3].
Now we prove the latter part of Lemma 3.1. Substituting x = 0 and x = 2x, we
get

(αT∇f(x) + βT∇g(x))x = 0.

Since αT∇f(x) + βT∇g(x) ∈ C∗, let β1 = αT∇f(x) + βT∇g(x). Then

αT∇f(x) + βT∇g(x) − βT
1 I = 0,

βTg(x) = 0,

βT
1 x = 0.
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Conversely, we obtain the following inequality by αT∇f(x)+βT∇g(x) = β1 ∈ C∗,

(αT∇f(x) + βT∇g(x))x � 0, for all x ∈ C

and

βT
1 x = (αT∇f(x) + βT∇g(x))x = 0.

Therefore,

(αT∇f(x) + βT∇g(x))(x− x) � 0, for all x ∈ C,

βT g(x) = 0.

Theorem 3.2. (Strong Duality). Let (x, y, λ, w, p) be a K-weakly efficient so-
lution for (NMP). Fix λ = λ in (NMD). Assume that

(i) ∇yy(λ
T
f) is positive definite and pT [∇y(λ

T
f) − w] � 0 or

∇yyλ
T
f is negative definite and pT [∇y(λ

T
f) − w] � 0,

(ii) ∇yλ
T
f − w + ∇yy(λ

T
f)p �= 0,

(iii) the set {∇yf1,∇yf2, · · · , w} is linearly independent,
where f = f(x, y).

Then there exists z ∈ Di(i = 1, · · · , k) such that (x, y, λ, z, r = 0) is a
feasible solution for (NMD) and objective values of (NMP) and (NMD) are equal.
Furthermore, under the assumptions of Theorem 3.1, (x, y, λ, z, r = 0) is a K-
weakly efficient solution for (NMD).

Proof. Since (x, y, λ, w, p) is a K-weakly efficient solution for (NMP), by
Lemma 3.1, there exist α ∈ K∗, β ∈ C2, µ ∈ R+, δ ∈ C∗

1 , and ρ ∈ K such that

(9)
αT [∇xf + ze] + (β − µy)T∇yx(λTf)

+(β − µy − 1
2
(αT e)p)T∇x(∇yy(λTf))p − δ = 0,

(10)
(α − µλ)T∇yf − (αT e − µ)Tw + (β − µy − µp)T∇yy(λ

T
f)

+(β − µy − 1
2
(αT e)p)T∇y(∇yy(λ

T
f)p) = 0,

(11) −1
2
(αT e)pT∇yyfp + (β − µy)T [∇yf + ∇yyfp]− ρ = 0,

(12) (αT e)y − (β − µy) ∈ NEi(w),
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(13) (β − αT ep − µy)T∇yy(λ
T
f) = 0,

(14) βT [∇y(λ
T
f) − w + ∇yy(λ

T
f)p] = 0,

(15) µyT [∇y(λ
T
f) − w + ∇yy(λT

f)p] = 0,

(16) δTx = 0,

(17) ρTλ = 0,

(18) z ∈ Di, zTx = s(x|Di), i = 1, · · · , k,

(19) (α, β, µ, δ, ρ) �= 0.

As ∇yy(λ
T
f) is positive or negative definite, (13) yields

(20) β = (αT e)p + µy.

If α = 0, then the above equality becomes

(21) β = µy.

From (10), we obtain

(22) µ[∇y(λ
T
f) − w + pT∇yy(λ

T
f)] = 0.

By the assumption (ii), we have µ = 0. Also, from (9), (11) and (21), we get
δ = 0, ρ = 0 and β = 0, respectively. This contradicts (19). So, α > 0. From
(14) and (15), we obtain

(β − µy)T [∇y(λ
T
f) − w + ∇yy(λ

T
f)p] = 0.

Using (20), it follows that

(23) pT [∇y(λ
T
f) − w] + pT∇yy(λ

T
f)p = 0.

We now prove that p = 0. Otherwise, the assumption (i) implies that

pT [∇y(λ
T
f) − w] + pT∇yy(λ

T
f)p �= 0,
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which contradicts (23). Hence p = 0. From (20), we have

(24) β = µy.

Using (24) and p = 0 in (10), we obtain

(α − µλ)T∇yf − (αT e − µ)w = 0.

By the assumption (iii), we get

(25) α = µλ and αT e = µ.

Therefore, µ > 0, it follows that

∇x(λ
T
f) + z ∈ C∗

1 .

Multiplying (9) by x and using equation (16), we get

xT [∇x(λ
T
f) + z] = 0.

Taking z := z ∈ Di(i = 1, · · · , k), we find that (x, y, λ, z, r = 0) is feasible for
(NMD). Moreover from (12), we get y ∈ NEi(w) for i = 1, · · · , k, so that

yT w = s(y|Ei) for i = 1, · · · , k

i.e.,
(yTw)e = s(y|E).

