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ON A GENERALIZATION OF SEMICOMMUTATIVE RINGS

Li Liang, Limin Wang and Zhongkui Liu

Abstract. We introduce weakly semicommutative rings which are a general-
ization of semicommutative rings, and give some examples which show that
weakly semicommutative rings need not be semicommutative. Also we give
some relations between semicommutative rings and weakly semicommutative
rings.

1. INTRODUCTION

Throughout this paper, all rings are associative with identity. A ring R is
called semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0 (this ring is
also called ZI ring in [2,8]). R is semicommutative if and only if any right (left)
annihilator over R is an ideal of R by [4, Lemma 1] or [7, Lemma 1.2]. A ring
R is called reduced if it has no nonzero nilpotent elements. By [4], reduced rings
are semicommutative, and semicommutative rings are Abelian (i.e., all idempotents
are central). In this paper, we call a ring R a weakly semicommutative ring if for
any a, b ∈ R, ab = 0 implies arb is a nilpotent element for any r ∈ R. Clearly
semicommutative rings are weakly semicommutative. Examples will be given to
show that the converse is not true.

In [3], N.K.Kim and Y.Lee show that if R is a reduced ring, then

R3 =





 a b c

0 a d
0 0 a




∣∣∣∣a, b, c, d ∈ R




is a semicommutative ring. But
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Rn =







a a12 a13 · · · a1n

0 a a23 · · · a2n

0 0 a · · · a3n
...

...
... . . .

...
0 0 0 · · · a




∣∣∣∣a, aij ∈ R




may not be semicommutative for n ≥ 4. However, in section 2, we will see that
Rn is weakly semicommutative. More generally, we show that a ring R is weakly
semicommutative if and only if for any n, the n × n upper triangular matrix ring
Tn(R) is a weakly semicommutative ring.

In section 3, we study the relationships between semicommutative rings and
weakly semicommutative rings. Actually we show that (1) if R is semicommutative
and satisfy α-condition then R[x; α] is weakly semicommutative. (2) for a ring
R suppose that R/I is weakly semicommutative for some ideal I of R, if I is
semicommutative then R is weakly semicommutative. These results also show that
weakly semicommutative rings may not be semicommutative.

For a ring R, we denote by nil(R) the set of all nilpotent elements of R.

2. EXAMPLES

Definition 2.1. A ring R is called weakly semicommutative if for any a, b ∈ R,
ab = 0 implies arb ∈ nil(R) for any r ∈ R.

Clearly any semicommutative ring is weakly semicommutative. In the following
we will see the converse is not true.

Example 2.1. Let R be a reduced ring,

Rn =







a a12 a13 · · · a1n

0 a a23 · · · a2n

0 0 a · · · a3n
...

...
... . . .

...
0 0 0 · · · a




∣∣∣∣a, aij ∈ R




By [3, Example 1.3], Rn is not semicommutative for n ≥ 4. But Rn is a weakly
semicommutative ring.

Proof. First we will give some claims.

Claim 2.1. A ring R is a weakly semicommutative if and only if, for any n,
the n-by-n upper triangular matrix ring Tn(R) is a weakly semicommutative ring.
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We note that any subring of weakly semicommutative rings is a weakly semi-
commutative ring. Thus if upper triangular matrix ring Tn(R) is a weakly semi-
commutative ring, then so is R. Conversely, let

A =




a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
... . . . ...

0 0 0 · · · ann




,

B =




b11 b12 b13 · · · b1n

0 b22 b23 · · · b2n

0 0 b33 · · · b3n
...

...
...

. . .
...

0 0 0 · · · bnn




∈ Tn(R)

with AB = 0, and let

C =




c11 c12 c13 · · · c1n

0 c22 c23 · · · c2n

0 0 c33 · · · c3n
...

...
... . . . ...

0 0 0 · · · cnn




∈ Tn(R)

be any element. Then we have aiibii = 0 for any 1 ≤ i ≤ n. Since R is a
weakly semicommutative ring, there exists ki ∈ N such that (aiiciibii)ki = 0. Let
k = max{k1, k2, · · · , kn}, then we have (aiiciibii)k = 0 for each i. Thus

(ACB)k =




a11c11b11 ∗ ∗ · · · ∗
0 a22c22b22 ∗ · · · ∗
0 0 a33c33b33 · · · ∗
...

...
... . . . ...

0 0 0 · · · anncnnbnn




k

=




0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
0 0 0 · · · ∗
...

...
... . . . ...

