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ON SOME INTEGRAL OPERATORS ON THE UNIT POLYDISK
AND THE UNIT BALL

Der-Chen Chang, Songxiao Li and Stevo Stevi¢

Dedicated to the memory of Professor Huei-Shyong Lue

Abstract. Let D" be the unit polydisk and B be the unit ball in C™ respec-
tively. In this paper, we extend the Cesaro operator to the unit polydisk and the
unit ball. We prove that the generalized Cesaro operator C*¢ is bounded on the
Hardy space H?(D™) and the mixed norm space A%’q(]D)”), when 0 < ¢ < oo,
p € (0,1] and Re(b; +1) > Rec; > 0,j=1,...,n, orif 0 < ¢ < o0,
p>1land Re(bj+1) > Rec; >1,j=1,...,n. Here i = (u1, ..., f1,) and
each uj, j € {1,...,n} is a positive Borel measure on the interval [0, 1). We
also introduce a new class of averaging integral operators Cg; (the generalized
Cesaro operators) on B and prove the boundedness of the operator on the Hardy
space H?(B), p € (0,00), the mixed-norm space A}?(B), 0 < p,q < oo
and the a-Bloch space, when o > 1. Finally, we study the boundedness and
compactness of recently introduced Riemann-Stieltjes type operators 7y and
Lg, from H* and Bergman type spaces to a-Bloch spaces and little a-Bloch
spaces on B.

1. INTRODUCTION

For an analytic function f(z) in the unit disk I with Taylor expansion f(z) =
Y om anz™, the Cesaro operator acting on f is

Cf(z):zg nil%ak 2"
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After some simple calculations, we have

Cf(z) = ! Zmdw

- , z €D.
zJo 1—w

It is well known that Cesaro operator acts as a bounded linear operator on many
analytic function spaces, however it is not bounded on the Bloch space (see, for
example, [12, 16, 28, 31, 33-35, 40, 41, 48]).

For b,c € C with Re (b+ 1) > Rec > 0, the generalized Cesaro operator C*¢
was recently defined in [1] in the following way

)= 3 (e o)

k=0

where

be _ (b, K) (b+1—0¢) prier1 _ (b+1—c) e
= d b :714 ’ :714’
k (¢, k) an k c k b k>

and (a,n) is the shifted factorial defined by Appel’s symbol

I'(a+n)

T(a) neN

(a,n)=ala+1)---(a+n—-1)=

and (a,0) =1 for a # 0.
It was shown in [1] that C%€ can be written in the following form:

b 4 1 tc 1 )b c
b, _
Coef(z) = TOT(hT+1=0) / f(tz )b+1 — g Fle=1,c=b—1,¢tz)dt,
where f(z) = > ° , a,2™ is an analytic function on the unit disc D and F'(a, b, ¢, 2)
is the hypergeometric function. The hypergeometric function is defined by the power
series expansion

(¢,n) n!

where a, b, ¢ are complex numbers such that ¢ # —m, m € Ng. It is assumed
¢ # —m, m € Ny, to prevent the denominators vanishing. When ¢ = 1 and
b = a+ 1, the operator C*° becomes the generalized Cesaro (or a-Cesaro) operator
defined as in [37] (see, also [40, 41, 48]). When ¢ = 1 and b = 1, operator C !
becomes the classical Cesaro operator C.

In this paper, we generalize the Cesaro operator in three ways. We study the
boundedness and compactness of these operators between certain spaces of analytic
functions on the unit polydisk and unit ball.

F(a,b,c,z) =1+ Z Wﬁ, (lzl < 1)
n=1
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Throughout this paper, constants are denoted by C', they are positive and may
differ from one occurrence to the other. The notation ¢ < b means that there is a
positive constant C' such that a < Cb. If both @ < b and b < a hold, then one says
that a =< b.

2. THE OPERATOR CY¢ ON THE POLYDISK

Following the lines of paper [37], in [1] the authors have studied the generalized
Cesaro operator C¢ on the Hardy, Bloch, and BMOA space. However, for the case
of the Hardy space HP(ID) they have only proved that the operator C* is bounded
when 0 < p < 1. Here we prove that the generalized Cesaro operator C*¢ is bounded
on the Hardy space H?(DD) for every p € (0, c0), moreover we extend naturally the
generalized Cesaro operator on the polydisk and prove the boundedness on the
corresponding Hardy and the mixed norm spaces.

Motivated by one-dimensional generalized Cesaro operator, we define an oper-
ator on the polydisk D", as follows

bep T I'(bj +1)
C f(Z) - jl_[lr(cj)r(bjj+1_cj) A,l)" f(tlzlv"'utnzn)
(1) t;j_l(l — tj)bj_cj

% H (1—tjzj)bitl=c

j= J

F(Cj — 1, Cj — bj — 1, cj,tjzj)dtj,

—_

where Re (bj+1—¢;) >0,j=1,...,n, where f(z) = Zﬁf|:o ax?®, k € (Z, )"
is an analytic function on the unit polydisk D™,

Now we introduce some notation. We write z - w = (z1w1, . . ., 2,Wy,), 2, W €
C; e = (e, ... e, df = dby---db,, dt = dt| - - - dt, and u,v denote
vectors in C. When we write 0 < r < 1, where r = (rq,...,r,), this means that

0<r<l(i=1,...,n).
For the case of the unit polydisk we prove the following theorem in this section,
which generalizes the main results in papers [6, 9, 31, 39].

Theorem 2.1. Assume that p € (0,1] and Re (bj +1) > Rec; > 0, j =

1,...,n, orp>1and Re(bj+1) > Rec; > 1, j =1,...,n. Then there is a
constant C' independent of f and r such that

/ CPEf)(r - e®)rdo < C |f(r- &) [Pab,
[0,27]™

Jorall f € HD") and r € (0,1).
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In order to prove Theorem 2.1, we need some auxiliary results which are incor-
porated in the following lemmas.

Lemma 2.1. ([7]). Let 0 < p < oo and 0 < r < 1. Then there is a constant
C independent of f and r such that

[ sw e <c [ s,
[0,27]7 0<T<1 [0,27]
Jorall f € H(D").
Lemma 2.2. ([13]). For each 1 < s < oo there is a positive constant C = C(s)
such that

4 1 C

_ —_— 0<r<l.
Tt = A=) "

Lemma 2.3. ([6]) Let 0 < p < oo, 1 <s<ooand 0 <r < 1. Then thereis
a constant C' independent of | and r such that

. 1/s & .
[ (] isrenpa) " [Ja-m e <c [ jfedtpa,
[0,1)n [0,27]" i=1 [0,27]"

Sfor all f € H(D™).
For real y and o > —1, set

1+ y|°, if o <0;
log2+1/lyl), i o=0;
1, if o>0.

Lemma 2.4. For Re o > —1 and Re ¢ > 1, there is a constant C such that

/1 ‘(1 _ x)c_lx”"'l\dm - CHRe J(‘P/H)
o [+l + FEHIZ =T

for all real p and 0 # 0.