Consequently, using (18),

K(x, y, λ, w, p = 0) = f(x, y) + s(x|D)− (yT w)e

= f(x, y) − s(y|E) + (zTx)e

= G(x, y, λ, z, r = 0).

Thus objective values of (NMP) and (NMD) are equal. We will now show that
(x, y, λ, z, r = 0) is a K-weakly efficient solution for (NMD), otherwise there exists
a feasible solution (u, v, λ, z, r = 0) for (NMD) such that

G(u, v, λ, z, r = 0) − G(x, y, λ, z, r = 0) ∈ intK.

Since objective values of (NMP) and (NMD) are equal, we have

G(u, v, λ, z, r = 0) − K(x, y, λ, w, p = 0) ∈ intK,

which contradicts weak duality theorem. Hence the result holds.

Theorem 3.3. (Converse Duality). Let (u, v, λ, z, r) be a K-weakly efficient
solution for (NMD). Fix λ = λ in (NMP). Assume that
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(i) ∇xx(λ
T
f) is positive definite and r T [∇x(λ

T
f) − z] � 0 or

∇xx(λ
T
f) is negative definite and rT [∇x(λ

T
f) − z] � 0,

(ii) ∇x(λT
f) − z + ∇xx(λT

f)r �= 0,
(iii) the set {∇xf1,∇xf2, · · · , z} is linearly independent where f = f(u, v).

Then there exists w ∈ Ei(i = 1, · · · , k) such that (u, v, λ, w, p = 0) is a
feasible solution for (NMP) and objective values of (NMP) and (NMD) are equal.
Furthermore, under the assumptions of Theorem 3.1, (u, v, λ, w, p = 0) is a K-
weakly efficient solution for (NMP).

Proof. It follows on the lines of Theorem 3.2.

4. WOLFE TYPE SYMMETRIC DUALITY

We consider the following pair of second order Wolfe type nondifferentiable
multiobjective programming problem:

(NWP) Minimize K(x, y, λ, w, p)

= f(x, y) + s(x|D) − (yT∇y(λTf)(x, y))e

−(yT∇yy(λTf)(x, y)p)e− 1
2
[pT∇yy(λTf)(x, y)p]e

(26) subject to −[∇y(λTf)(x, y)− w + ∇yy(λTf)(x, y)p ∈ C∗
2 ,

x ∈ C1, w ∈ Ei, λ ∈ K∗, λT e = 1, e ∈ intK,

(NWD) Maximize G(u, v, λ, z, r)
= f(u, v)− s(v|E)− (uT∇x(λTf)(u, v))e

−(uT∇xx(λTf)(u, v)r)e− 1
2
[rT∇xx(λTf)(u, v)r]e

(27) subject to ∇x(λTf)(u, v) + z + ∇xx(λTf)(u, v)r ∈ C∗
1 ,

v ∈ C2, z ∈ Di, λ ∈ K∗, λT e = 1, e ∈ intK,

where

(1) f : R
n × R

m → R
k is a three times differentiable function,

(2) C1 and C2 are closed convex cones in R
n and R

m with nonempty interiors,
respectively,
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(3) C∗
1 and C∗

2 are positive polar cones of C1 and C2, respectively,

(4) K is a closed convex cone in R
k such that intK �= ∅ and R

k
+ ⊂ K ,

(5) r, z are vectors in R
n, p, w are vectors in R

m,

(6) e = (1, · · · , 1)T is vector in R
k,

(7) D = (D1, D2, · · · , Dk)T and E = (E1, E2, · · · , Ek)T , whereDi andEi(i =
1, · · · , k) are compact convex sets in R

n and Rm, respectively.

Let ∇x(λTf)(x, y) and ∇y(λTf)(x, y) are gradients of (λTf)(x, y) with re-
spect to x and y. Similarly, ∇xx(λTf)(x, y) and ∇yy(λTf)(x, y) are the Hessian
matrices of (λTf)(x, y) with respect to x and y, respectively.

Now we establish the symmetric duality theorems for (NWP) and (NWD).

Theorem 4.1. (Weak Duality). Let (x, y, λ, w, p) and (u, v, λ, z, r) be feasible
solutions of (NWP) and (NWD), respectively. Assume that,

(i) (λTf)(·, y)+(·)Tz is second order invex in the first variable for fixed y with
respect to η1,

(ii) −(λTf)(x, ·) + (·)Tw is second order invex in the second variable for fixed
x with respect to η2,

(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2. Then

G(u, v, λ, z, r)− K(x, y, λ, w, p) /∈ intK.