0 0 0 · · · 0




Hence (ACB)kn = 0. This means that Tn(R) is a weakly semicommutative ring.
By Claim 2.1, we can see the following result easily.
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Claim 2.2. If R is a reduced ring, then, for any n, the n-by-n upper triangular
matrix ring Tn(R) is a weakly semicommutative ring.

Now it follows from Claim 2.2 that Rn is a weakly semicommutative ring since
Rn is a subring of Tn(R).

Example 2.2. Let F be a division ring and consider the 2× 2 upper triangular

matrix ring R =
(

F F

0 F

)
. Then R is not semicommutative by [4, Example 5].

But R is weakly semicommutative by Claim 2.2.
From [5], given a ring R and a bimodule RMR, the trivial extension of R

by M is the ring T (R, M) = R ⊕ M with the usual addition and the following
multiplication: (r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2). This is isomorphic to the

ring of all matrices
(

r m
0 r

)
, where r ∈ R and m ∈ M , and the usual matrix

operations are used.

Corollary 2.1. A ring R is weakly semicommutative if and only if the trivial
extension T (R, R) is weakly semicommutative.

It is well-known that for a ring R and any positive integer n, if R is reduced
then R[x]/(xn) is reversible, where (xn) is the ideal generated by xn [5, Theorem
2.5]. Based on it we may suspect that if R is reversible or semicommutative then
R[x]/(xn) is semicommutative (n ≥ 2). However the following example eliminates
the possibility.

Example 2.3. Let H be the Hamilton quaternions over the real number field
and R be the trivial extension of H by H. Let S be the trivial extension of R by
R. Then R is reversible, and hence is semicommutative. But S = T (R, R) ∼={(

r m
0 r

) ∣∣∣∣r, m ∈ R

}
is not semicommutative by [3, Example 1.7]. Thus we

have

(∗) R[x]/(xn) ∼=







a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

0 0 a0 · · · an−3
...

...
... . . . ...

0 0 0 · · · a0




∣∣∣∣ai∈R, i = 0, 1, · · · , n − 1




is not semicommutative for any n ≥ 2.
However, we will see that if R is semicommutative then R[x]/(xn) is weakly

semicommutative. Taking into account (∗), we obtain the following result.

Corollary 2.2. Let R be a ring and n any positive integer. Then R is weakly
semicommutative if and only if R[x]/(xn) is weakly semicommutative, where (xn)
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is the ideal generated by xn.
From Claim 2.1, one may suspect that if R is weakly semicommutative, then

every n-by-n full matrix ring Mn(R) is weakly semicommutative, where n ≥ 2.
But the following example erases the possibility.

Example 2.4. Let Z be the ring of integers and Mat2(Z) the 2×2 full matrix

ring over Z, then Z is weakly semicommutative. Note that
(

0 1
0 0

)(
1 1
0 0

)
=

0, but we have
(

0 1
0 0

)(
1 1
1 1

)(
1 1
0 0

)
=

(
1 1
0 0

)
is not nilpotent. So

Mat2(Z) is not weakly semicommutative.

2. SEMICOMMUTATIVE RINGS AND WEAKLY SEMICOMMUTATIVE RINGS

In this section, we let α be an endomorphism of R, unless especially noted. We
call R satisfies α-condition if ab = 0 ⇔ aα(b) = 0 for any a, b ∈ R.

In [4], the authors show that if R is semicommutative, then R[x] may not
be semicommutative. But we will show that if R is semicommutative, then R[x]
is weakly semicommutative. More generally, we can see that R[x; α] is weakly
semicommutative if R is a semicommutative ring satisfing α-condition.

Lemma 3.1. Let R satisfy α-condition. If ab ∈ nil(R) for a, b ∈ R, then
aα(b) ∈ nil(R).

Proof. Let (ab)k = 0, where k ∈ N, i.e., abab · · ·ab = 0. So aα(b)α(ab · · ·ab) =
0, and thus aα(b)ab · · ·ab = 0. Continuing this procedure yields that (aα(b))k = 0,
this means aα(b) ∈ nil(R).

Lemma 3.2. (see [6, Lemma 3.1]) Let R be a semicommutative ring. Then
nil(R) is an ideal of R.

Lemma 3.3. Let R be a semicommutative ring and satisfy α-condition. If
f(x) = a0 + a1x + · · ·+ amxm, g(x) = b0 + b1x + · · ·+ bnxn ∈ R[x; α] satisfies
f(x)g(x) = 0, then aiα

i(bj) ∈ nil(R) for each i, j.