Proof. Without loss of generality we may assume that o and c are real numbers.
Since Re ¢ > 1 we have that

/1 (1 _ x)c_lx‘7+1dm - /1 $0+1d1’
0 [$2+(p2][$2+02](0+1)/2 - 0 [x2+(p2][x2+02](0+1)/2'
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From this and by Lemma 2.1 in [5] the result follows.
For any measurable function g(e'), define Eyg(e?) = Ej, ... s, g(e?) by

iy [ g(efsthoy, if |s;0;] <7 forallje{l,...,n}
Esg(e™) = { 0, otherwise.

Lemma 2.5. ([9]) Leto;>—1,j=1,...,n, 1 <p<ooand

H?(s;)
n/p J
p=2 /nH‘S —|—1\1/p

Then Az, < oo and

/ (/ H ng (SJ)Esg(ezg)d8>pd0 S A&VP/ gp(elg)de
[—m,m]™ " =1 [—m,m]n

for all measurable g > 0.

Proof of Theorem 2.1. We follow the lines of the proof of Theorem 1 in [9].
We need to show that

M2(CPE(f),r) < CME(f,7)

for some constant C' > 0. For the sake of simplicity, we assume that b;,c;,j =
1,...,n, are real numbers such that b; +1>¢; >0, 7=1,...,n.
Case 0 <p < 1. Let f € H(D") and let

3= M) = [ IC ) s
[0,27]"

Lett, =1—27F%, k€Zy. Then 0 =ty <11 <t9 <--- <1 forms a partition of
the interval [0, 1). It is obvious that ¢ — tx—1 = 1 — ¢, = 2(1 — tg+1). By Lemma
2.1, the boundedness of F'(¢c; —1,¢; —b; — 1,¢j,t2), (j = 1,...,n) on the unit
disk and some simple calculations, we obtain

vee [ ([ iseereen)
[0,27]" [0,1)n

I, o7 (1 =)

H?*l ‘1 —t ‘7“ ,eié’j ‘b]'-f—l—cj'

ty tkn
<C flt-r- e’
B Z ~/[0 271']" ~/tk 1 ~/tk )‘

----- 1=

F(cj—1,¢j—bj —1,¢cj,tjrje dt
J J s LT 5€
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[ty =ty
H?:1 ‘1 - tjrjewf ‘bj"'l_cj

; p
[F(cj —1,¢5—bj — 1, Cj7tj7"j€wj)‘dt> df

1 |f(t-r-e)
<C _ su ( A )
= Z -1 9P Z]’Zl kj(bj+1—cj) ~/[0,271']" tk—1<]7§)<tk 1_.[?:1 ‘1 _ tjrjelgj ‘b]'-f—l—cj

1 \f(t-r-ew)\ )p
: i : 9
<C 21 op iy ki (bj+1—c)) / sup <H?1 11— t;r;¢0 [t 1-e;

[0,271']" 0<t<tx

1 |f(ti - e?)| p
<Cc ) : / ( aolk ) "
1 op =1 kj(bj+1-c;) [0,27]" H?:1 11— th, rjezé’] ‘b]—f—l—c]

The last line of above inequality is bounded by

fEr- ey,
t n ‘1 _ t‘r’ewi‘bj"'l_cj)
,,,,, Ky tkn [0,27] j 1 373

X H (I—1t p(bj+1—0j)—1dt

7=1
e et?
o )
[01 [0, 27r]" j 1 \1—tjrjez J‘ J Cj

HH 1 — tj (b +1- C])_ldt
7=1

p

3

Here, tx = (t,, .- -, tk,). Now, we choose a > 1 such that max;—; {1 —p(b;+
1—-¢j)} <1/a<1and 1/a+1/b= 1. Then by Holder’s inequality and Lemma
2.2 we obtain

L. et?
[ (e,
[0,27]™ Hj:l ‘1 — tj’f'jez J‘ jt+1—c;

) 1/a
< (1)’
[0,27]™
1/b
do
(3) (‘[[0,27]']11 |H?:1 |1_t]r]ez ]|b +1—c,; |pb>
. 1/a "
= (/ ‘f(t-r-ew)‘p%w) / [ —tyry)~botimeprizija
[0,27]™ i
/ n
= / [f(t-r-e )‘pad@ (1—t‘)_(bj+1_cj)l7+1—1/d.
( [0,27]™ ) jl_[l J

Finally, from (2), (3) and Lemma 2.3 we can obtain
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<

==

o
S
ol

(f),r) <C / |f(t-r-e?)Pedo (1 —t;)~Yadt
[0,1)n< [0,27]" ) jl_[l

<c [ 15 e,
[0,27]"
Casep > 1. Let f € H(D") and 0 < r < 1, set f.(e!¥) = f(r-e¥). Then for
0<t<1, f(t-r-e?) is given by the following integral

1 T

(4) ft-r-e?) = %/[ | £ [ P, 05 — 05)de
—,m|" j=1
where P (&, n) is the Poisson’s kernel i.e.
1-¢&2

P& = T emn i@

Combining (1) and (4) and using Fubini’s theorem, we have
Bz : = T(b; +1) : Be
cbe L0y — J / ; i1(0+p) Kb%Cp d
(ir-e) jH SR (e Ty 1= ) i 7 B0
here
c-—l —c
Ki¥ (0 H/ (L+t)t) (1=t
(1 —2tjcosp; —|—t2)(1 — t;rjeili)(bitl=c;)

X F(Cj — 1, Cj — bj — 1, cj,tjrje j)dtj.

Using an estimate in [5] and the boundedness of F'(c;—1, ¢;—b;j—1,¢j, tz;), (j =

1 n) on the unit disk, we have that there is an constant C' such that

g e ey

2bit1=¢ dy

KB, \<CH/ ]b+1_c.
2

0 [+ 2 + 62

for [0;] <, |¢;| <7, j=1,...,n. Thus, by Lemma 2.4, we obtain

H% % (p;/0);
‘Kbc ‘<CH ‘09‘0]/ )
for [0;] <, |¢j| <m, j=1,...,n,0<r <1 Hence
1 2% (05/0))

) - ) < C o g
J

[—m,m]™ j=1

< [ TL#> = 6)ElLlEds
n i=1
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From this estimates, using Lemma 2.5 and 27 periodicity of the integrand, the result
follows.