Proof. Since (λTf)(·, y) + (·)T z is second order invex with respect to η1 for
fixed y,

(λTf)(x, v) + xT z − (λTf)(u, v)− uT z

� η1(x, u)T [∇x(λTf)(u, v) + z + ∇xx(λTf)(u, v)r]− 1
2
rT∇xx(λTf)(u, v)r.

From (27) and η1(x, u) + u ∈ C1,

[η1(x, u) + u]T [∇x(λTf)(u, v) + z + ∇xx(λTf)(u, v)r] � 0.

Hence

(28)
(λTf)(x, v) + xT z − (λTf)(u, v)− uT z +

1
2
rT∇xx(λTf)(u, v)r

� −uT [∇x(λTf)(u, v) + z + ∇xx(λTf)(u, v)r].
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Since −(λTf)(x, ·) + (·)Tw is second order invex with respect to η2 for fixed x,

−(λTf)(x, v)+vTw+(λTf)(x, y)−yTw

� −η2(v, y)T [∇y(λTf)(x, y)−w+∇yy(λTf)(x, y)p]+
1
2
pT∇yy(λTf)(x, y)p.

From (26) and η2(v, y) + y ∈ C2,

−[η2 + y]T [∇y(λTf)(x, y)− w + ∇yy(λTf)(x, y)p] � 0.

So,

(29)
−(λTf)(x, v)+vTw+(λTf)(x, y)−yTw− 1

2
pT∇yy(λTf)(x, y)p

� yT [∇y(λTf)(x, y)− w + ∇yy(λTf)(x, y)p].

Therefore, by (28) and (29),

(λTf)(x, y) + xT z − yT [∇y(λTf)(x, y)

+∇yy(λTf)(x, y)p]− 1
2
pT∇yy(λTf)(x, y)p

� (λTf)(u, v)− vTw − uT [∇x(λTf)(u, v)

+∇xx(λTf)(u, v)r]− 1
2
rT∇xx(λTf)(u, v)r.

Using the fact that xT z � s(x|Di) and vTw � s(x|Ei) for i = 1, · · · , k, we get

xT z � λT s(x|D)andvTw � λT s(v|E).

Hence,

(30)

(λTf)(x, y) + λT s(x|D) − yT [∇y(λTf)(x, y)

+∇yy(λTf)(x, y)p]− 1
2
pT∇yy(λTf)(x, y)p

� (λTf)(u, v)− λT s(v|E)− uT [∇x(λTf)(u, v)

+∇xx(λTf)(u, v)r]− 1
2
rT∇xx(λTf)(u, v)r.
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But suppose that G(u, v, λ, z, r)−K(x, y, λ,w, p) ∈ intK. Since λ ∈ K∗, it yields
[
(λTf)(u, v)− λT s(v|E)− uT [∇x(λTf)(u, v) + ∇xx(λTf)(u, v)r]

−1
2
rT∇xx(λTf)(u, v)r

]

−
[
(λTf)(x, y)− λT s(x|D)− yT [∇y(λTf)(x, y) + ∇yy(λTf)(x, y)p]

−1
2
pT∇yy(λTf)(x, y)p

]
> 0,

which is a contradiction to the inequality (30).

Theorem 4.2. (Strong Duality). Let (x, y, λ, w, p) be a K-weakly efficient
solution for (NWP ). Fix λ = λ in (NWD). Assume that

(i) ∇yy(λ
T
f) is positive definite and pT [∇y(λ

T
f) − w] � 0 or

∇yyλ
T
f is negative definite and pT [∇y(λ

T
f) − w] � 0,

(ii) ∇yλ
T
f − w + ∇yy(λ

T
f)p �= 0,

(iii) the set {∇yf1,∇yf2, · · · , w} is linearly independent,
where f = f(x, y).

Then there exists z ∈ Di(i = 1, · · · , k) such that (x, y, λ, z, r = 0) is a
feasible solution for (NWD) and objective values of (NWP) and (NWD) are equal.
Furthermore, under the assumptions of Theorem 4.1, (x, y, λ, z, r = 0) is a K-
weakly efficient solution for (NWD).

Proof. Since (x, y, λ, w, p) is a K-weakly efficient solution for (NWP ), by
Lemma 3.1, there exist α ∈ K∗, β ∈ C2, µ ∈ R+, δ ∈ C∗

1 , and ρ ∈ K such that

(31)
αT [∇xf + ze] + (β − (αT e)y)T∇yx(λ

T
f)

+(β − (αT e)y − 1
2
(αT e)p)T∇x(∇yy(λTf))p− δ = 0,

(32)
(β − (αT e)y − (αT e)p)T∇yy(λ

T
f)

+(β − (αT e)y − (αT e)p)T∇y(∇yy(λ
T
f)p) = 0,

(33)
(αT e)

[
−yT∇yf − yT (∇yyf)p − 1

2
pT∇yyfp

]

+βT [∇yf + ∇yyfp] − ρ = 0,

(34) β ∈ NEi(w),
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(35) (β − αT ey − (αT e)p)T∇yy(λ
T
f) = 0,

(36) βT [∇y(λ
T
f) − w + ∇yy(λ

T
f)p] = 0,

(37) µyT [∇y(λ
T
f) − w + ∇yy(λ

T
f)p] = 0,

(38) δTx = 0,

(39) ρTλ = 0,

(40) z ∈ Di, zTx = s(x|Di), i = 1, · · · , k,

(41) (α, β, µ, δ, ρ) �= 0.