Proof. Note that f(x)g(x) =
∑m+n

k=0 (
∑

i+j=k aiα
i(bj))xk = 0, then

∑
i+j=k

aiα
i(bj) = 0 for any 0 ≤ k ≤ m + n. In the following we claim that aiα

i(bj) ∈
nil(R) for each i, j. We proceed by induction on i + j. Then we obtain a0b0 = 0.
This proves for i + j = 0. Now suppose that our claim is true for i + j < p, where
1 ≤ p ≤ m + n. Note that

(∗)
∑

i+j=p

aiα
i(bj) = 0.
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By induction hypothesis, we have asα
s(bt) ∈ nil(R) for s + t < p. Thus

asα
s+w(bt) ∈ nil(R) for any w ∈ N by Lemma 3.1, and hence αs+w(bt)as ∈

nil(R). Now multiplying a0 to Eq.(∗) from the right-hand side, we can get
a0bpa0 ∈ nil(R) by Lemma 3.2, and hence a0bp ∈ nil(R). Multiplying a1 to
Eq.(∗) from the right-hand side, we can get a0bpa1 + a1α(bp−1)a1 ∈ nil(R). Thus
a1α(bp−1) ∈ nil(R). Continuing this process, we can prove aiα

i(bj) ∈ nil(R) for
i + j = p. Therefore aiα

i(bj) ∈ nil(R) for 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Lemma 3.4. Let R be a semicommutative ring and satisfy α-condition,
f(x) = a0 + a1x + · · · + anxn ∈ R[x; α]. If a0, a1, · · · , an ∈ nil(R), then
f(x) ∈ nil(R[x; α]).

Proof. Suppose that ami
i = 0, i = 0, 1, · · · , n. Let k = m0+m1+· · ·+mn+1.

Then

(f(x))k =
kn∑
s=0

(
∑

i1+i2+···+ik=s

ai1α
i1(ai2)α

i1+i2(ai3) · · ·αi1+i2+···+ik−1(aik))xs,

where ai1 , ai2, · · · , aik ∈ {a0, a1, · · · , an}. Consider

ai1α
i1(ai2)α

i1+i2(ai3) · · ·αi1+i2+···+ik−1(aik). (∗)
It can be easily checked that there exists at ∈ {a0, a1, · · · , an} such there are more
than mt at’s in (∗). We may assume that at appears s > mt times in (∗). Rewrite
(∗) as

b0α
j1(at)b1α

j1+j2(at) · · ·bs−1α
j1+j2+···+js(at)bs,

where bi ∈ R, j1, j2, · · · , js ∈ N. Since as
t = 0, and R is a semicommutative ring

satisfying α-condition, we can get

b0α
j1(at)b1α

j1+j2(at) · · ·bs−1α
j1+j2+···+js (at)bs = 0,

and hence Eq.(∗)=0. Thus
∑

i1+i2+···+ik=s

ai1α
i1(ai2)α

i1+i2(ai3) · · ·αi1+i2+···+ik−1(aik) = 0,

which implies that f(x) ∈ nil(R[x; α]).

Theorem 3.1. Let R be a semicommutative ring and satisfy α-condition. Then
R[x; α] is weakly semicommutative.

Proof. Let f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x; α] such that
f(x)g(x) = 0, and let h(x) =

∑k
s=0 csx

s ∈ R[x; α] be any element. By Lemma
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3.3, there exits nij ∈ N such that (aiα
i(bj))nij = 0 for any i and j, and hence

(aiα
i+t(bj))nij = 0 for any t ∈ N by Lemma 3.1. Thus aiα

i(cs)αi+s(bj) ∈ nil(R)
for 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ s ≤ k. Note that

f(x)h(x)g(x) =
m+n+k∑

t=0

(
∑

i+j+s=t

aiα
i(cs)αi+s(bj))xt.

We can see that
∑

i+j+s=t aiα
i(cs)αi+s(bj) ∈ nil(R) for any t by Lemma 3.2.

Thus f(x)h(x)g(x) ∈ nil(R[x; α]) by Lemma 3.4. This means that R[x; α] is
weakly semicommutative.

Corollary 3.1. Let R be a semicommutative ring. Then R[x] is weakly semi-
commutative ring.

Let R be a ring and � be a multiplicatively closed subset of R consisting of
central regular elements, and let SR = {u−1a|u ∈ �, a ∈ R}, then SR is a ring.
For it, we have the following result.

Proposition 3.1. Let R be a ring. Then the following statements are equiva-
lent.

(1) R is weakly semicommutative.
(2) SR is weakly semicommutative.