The Hardy space HP(ID"™) on D" can be defined as follows:
H? = HP(D") ={f [ f € HD"), [Ifllar@n) < oo},

where )
f n :—sup/ f(r-e?yPde.
1 om) = G 220, o 1)
Given 0 < p,q < oo, and positive Borel measure 1,57 = 1,...,n on the

interval (0, 1), the weighted space Ag’q(ID)”) consists of those functions f analytic
on D™ for which

n 1/q
, a/p
Fllapapny = / / f(r-e?)|Pde dp(r; < 0.
1 lLaz omy (mﬂ(mm\< )rd0)" T] dusry)

J=1

Corollary 2.1. Assume that p € (0,1] and Re (b+ 1) > Rec >0, 0rp > 1
and Re (b+1) > Rec > 1, and 0 < r < 1. Then there is a constant C independent
of f and r such that

27 ) 27 )
| e peenpan < c [T ieepas
0 0
Jorall f € HD).
Corollary 2.2. Assume that p € (0,1] and Re(bj +1) > Rec; > 0, j =

1,...,n,0orp>1land Re (bj+1) > Rec; > 1, j =1,...,n. Then the generalized
Cesaro operator C*€ is bounded on HP(D").

Corollary 2.3. Assume that p € (0,1] and Re (bj +1) > Rec; > 0, j =
1,...,n, or p>1and Re(bj+1) > Rec; > 1, j =1,...,n. The generalized
Cesaro operator C*C is bounded on A%’q(D”) Jor every q € (0, 00). Moreover, there
is a constant C' independent of f, such that

IC* £ | aza oy < CULF g ony-
A A

Remark 1. If p = co and Re(b; +1) > Rec; > 0, j = 1,...,n, then the
operator C is not bounded. Choose g(z) = 1 € H>(D"). Then we have,

c

o= T TS - eTI3
g b+lc] b—l—kj

j=1 i=1k=0 A% j=1k=0 7
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It is easy to see that each sum in the last product is unbounded on D), therefore
Che(g) ¢ H(DM).

3. THE OPERATOR Cg’f ON THE UNIT BALL

Let B = {z € C" : |z| < 1} be the open unit ball in C" and let S = 0B =
{z € C" : |z|] = 1} be its boundary. Let dv denote the normalized Lebesgue
volume measure on the unit ball B such that v(B) = 1, do be the normalized
rotation invariant measure on the boundary S of B such that o(S) = 1, H(B) the
class of all holomorphic functions on the unit ball and H > = H*(B) the space of
all bounded holomorphic functions on the unit ball.

Assume that f € H(B) with Taylor series expansion f(2) = >’ 559 agz’

B, .

where 3 = (81, B2, - - -, Bn) is a multi-index and 27 = 2| 22" Denote

N, 08

Ri() = 25(2)
— Z;
7=1
the radial derivative of f. It is well known that
Rf(z) =) |Blag® = > (Bt + Fa)ags’,
131>0 (B1ysn) E(Z4)™

see, for example [51].
Let @ > 0. The a-Bloch space B® = B%(B) is the space of all holomorphic
functions f on B such that

ba(f) = sup(1l — |2[*)* R f(2)] < cc.
z€B

It is clear that B is a normed space under the norm || f||g= = | f(0)| 4 ba(f), and
B C B*? for oy < ap. Let B denote the subspace of B consisting of those
f € B for which

(1= 1) Rf(2)] =0 as |z — 1.

This space is called the little a-Bloch space.
The Hardy space HP(B) (0 < p < o) is defined on B by

HP(B) ={f|feH(B) and |flurs) = oS<uI<)1Mp(f’ r) <oot,

where

= ( \f(ro\pda(o)l/p.
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The mixed-norm space ALY (B), p,q € (0,00), 1 is Borel measure on (0, 1), is
the space of all analytic functions f on B for which

1
gy = | M () < o

When p = ¢ and du(r) = (1 — r?)2r?"~1dr the mixed norm space becomes the
weighted Bergman space.
Now we generalize the Cesaro operator C>¢ on B in the following way:

e (z)
r'b+1) (1 — t)b—e
F( Fb—l—l—c / ftz 1_ tz CO>)b+1 c (C ,c—b 7Ca<tZ,Co>)dt

where Re (b+1—c) >0, f(2) = > 52 agz? is an analytic function on the unit
ball B, F(a,b,c, z) is the hypergeometric function, ¢ is a fixed point lying on S
and (z,w) = zywy + - - - + z,wy,. This operator is also a natural generalization of
the operator introduced in [45].

For the case of the unit ball we prove the following results in this section.

Theorem 3.1. Assume that p € (0,1] and b,c € C such that Re (b+ 1) >
Rec>0,0rp>1and Re(b+1) > Rec > 1. Then the operator Cg’f is bounded
on HP(B). Moreover, there is a positive constant C' such that

Mp(Cg’ff, r) < CM,(f,r), 0<r<l1
for every f € HP(B).

Theorem 3.2. Assume that p € (0,1] and b,c € C such that Re (b+ 1) >
Rec>0,0rp>1and Re(b+1) > Rec > 1. Then the operator Cg’f is bounded
on ARY(B) for every and q € (0, ).

Theorem 3.3. Let b, c € C such that Re (b+1) > Rec > 0. Then the operator

is bounded on B“ if a > 1.
In order to prove the above Theorems, we need the following lemmas.

b,c
CCO

Lemma 3.1. ([30]). The following identity holds.

> VL [T p(eit
[ gar= [ a5 [ retcas
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Lemma 3.2. ([1]). Let a,b € C are such that Re(b+ 1) > Rec > 0 and
ty =1 —27% k € NU{0}. Then there is a positive constant C' such that

tg
/ ‘tRe(C)_l(l _ 75)Re(b ‘dt <

te 9kRe(b+1—c) "

Lemma 3.3. ([32]). For 8 > —1 and m > 1+ 3 we have

La—r)8
T < (- p) P o< p< 1.
/0 (L—prym — (=) ’

Proof of Theorem 3.1. Without loss of generality we may assume that b and
¢ are real numbers. For a function f holomorphic on the unit ball B and £ € S,
the slice function f¢ is well defined for |w| < 1, by fe(w) = f(w§). For fixed
o, & € S, write (€, (o) = re?. First, assume that » # 0. Then we have

CLE(f)e(w)

= Co(f) (w€)

c—1 b—c
Q) —C/ f(twg) 1i té)f C0>))b+1 -F(c—1,c—=b—1,¢, (twg, (o))dt

=C f e, (twre'?) ) Flec—1,¢—b—1, ¢, trwe®)dt
- 0 e=0¢/r (1—trweid)bH— ) &

=C Cb’c(fe—ieg/r)(rwew),

where w € D.
Let w = |w|e™. From (5), by the boundedness of the operator C**¢ in one
variable (Corollary 2.1) it follows that

27 )
ME(CE(fe o) = /O L2 F)ewle™®) P dg
27 )
= C [ 1 g ) rlule 70 P
27 )
< C/O |fe—ie§/r(r\w\e’(“"+9))!pdap

2w .
= C/O | fe(Jw]e™)[Pdp = CMP( fe, |w)),
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for all £, {p € S with (&, (o) # 0.
Now assume that (£, (o) = 0. If p > 1, then by Minkowski’s inequality and the
monotonicity of the integral means we have

My (CZ(f)e, |wl)