By the assumption (i) and (35) yields

(42) β = (αT e)(y + p).

If α = 0, then (41),(31) and (33) give β = 0, δ = 0 and ρ = 0. This contradicts
(40). Therefore α > 0. Using (41) in (32)

1
2
(αT e)pT∇y(∇yy(λ

T
f))p = 0,

which using the assumption (ii) implies

p = 0.

Then (41) implies β = (αT e)y. So y ∈ C2. Using (42) in (31)

(43) αT (∇xf + ze) = δ ∈ C∗
1 .

Taking z := z ∈ Di(i = 1, · · · , k), we find that (x, y, λ, z, r = 0) is feasible for
(NWD).
Multiplying (43) by x and using (37), we get

(44) xT
[
∇x(λ

T
f) − w

]
= 0.

Consequently, using (44), (45) and (46),

K(x, y, λ, w, p = 0) = f(x, y) + s(x|D)− (yT∇y((λ
T
f))(x, y))e

= f(x, y)− (zTx)e − (yT w)e

= f(x, y)− s(y|E)− xT∇x((λT
f))(x, y)e

= G(x, y, λ, z, r = 0).
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Thus objective values of (NWP) and (NWD) are equal. We will now show that
(x, y, λ, z, r = 0) is a K-weakly efficient solution for (NWD), otherwise there exists
a feasible solution (u, v, λ, z, r = 0) for (NWD) such that

G(u, v, λ, z, r = 0) − G(x, y, λ, z, r = 0) ∈ intK.

Since objective values of (NWP) and (NWD) are equal.

G(u, v, λ, z, r = 0) − K(x, y, λ, w, p = 0) ∈ intK,

which contradits weak duality theorem. Hence the result holds.

Theorem 4.3. (Converse Duality). Let (u, v, λ, z, r) be a K-weakly efficient
solution for (NWD). Fix λ = λ in (NWP). Assume that

(i) ∇xx(λ
T
f) is positive definite and r T [∇x(λ

T
f) − z] � 0 or

∇xx(λ
T
f) is negative definite and rT [∇x(λ

T
f) − z] � 0,

(ii) ∇x(λ
T
f)− z + ∇xx(λ

T
f)r �= 0,

(iii) the set {∇xf1,∇zf2, · · · , z} is linearly independent,

where f = f(u, v).
Then there exists w ∈ Ei(i = 1, · · · , k) such that (u, v, λ, w, p = 0) is a

feasible solution for (NWP) and objective values of (NWP) and (NWD) are equal.
Furthermore, under the assumptions of Theorem 4.1, (u, v, λ, w, p = 0) is a K-
weakly efficient solution for (NWP).

Proof. It follows on the lines of Theorem 4.2.

5. SPECIAL CASES

We give some special cases of our symmetric duality.

First of all, if C1 = R
n
+ and C2 = R

m
+ , then our results reduce to the following

programming problems.

(1) Our problems (NMP) and (NMD) become the pair of Mond-Weir sym-
metric dual programs considered in X.M. Yang et al.[22] for the same B and
D.

(2) If k = 1, then (NMP) and (NMD) are redued to the second order symmetric
dual programs in Hou and Yang [8].
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(3) Let D ∈ R
n × R

n and E ∈ R
m × R

m are positive semidifinite symmetric
matrices. If s(x|B) = (xTDx)

1
2 where B = {Dz|zTDz � 1} and s(y|C) =

(yTEy)
1
2 where C = {Ew|wTew � 1}, C1 = R

n
+ and C2 = R

m
+ , then

(NMP) and (NMD) become nondifferentiable second order symmetric duality
in multiobjective programming in Ahmad and Husain [1].

(4) Let D ∈ R
n × R

n and E ∈ R
m × R

m are positive semidifinite symmetric
matrices. If s(x|B) = (xTDx)

1
2 where B = {Dz|zTDz � 1} and s(y|C) =

(yTEy)
1
2 where C = {Ew|wTew � 1}, C1 = R

n
+ and C2 = R

m
+ , then

(NWP) and (NWD) is reduced to nondifferentiable second order symmetric
duality in multiobjective programming. In addition, if k = 1, then we get
second order symmetric dual programs on nondifferentiable studied by Ahmad
and Husain [2].
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