Proof. (2)⇒(1) is obvious since R is a subring of SR. (1)⇒(2): Let αβ = 0
with α = u−1a, β = v−1b, u, v ∈ � and a, b ∈ R, and let γ = w−1c be any
element of SR, w ∈ �, c ∈ R. Since � is contained in the center of R, we
have 0 = αβ = u−1av−1b = (u−1v−1)ab, and hence ab = 0. But R is weakly
semicommutative, so there exists n ∈ N such that (acb)n = 0. Thus (αγβ)n =
(u−1aw−1cv−1b)n = ((vwu)−1acb)n = ((vwu)−1)n(acb)n = 0. Therefore SR is
weakly semicommutative.

The ring of Laurent polynomials in x, with coefficients in a ring R, consists of
all formal sum

∑n
i=k mix

i with obvious addition and multiplication, where mi ∈ R
and k, n are (possibly negative) integers; denote it by R[x; x−1].

Corollary 3.2. For a ring R, R[x] is weakly semicommutative if and only if
R[x; x−1] is weakly semicommutative.

Proof. It suffices to establish necessity since R[x] is a subring of R[x; x−1].
Let � = {1, x, x2, · · · }, then clearly � is a multiplicatively closed subset of R[x].
Since R[x; x−1] = SR[x], it follows that R[x; x−1] is weakly semicommutative by
Proposition 3.1.
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Remark. The following is another direct proof of this corollary. Let f(x), g(x) ∈
R[x; x−1] with f(x)g(x) = 0, and let h(x) ∈ R[x; x−1] be any element. Then there
exists s ∈ N such that f1(x) = f(x)xs, g1(x) = g(x)xs, h1(x) = h(x)xs ∈ R[x],
obtaining f1(x)g1(x) = 0; hence there exists n ∈ N such that (f1(x)h1(x)g1(x))n =
0 since R[x] is weakly semicommutative, so we have (f(x)h(x)g(x))n = (x−3s

(f1(x)h1(x)g1(x)))n = (x−3s)n(f1(x)h1(x)g1(x))n = 0. This means R[x; x−1] is
weakly semicommutative.

Corollary 3.3. Let R be a semicommutative ring. Then R[x; x−1] is weakly
semicommutative ring.

It is well-known that for a ring R if I is a reduced ideal of R such that R/I
is semicommutative, then R is semicommutative [4, Theorem 6]. Also they gave
an example in [4, Example 5] to show that if for any nonzero proper ideal I of R,
R/I and I are semicommutative, where I is considered as a semicommutative ring
without identity, then R may not be semicommutative. Here we will show that R
is weakly semicommutative if R/I and I are semicommutative. More generally we
have the following result.

Theorem 3.2. For a ring R suppose that R/I is weakly semicommutative for
some ideal I of R. If I is semicommutative, then R is weakly semicommutative.

Proof. Let a, b ∈ R such that ab = 0, and let r ∈ R be any element. Then
ab = 0 in R/I . Since R/I is weakly semicommutative, there exists n ∈ N such
that (arb)n = 0, and hence (arb)n ∈ I . Note that (ba)2 = 0, we have

((arb)n+1ar)baba(rb(arb)n+1) = 0.

Since ((arb)n+1ar)ba ∈ I , ba(rb(arb)n+1) ∈ I , and I is semicommutative, it
follows that

((arb)n+1ar)ba(rb(arb)nar)ba(rb(arb)n+1) = 0,

that is, (arb)3n+6 = 0, i.e., arb ∈ nil(R). Thus R is weakly semicommutative.

Corollary 3.4. For a ring R suppose that R/I is semicommutative for some
ideal I of R. If I is semicommutative then R is weakly semicommutative.

Corollary 3.5. For a ring R if I is a reduced ideal of R such that R/I is
weakly semicommutative, then R is weakly semicommutative.

Corollary 3.6. (see [4, Theorem 6]) For a ring R, if I is reduced ideal of
R such that R/I is semicommutative, then R is semicommutative.
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Proof. Let ab = 0 with a, b ∈ R, and let r ∈ R be any element. Then arb ∈
nil(R) by Corollary 3.5. On the other hand, arb ∈ I since R/I is semicommutative.
Thus arb = 0 since I is reduced. This means that R is semicommutative.

Proposition 3.2. Let R be a ring and I an ideal of R such that R/I is weakly
semicommutative. If I ⊆ nil(R), then R is weakly semicommutative.

Proof. Let a, b ∈ R with ab = 0, and let r ∈ R be any element. Then
ab = 0 in R/I . Since R/I is weakly semicommutative, there exists n such that
(arb)n = 0. Thus (arb)n ∈ I , and hence (arb)n ∈ nil(R). Therefore R is weakly
semicommutative.

Remark. By Corollary 3.1 and [4, Example 2] or Corollary 3.4 and [4, Example
5], we can also see that weakly semicommutative rings may not be semicommutative.
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