2w |l P 1/p
_ 0\c—171 _ p\b—c
= Lp, </0 /0 ftlw|&e) (1 — t)°~“dt d0>

1 2 1/p
b | ( / \f(t\w\se”ﬂpde) 71— o) dt

@) <
Lo , 2 " 1/p
c— o —c 0\ |p
< Lb,c(/o 11— ) dt) (/O () de)
2 A 1/p
_ (/O \f(\w\fe”)\pd@) |
where Ly . = L(b+1)

(AL (b+1—0)
Now assume that p € (0, 1) and let ¢, = 1 —27% k € NU{0}, then by Lemma
2.1, Lemma 3.2 and the monotonicity of the integral means we have

ME(CEE(f)e. wl)

27 1 ) p
_ / / Ftlwlee®ye=1 (1 = t)P—<dt| db
0 0
2w X T ) p
_ / SO etthwle®)yet(1 - tp<ar| do
0 p=1 |/t

IN

i 1 2m .
Y s |, sw, ltule?)pas
k=1

1 <t<tg
) ~

1 2m 0
— W |p
>3 2pk(b+1—c)/0 Oi?gk\fg(ﬂw\e )[Pdo

IN

IN

i 1 2m .
>3 opk(b+1—c) /0 | fe(tlw]e™) Pdé
k=1

0 tra1 2w )
Y / / e (tlwle®)Pdo (1 — £peH1-0-1 gy
k=1"t /0

IN

IN

1 pr2rw A
C/ / | fe(t|w]e®)[Pdo (1 — t)PH1=a~1 gy
o Jo
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27 )
<c/ pyplbi—o)- 1dt/ e (w7
0

From (5)-(8) we see that there is a positive constant C' independent of &, r €
(0,1) and f, such that

©) ME(CEf (£err) < CMP(fe,r).
Integrating (9) over S and applying Lemma 3.1, we obtain
(10) ME(CEf,r) < CME(f.r),  0<r<l,
from which the result follows.

Proof of Theorem 3.2. Taking inequality (10) to the %th power, multiplying by
du(r) and then integrating from 0 to 1 we obtain

b,
1A gy = [ VBT r)nr) < € [ M) = 1 gy
finishing the proof of the result.
Proof of Theorem 3.3. Let a > 1. Then it is well known that

(1) 1Fllge = 1 f 15 = sup(1 = [2))* 7! f(2)]-
z€B

Then we have

tc_l(l _ t)b_c
1= (tz, o) [P+

_ a—1
< C/ ‘f 1 t‘z‘) tc_l(l —t)b_cdt

1 _ t ‘z‘ a+b c
1 4e—1 b—c
;e (1)
= Hf”B A (1 —t\z\)a‘H’—C

: L1 —g)be
<l (1 [ i)

ot
(1 =zt

dt

1
Lt < Lb,cmaﬁxm |12

< C £l (by Lemma 3.3),
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for each z € B. Hence

(12) (1= l2l)*Yegef(2)] < Cl fllse,

for every z € B. Taking the supremum in (12) over z € B and using the relationship
(11) for the function Cg’f f we obtain the result.

4. THE OPERATORS T AND L, ON THE UNIT BALL

A positive continuous function ¢ on [0, 1) is normal, if there exist positive
numbers s and ¢ (s < t), such that

¢(r)
(1 —r)s

¢(r)
(I—r)t

10, T oo

asr — 17. For 0 < p < oo, and a normal function ¢, let H(p, p, ¢) denote the
space of all holomorphic functions f on the unit ball such that

o = [ 1P as(:) < .

If 1 < p < oo, the space H(p, p, ¢) is a Banach space. When 0 < p < 1, H(p, p, ¢)
is a Fréchet space but not a Banach space. H(p,p, ¢) is called the Bergman type
space. In particular, if ¢(r) = (1—r)"/?, then H(p, p, $) is the Bergman space AP.
For some basic properties of Bergman spaces, see for example, [6, 8, 11, 17, 38,
42,43, 51].

Note that the integral form of the Cesaro operator C is

e =1 [ o= [ 50 ()

taking simply as a path the segment joining 0 and z, we have that

- [ f2) (ngz C)'

The following operator

dt.
C=tz

_ [ 19

0o 1-¢
is closely related to the previous operator and on many spaces the boundedness of
these two operators is equivalent.

2C(f)(2) dg,
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From this point of view, it is natural to extend the Cesaro operator in the fol-
lowing way. Suppose that g : D — C! is an analytic map and f € H (D). A class
of integral operator introduced by Pommerenke is defined by (see [29])

z 1 z
%f&%:ALM9=1;ﬂwkdwmﬁ=[:ﬂ©d@M& 2 eD.

The operator J,; can be viewed as a generalization of the Cesaro operator. In [29]
Pommerenke showed that J; is a bounded operator on the Hardy space H 2 if and
only if g € BMOA. Alemann and Siskakis showed that J, is bounded (compact)
on the Hardy space HP, 1 < p < oo, if and only if g € BMOA (g € VMOA),
and that J,; is bounded (compact) on the Bergman space A” if and only if g € B
(9 € Bop), see [3, 4]. Some other results on the operator J, can be found in [2-4,
22, 25, 36, 47] (see, also the related references therein). Closely related operators
on the unit polydisk were investigated in [10] and [46].

It is natural to generalize the operator J; for the case of the unit ball. Suppose
that g : B — C! is a holomorphic map of the unit ball, for a holomorphic function
f: B — C!, define

1
dgc(ltz) :/0 f(tz)Rg(tz)%, z € B.

1
T,0G) = | sy

This operator is called extended-Cesaro operator (or Riemann-Stieltjes operator), it
was introduced in [17], and studied in [17-20, 23, 24, 26, 44, 49, 50].
Similarly, another integral operator was defined as follows (see [23]):

1
Lgf(z):/o Rf(tz)g(tz)%, seB.

In [24], we proved that T, : H> — H? is bounded if and only if g € BMOA
and T, : H> — H? is compact if and only if g € VMOA. L, : H*> — H? is
bounded if and only if

_ ag n+2
(12) amé(ﬁ§%%w) 19(2)P(1L — [2P)d(z) < oo

acB

and L, : H? — H? is compact if and only if

i [ () e e o

1m — g(z — =0.

jal=1./p \ |1 = (a,2)|?

In this section, we study the boundedness and compactness of operators T, and L,
from Bergman type spaces and H>°(B) to a-Bloch spaces and little a-Bloch spaces
on the unit ball. Our discussion will be divided into four parts.
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4.1. The boundedness and compactness of T, L, : H* — B“

In this subsection, we discuss the boundedness and the compactness of operators
T, and L, from H* to the a-Bloch space B“. In order to prove our main results,
we need some auxiliary results which are incorporated in the following lemmas.

Lemma 4.1. For every f,g € H(B) it holds

RITy(HI(2) = f(2)Rg(z) and  R[Ly(f)](2) = Rf(2)g(2).

Proof. The first identity was proved in [17], while the proof of the second
identity is similar and is omitted.
The next lemma can be proved in a standard way, and its proof will be omitted.

Lemma 4.2. The operator Ty (or Ly) : H* (or H(p,p, ¢)) — B* (or B )
is compact if and only if the operator Ty(or Lg) : H*™ (or H(p,p,¢)) —
B% (or By ) is bounded and for any bounded sequence (f)ken in H* (or H(p, p,
®) ) which converges to zero uniformly on compact subsets of B, we have ||T , fi.| g
—0as k— oo (or |[Lgf|lge — 0ask — o).

Theorem 4.1. Suppose that g is a holomorphic function on B and o > 0,
then Ty : H* — B® is bounded if and only if g € B®. Moreover, the following
relationship

(13) 1Tyl oo = Sug(l — |2[*)*|Rg(2)]
zE
holds.

Proof. Suppose that g € B*. Let f € H*, it is easy to see that T, f(0) = 0,
by Lemma 4.1 we have

(1= 2P R(Tef) ()] = (1 = |21 f (2) IR (2)]
< 1 fllse(1 = [21%)% Ry (2)]-

Taking the supremum in (14) over z € B it follows that T, : H*® — B¢ is bounded.
On the other hand, suppose T}, : H>® — B is bounded. Set

(14)

1—[w]?

(15) fw(z) = m7

w € B,

then f, € H* and || fy||co < 2 for every w € B. Therefore, we have that
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(1= wP)Rg(w)] = (1 = [w]*)*| fu(w)[|Rg(w)]
(1= [w?)*[R(Tyfw) (w)|

< sup.ep(l = |21 R(Tefw)(2)]
= 1Ty fuwllse < 2)|Ty] Hoe—pe

which implies that g € B*. From (14) and (16) it follows (13).

(16)

Theorem 4.2. Suppose that g is a holomorphic function on B, then
g € B, a>1;
Ly: H>® — B is bounded < g€ H™, a=1;
g=0, ae(0,1).

Moreover, if a > 1, then the following relationship

(17) 1L gll oo = sup(1 — [2]%)* g (=)
zeB

holds.

Proof. Let f € H*. Then it is known that H*> C B and moreover

1£1l8 < Cll fllsc

see, for example, [51]. It follows that
IRF()I(1 = 21*) < Ol flloos

for every z € B. From this, Lemma 4.1 and using the fact that L, f(0) = 0, we
have

(1= [z Rf(2)llg(2)]
< [I£ls(1 = [2[*)*~g(2)]
Cllflloo(X = 12 g(2)]
Cllfllecllglise,

where in the last inequality we have used the well known fact that

(1= |2 R(Lyf)(2)]

(18)

IN

IN

sup(1 — |2[*)* Yg(2)] = [lgllse
zeB

for oo > 1. Hence, if g € B* for some o > 1, it follows that L, is bounded.
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If « = 1 we have

(1= IR (Lg ) ()] < Clifllsslg(2)] < Cllflloollglloo

from which it follows that g € H > implies the boundedness of L, : H> — B
If « € (0,1) and g = 0 it is easy to see that L, : H> — B* is bounded.
Conversely, suppose L, : H>* — Bis bounded. Let §(z, w) denote the Bergman

metric between two points z and w in B. For a € B and r > 0, the set D(a,r) =

{z € B:f(a,z) <r},a € B is a Bergman metric ball centered at a with radius 7.

It is well know that

(1 —|a?)n*! 1 1 1

19 = = =
) (e A Pe D = TP = (1 o) [Dlar)

when z € D(a,r) and where |D(a, )| is the volume of the Bergman ball D(a, )
(see [51]). For w € B, let f,, be defined by (15), then

Clw|?
w2w2§—/ gz2dvz
‘g( )‘ ‘ ‘ (1—"[1)‘2)”—"1 D(w,r)‘ ( )‘ ( )

1
=¢ D(w,r) W‘wa(z)\Z\g(z)\2dv(z)
(20)
dv(z)

= || Ly f 2a/
1Eabullse |,y T TeppesnT

CULyfullh
= U—fup?

If a > 1, from (20) we obtain sup; /o< |.j<1 |9(2)[(1 — |2|%)*~! < co. From this
and since

sup [g(2)|(1—[2)*7" < sup |g(2)|= sup [g(2)|
|21<1/2 |2<1/2 |21=1/2

= (5)" s loNa 1=

zZl=

4N\ a—1 .
<(3) sw lg@Ia—lzH"
1/2<|2|<1

we have that

sup |g(2)|(1 = [2*)* 7" < oo,
zeB

which is equivalent to g € B, in the case.
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When o = 1, from (20) and the maximum modulus principle we obtain g € H .
Moreover

sup [g(z)| < 2C|| Ly o —pe,
zeB

which along with (18) implies (17) in this case.
If a € (0,1), then (20) can be written in the form

2D lg(w)l|w| < Cl|Lgfullpe (1 — |w]?)' 2.

Letting |w| — 1 in (21) and applying the maximum modulus principle we obtain
g = 0, as desired.

Theorem 4.3. Suppose that g is a holomorphic function on B and o > 0.
Then Ty : H*® — B is compact if and only if g € B.

Proof.  First assume that g € B{. In order to prove that 7j is compact it
suffices to show that if (f;)ren is a bounded sequence in H °° which converges to
0 uniformly on compact subsets of B, then ||Tjfx||g« — 0, as k — oo. Hence,
assume that (f)xen is a sequence in H*° with supycy || filloo < K and f — 0

uniformly on compact subsets of B as k — oo. By the assumption, for every € > 0,
there is a constant 0 € (0, 1), such that

(1= |21*)*Rg(2)] < ¢/K,

whenever § < |z| < 1.
Let E = {z € B : |z| < ¢}, then we have

T fellge = sup(l — |2[)*[R(Tyfi)(2)]

z€B
= sup(1 - [2[*)*|Rg(2) fu(2)| + sup (1 —[2)*|Rg(2)fu(2)]
z2€E z€B\E

< ba(g)sup [fr(2)] + €.
zeE

By the condition f;; — 0 on compacts as kK — oo, and since E' is a compact subset
of B, we obtain lim sup;,_, . |7, fx||B> < €. Since ¢ is an arbitrary positive number
we have that limy,_,o || Ty fx||g= = 0, and therefore, T, : H> — B* is compact.

Conversely, suppose T, : H* — B® is compact. Assume that (2j)ien is a
sequence in B such that |z;| — 1 as k — oo, and set

(22) filz) = Sl

= k e N.
1—(zz2k)’ <
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Then supyen || frlloo < 2 and f;, converges to 0 uniformly on compact subsets of B

as k — oo. Since T, is compact, we have ||Tj, fi|[g« — 0 as k — oo. Therefore

(- )Ry = (L 2z [Ra (1)
< sup(L— 21 fu()|[Ro(2)
= sup(1 = [£)°[R(Tf0) ()] = 1Tyl =0,

as k — oo, which implies that lim . (1 — |z|?)?*|Rg(z)| = 0.

Theorem 4.4. Suppose that g is a holomorphic function on B and o > 0.
Then

lim (1 |27 g(:)] =0, a>1:

. oo @
Ly : H® — B is compact @{ g =0, a € (0,1].

Proof. When « € (0, 1], then it is obvious that g = 0 implies that L, : H* —
B¢ is compact. Now we consider the case o > 1, we assume

lim (1~ |2/*)* g (2)| = 0

|z[—1

holds. Let (f)ren be a sequence in H° such that sup,.cy || fr|loo < K and fr, — 0

uniformly on compact subsets of B as k — oo. By the assumption, for every £ > 0,
there is a constant 0 € (0, 1), such that

(1= 12 Hg(2) < e/K
whenever § < |z| < 1. Let E = {z € B : |z| < J}. We have

1Ly fillse = sup(1 — [2[*)*|R(Lyfi) (2)|

z€EB
= sup(1 — [2)*|g(2)Rfe(2)| + sup (1 — |2[*)*[g(2)Rfu(2)|
z2€E z€B\E
< Nsup(l— \2\2)\Rfk(z)\ + Ce.
z€E

where N = sup,¢ (1 —|2]?)*"!|g(2)|. By Cauchy’s estimate the condition f;, — 0
as k — oo uniformly on compact subsets of B, implies that R fr — 0 as k — oo
uniformly on compact subsets of B. Hence, we have || L, fi|ge — 0 as k — oo.
Therefore, L, : H* — B* is compact.

Conversely, suppose L, : H> — B is compact. Let (zj)ren be a sequence in
B such that |z;| — 1 as k — oo, and (f)ken be the sequence defined by (22). We
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know that supey || fx|lo < 2 and f;, converges to 0 uniformly on compact subsets

of B as k — oo. Since L, is compact, we have ||L, fx| g — 0 as k — oo. Thus

(1= Tz Ha(z)llal® = (1= |2]*) g (2)| RS (2)]

< igg(l — 2119 () IR fi(2)]

= sup(1 — |2*)*|R(Lgfr)(2)|
z€B

= [|LgfrllB« — 0,

as k — oo, which implies that lim (1 — |2?)*"![g(2)| = 0 when o > 1.
When « € (0, 1], the last inequality can be written as follows

lgCam)lzel® < (1 = 12l*) =2 Ly fill 5o

Letting £ — oo in the last inequality and using the maximum modulus principle we
obtain that g(2) =0, z € B.

4.2. The boundedness and compactness of T, L, : H> — Bj

In this section, we characterize the boundedness and compactness of the oper-
ators Ty, L, : H*® — B{. For this purpose, we need the following lemma (when
«a = 1 and in the setting of the unit disk, the lemma was proved in [27], for general
case in the unit ball, the proof is similar and will be omitted).

Lemma 4.3. A closed set K in B is compact if and only if it is bounded and
satisfies

(23) lim sup(1 — \2\2)0‘\Rf(z)\ =0.
|2|=1 fek

Theorem 4.5. Suppose that g is a holomorphic function on B and o > 0.
Then the following statements are equivalent:

(i) T, : H* — B is bounded;
(if) Ty : H>® — Bf is compact;
(iti) limy,_q (1 — |2]?)*|Rg(2)| = 0.

Proof. (iit) = (ii). In view of Lemma 4.3, we know that T, : H*® — Bf is
compact if and only if

lim sup (1-— ‘2‘2)0“R(Tgf)(z)\ = 0.
l21=1 | fllo<1



1272 Der-Chen Chang, Songxiao Li and Stevo Stevi

We have

(1= I R(Tyf) ()] = (1 = [2)*Rg ()1 £ (2)] < I Flloo(1 = [2*)* Ry (2)]-

Taking the supremum over all f € H* such that || f||o < 1, then letting |z| — 1
in the obtained inequality we see that condition (7i7) implies the compactness of the
operator T, : H> — Bf.

(ii) = (i). It is obvious.

(i) = (i1i). Since f(z) = 1, z € B is a bounded function, then (7) implies
that T,,(1) € Bf. Hence
lim (1 - |2/*)*[Rg(2)| = Jim (1 |2*)*IR(Z) (D) (2)] = 0,

|z[—1

as desired.

Theorem 4.6. Suppose that g is a holomorphic function on B and o > 0.
Then the following statements are equivalent:
(i) Lg: H>® — B is bounded,
(if) Ly : H>® — B is compact;
(iii)
o { limg (1 227 g(2) =0, a> L

g=0, a e (0,1].

Proof. (ii1) = (ii). We have

(1= [z R(Lgf)(2)] = (1 = [2[*)2[g(2)||Rf ()]
< Cllfllse(X = |22 g(2)].

From (24) and (25) and by Lemma 4.3 it follows that L, : H* — Bf is compact
for the case a > 1. If a € (0, 1], the implication is obvious.

(13) = (4i). Assume now that L, : H> — Bf is compact. Let (2;)ren be
a sequence in B such that |z;] — 1 as k — oo and let the sequence (f)en be
defined by (22). Then supycy || fx|lm~ < 2 and f}, converges to zero on compacts
of B as k — oo, which by the compactness of the operator L, : H> — B implies
that || Ly fi||ge — 0 as k — oc.

Thus

(1= [zl g (ze) 2]

(25)

(1= l2kl*) (g (zi) [ R fi(20)]
supe (L — |2*)*[R(Iyfr) (2)|
g frllge = 0,

(26)

IN
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as k — oo, and as a consequence we have that lim,_; (1 — [2[*)*"|g(2)| = 0,
when o > 1.

For the case a € (0, 1], using the fact that the sequence (1—|2,|?)®~! is bounded
below by one, (26) and the maximum modulus principle we obtain g(z) = 0, z € B,
as desired.

Since the implication (i) = (%) is obvious, we need only prove that () = (7).
Assume to the contrary that there is a sequence (2(*)) ey such that limy,_ [2(F)| =
1 and

(1 =1z N g(z)| = & > 0.

Without loss of generality we may assume that (2(*)) — (1,0,...,0) as k — oo
and that (1 —[2(®)|2) > 1(1 - 2\P)2),

We may also assume that the sequence (zﬁk)) keN 1S an interpolating sequence
on the unit disk, that is, there exists a § > 0 such that

(k) _ _(m)
/inlf\l i jl (k)‘ >35>0

b(z) = H%

z

converges uniformly on compacts and that it is a holomorphic function on the unit
disk. We have

(1= =7P ) = 11 IC R
m#k |1 — zlm)z§k)\
Hence, with f(z) = b(z1), and for sufficiently large k, we have
(1= 29| Lg (0) (= ™))
= (1= [z®1)g (=) IR b(z")]

(1= 21221 g ()] (1 = [27)12)] 2P0 (7))

A\

vV
a4
™
=
V
)

Since Ly(b) € By, it follows that

Jim (1= @)L (b) (=) = 0,
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which is a contradiction. Hence for each a > 0 it holds

lim (1 — |2[*)*7g(2)| = 0.

|z[—1

From this and by the maximum modulus principle it follows that g(z) = 0 for the
case a € (0, 1].

4.3. The boundedness and compactness of 7, L, : H(p,p, $) — B*
In this section, we consider the boundedness and compactness of T; and L, from
H(p,p, ¢) into B*. For this purpose, we need some auxiliary results incorporated

in the following lemmas.

Lemma 4.4. Suppose that 0 < p < oo and ¢ is normal on [0,1). If f €
H(p,p, ¢), then

Hf”H(p,p,qﬁ)
. HEN = Cona - 2€ 7

Proof. For 0 < r < 1 and z € B, by the subharmonicity of |f(z)[P and the
normality of ¢, we obtain

P < ﬁ /D i

o Sl ,
S TP \>/Dm‘ (w) 1—\w\d< )

c ¢P @
S TR Jy ot )

CI et o
— (A= [zP)rer(lz))’

from which the desired result follows.

Lemma 4.5. ([17, Theorem 2]) Suppose that 0 < p < oo and ¢ is normal on
[0,1). Then for f € H(B),

= 1FOF + [ REPO =[P o).
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Lemma 4.6. Let 0 < p < co and ¢ is normal on [0,1). If f € H(p, p, ¢) and
z € B, then

e
RIOIS OG- ey ¢ <2

Proof. By the subharmonicity of |R f(z)|P, normality of ¢(r), and by Lemma
4.5, similar to the proof of Lemma 4.4, we obtain the desired result.
Now, we are in a position to formulate and prove the main results of this section.

Theorem 4.7. Suppose that g is a holomorphic function on B, 0 < p <
00, & > 0 and ¢ is normal on [0,1). Then Ty : H(p,p, ¢) — B is bounded if and

only if
1— 2\a—n/p
CEIED

e (1o R LS s

Proof. Let f € H(p,p,¢). Then by Lemma 4.4,

1Ty fllBe = Sgg(l — [z R(Tyf)(2)| = Sgg(l = [2[1)1f (2)l|Rg(2)|
(L[

o(|2]) (1 — |2/

Therefore (28) implies that Ty : H (p, p, ¢) — B is bounded.

Conversely, suppose T, is a bounded operator from H(p,p, $) to B*. For
w € B, set

IN

[Rg(2)]

CHf”H(p,p,qﬁ) sup
z€B

(1 — w[A)*

29 Fule) = Sn @ Gy
It is easy to see that

1 |w|®
(30)  fulw) = R fulw)] =

— o(Jw) (A = fw|2)n/p? = p(lw])(1 = w2yt

By [17], we know that

(1= w2+
(Tl (1 = rfw) T

Mp(f’lﬂvr) S C¢

Since ¢ is normal and applying Lemma 3.3, we have that
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1
Ml = /ﬁ M2 (frr) L p2n14,

PP, 1—7r

L P )
S/o o7 ar

w) (1= rlw))ptD 1 —r

W1 ) @)
< C[/o o ar

w) (1= rlw])pt+D 1 —r

(31) 1 (1- ‘w‘Q)p(t—l—l) & (r)
! /|w| P (|w]) (1 — r|w])PE+D 1 — rdr}

(1 _ ‘w‘2)p(t+1) (pp(‘w‘) |w] (1 _ T)pt_l
= C[ PP (|wl) (1 — |w[?)Pt /0 (1 — r|w|)p+1)

(1 Juw)PD g (juw) /1 u—MW*)r]
|

Tl (= [0 S (= rlw]p

<C.
Therefore f,, € H(p, p, ¢), and moreover sup,¢ g || full i (pp,s) < C. Hence
(1 = [w)*| fu(w)Rg(w)| < sup.cp(l = [2*)*|fu(2)Ry(2)]
<N Tyfwlse < ClTyl H(p,p,e)—5es

i.e., we obtain (28), as desired.

Theorem 4.8. Suppose that g is a holomorphic function on B, 0 < p <
0o, o > 0 and ¢ is normal on [0,1). Then Ly : H(p,p,d) — B is bounded if
and only if

(1= |2/t
(32) i — (P

|9(2)] < oc.

Proof. Assume that (32) holds and let f € H(p, p, ¢), then by Lemma 4.6, we
have

(1= [P UR(Lef) ()] = (1= [ R F(2)l]g(2)]

17150, a
o(lz))(1 f(sz;;)”/pH l9(2)|(1 = [2])
(1 — |z|?)>—n/p=1

¢(l2])

< Cllf @) l9(2)]-
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Taking the supremum over z € B, it follows that L, : H(p, p, ¢) — B is bounded.
Conversely, assume that L, : H(p,p, ¢) — B“ is bounded. For w € B, let
fw(z) be defined by (29), then by (19) and (30), we have

4
@ ()1 ‘—ﬂum%n/ﬁm l9(w)P” = R fu(w)g(w)P
C
< Tt oy, I )
C ) ,
B W/D(w,r) RE (PGP = 12 e )
dv(z) .
=¢ D(w,ry (1 — |2[?)2e+nt zelezg,r)(l — [2]*)?* R fu(2) P9 (2)”

C
< W”Lgfw’%a'

Therefore

(1 — Jw[*)w]?
S(Jwl)(1 = [w[?)r/P

lg(w)| < C||Ly ful|Be < Cl|Lgllgo—pe-

Similar to the proof of Theorem 4.2, we obtain that (32) holds, as desired.

Theorem 4.9. Suppose that g is a holomorphic function on B, 0 < p <
00, > 0 and ¢ is normal on [0,1). Then Ty : H(p, p, $) — B* is compact if and
only if

(33) lim w

=1 @(]z]) [Ra(z)| =0.

Proof. Assume that (33) holds and that (f)ken is a sequence in H (p, p, ¢)
such that sup e || frll 7 (p,p,¢) < L and fr — 0 uniformly on compact subsets of B
as k — oo. By the assumption, for every £ > 0, there is a constant 6 € (0, 1), such
that

(1 —|2*)*|Rg(2)]

o(|z])(1 — |z[2)n/P <e/L

whenever § < |z| < 1.
Let K ={z € B:|z| <0} (K is a compact subsect of B) and ¢ be a normal
function, then by Lemma 4.4 we have
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1Ty fillpe = Sug(l — [2))*R(Tyfi)(2)]

zE
< sup(1— [P Ra( el +C sp — ST i i ome

€K sep\k (|2]) (1 — |2]2)n/p

< CM Sulg(l — 12)"?|¢(2)|| fi(2)| + Ce,

zE
where )

1— «a

M = sup (1= J2") Rg(2)] < oo.

zeB ¢(|2)(1 — |2[2)"/P
By the assumption and Theorem 4.7 we obtain ||7} f;||g» — 0 as k — oco. There-
fore, Ty : H(p, p, ) — B* is compact.
Conversely, suppose T, : H(p,p,¢) — B* is compact. Let (z)ren be a
sequence in B such that |z;| — 1 as k — oo, and set

(1 — |z

C) = S A= e FEN

(34) i

Then fi € H(p,p, ¢), moreover supyen || fkllfr(pp,p) < 00 and fi converges to 0
uniformly on compact subsets of B as k — oo. Since Ty is compact, by Lemma
4.2 it follows that || T fx||g« — 0 as k — oco. From this and since

1Ty fillse = igg(l — ) R(Ty i) (2)] = sup(1 = 2% fu ()| Ry (2)]

z€B
o (L= Tz*)* Ry (z)]
~ Bzl (1 = |z[2)/P

for every k € N, we obtain (33), finishing the proof of the theorem.

Theorem 4.10. Suppose that g is a holomorphic function on B, 0 < p <
00, &« > 0 and ¢ is normal on [0,1). Then Ly : H(p, p, ) — B is compact if and

only if

(35) fim (L)

ey eel=e

Proof. Proof. Assume that the condition (35) holds, and (f1)xen is a sequence
in H(p,p,¢) with supgen | fxll(ppg) < K and fr — 0 uniformly on compact
subsets of B as k — oo. From (35) we have that for every € > 0, there is a constant
5 € (0,1), such that

(1= |2)s(2)
o SN0 = [P) 7

<e.
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whenever 0 < |z| < 1. Introducing the set £ = {z € B : |z| < J}, similar to the
proof of Theorem 4.9, we can prove that || L, fi||g= — 0 as k — oo. Therefore,
Ly : H(p,p, $) — B* is compact.

Conversely, suppose L, : H(p,p,$) — B is compact. Let (2;)ren be a
sequence in B such that |z;| — 1 as k — oo, and (f)ken is defined by (34). Then
supgen || fillE(pp,) < C and fi converges to 0 uniformly on compact subsets of
B as k — oo. Since L, is compact, we have || L, fx|[ge — 0 as k — oo. Thus

IZgfillse = sup(l— |2]*)*R(Lgfe)(2)]

zeB
(1= |262)2|g(20)] | 2|2
(p(‘zk‘)(l - ‘Zk‘2)1+n/p ’

> (n/p+t+1)
which implies (35).
By Theorems 4.7-4.10, we obtain the following corollary.

Corollary 4.1. Suppose that g is a holomorphic function on B, 0 < p < o0
and o > 0. Then

(i) Ty : AP — B® is bounded if and only if

sug(l — \2\2)0‘_(”“)/1’\729(2)\ < o0.
zE

(if) Ly : AP — B® is bounded if and only if

Sug(l — |23 P g (2)] < oc.
FAS

(iii) Ty : AP — B* is compact if and only if
i (1 [22)° CRg(2)| =0,

(iv) Ly : AP — B* is compact if and only if

lim (1 — |2[*)* =" D/P g (2) = 0.

|z[—1

4.4. The boundedness and compactness of 7, L, : H(p,p, $) — B

In this section, we characterize the boundedness and the compactness of T, L, :
H(p,p,¢) — Bj.

Theorem 4.11. Suppose that g is a holomorphic function on B, 0 < p <
00, a > 0 and ¢ is normal on [0,1). Then the following statements hold.
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(i) Ty : H(p,p, ¢) — B is bounded if and only if g € B and Ty : H(p, p, $) —
B% is bounded;
(if) Ty : H(p,p, @) — B is compact if and only if

(37) lim

Proof. (i). It is clear that g € Bf and T, : H(p,p,¢) — B is bounded if
Ty : H(p,p, ¢) — By is bounded.

Conversely, assume that T, : H(p,p, ¢) — B is bounded and g € B. Then,
for any polynomial p(z), since g € 5} and

(1= 2P| R(Typ)(2)| = )*p(2)| Ry (2)|
=< (1 - \Z\ )*|Rg(z)| max.ep [p(z)| — 0,

as |z| — 1, we obtain that Typ € B§. Forany f € H(p, p, ¢), there exist a sequence
of polynomials (px)ken such that || f — pill(pp.e) — 0, as k — oc. Since B is
closed, we obtain

T,f = lim Typ; € B.

In addition, Ty, : H(p, p, ) — B is bounded. Therefore T, : H(p, p, ¢) — B is
bounded.

(7). Sufficiency. From Lemma 4.3 it follows that Ty : H(p,p,¢) — Bf is
compact if and only if

lim sup (1- ‘2‘2)°‘\R(Tgf)(z)\ =0.
|2|—1 ||fHH(p,p,¢)§1

By Lemma 4.4, we have

= R = SERIEL o oy

(1 - [=P)*[Rg(2)
= Cona - pye 1 Iwnor

Taking the supremum in the last inequality over the set {f € H(B) : || fll g(pp,p) <
1} and letting |z| — 1 the result follows.

Necessity. Let (zx)ren be a sequence in B such that |z — 1 as K — oo and
let (fx)ren be the sequence defined by (34). Then supiey || f&ll 5 (pp,¢) < C and f
converges to 0 uniformly on compact subsets of B as £k — oco. Hence, by Lemma
4.2 it follows that limy_, ||T4(fx)||B> = 0. On the other hand, we have

1

Tea) = S TPy
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Since

(1 - |2 Ry ()] ) i

ST Tyl < S (1 = ) R(Tofi) ()] = 1Tyl
we have

o ==l R ()] _
k—oo ¢(|2e])(1 = |2x2)"/P
i.e. we obtain (37), finishing the proof of the theorem.

Theorem 4.12. Suppose that g is a holomorphic function on B, 0 < p <
00, a > 0 and ¢ is normal on [0,1). Then the following statements hold.
(i) Ly = H(p,p,¢) — B is bounded if and only if L, : H(p,p, ¢) — B* is
bounded and
lim |g(2)[(1 — |2[%)* = 0;

|z[—1

(if) Ly : H(p,p, ¢) — Bf is compact if and only if

(1= |of)emirt

|21 o(]2])

l9(2)[ = 0.

Proof. It can be deduced similarly to Theorem 4.11. We omit the details.

Corollary 4.2. Suppose that g is a holomorphic function on B, 0 < p < o0
and o > 0. Then

(i) Ty : AP — By is bounded if and only if g € By and Ty : AP — B is
bounded;

(if) Ty : AP — B is compact if and only if
|1|im1(1 — |2 PR (2)| = 05

(iii) Ly : AP — B is bounded if and only if L4 : AP — B® is bounded and

lim lg(2)](1 [2%)" = 0

(iv) Ly : AP — B is compact if and only if

lim (1 — [z[*)*= D271 g(z)] = 0.

|z[—1
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