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A PRODUCT OF DOUBLING MEASURES ON THE REAL LINE

J. M. Aldaz

Abstract. A product of doubling measures on the real line can be defined in
such a way that another doubling measure on the line is obtained. It follows
that doubling measures on the line form a semiring.

1. INTRODUCTION AND MAIN RESULT

The main result of this note shows that suitably normalized quasisymmetric
maps on the real line can be “multiplied” so that a new quasisymmetric map is
obtained (by suitably normalized we mean that they are increasing and fix zero). In
terms of doubling measures this means that they form a semiring. Before stating
our main theorem precisely we need some definitions.

A measure on a metric space X is doubling if there exists a constant K > 1
such that for every x € X and every ¢t > 0, u(B(z,2t)) < Ku(B(x,t)), where
B(z,t) denotes the open ball of radius ¢ centered at . Specializing this definition
to the real line, one can easily check that for nontrivial measures this is equivalent
to the following: w is doubling if there exists a constant K > 1 such that for every
z € R and every ¢t > 0,

1 gzt _ o
K= p(le —t,x]) =

A homeomorphism f : R — R is K-quasisymmetric if

1 _ fle+t) - fz)

— < <K

K~ @) J@—t) -
with K, z and ¢ as before. Additional background information on doubling measures

and quasisymmetric maps can be obtained, for instance, from [2], as well as from
several other sources.
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It is clear from the definitions that there is a close relationship between doubling
measures and quasisymmetric maps on R. Given f quasisymmetric, the measure
py defined on intervals by pf([a,b]) := |f(b) — f(a)| is doubling. If we assume
that f is increasing, we can avoid the use of absolute value signs. Also, from the
viewpoint of the defined measure it makes no difference if we add or substract a
constant to f, so we may assume that f(0) = 0. Thus, with respect to measures
it is enough to consider increasing quasisymmetric maps that fix the origin. Given
w, we shall say that f is the map associated to p if f is increasing, f(0) =0, and
p = . In the other direction, every nontrivial doubling measure p on R defines
an increasing quasisymmetric map f,, that fixes 0, by setting f,(x) := u([0, z]) if
x>0, and f,(x) = —p([z,0]) if z <O.

If f,g : [0,00) — [0,00) are homeomorfisms, their product fg is again a
homeomorphism. Here the order structure of the line is crucial: Both f and g are
nonnegative strictly increasing functions, and hence so is fg. But in general the
product of two bijections need not be a bijection, so the possibility of defining a
product via pointwise multiplication on collections of homeomorphisms defined on
topological rings seems to be rather limited. To define such a product e on R, we set,
for increasing homeomorfisms f, g : R — R that fix the origin, feg(z) := f(z)g(x)
if z > 0, and f e g(x) := —f(x)g(x) if z < 0. If in addition f and g are
quasisymmetric, then we call f e g their quasisymmetric product, the reason being
that f e g is indeed quasisymmetric, as will be shown later. Therefore, this product
induces a product of doubling measures via 1 ® (14 := j17eg. NOte that the sum of
two doubling measures 1 and v with doubling constants K; and K5 respectively
is again a doubling measure: (p + v)(B(z,2t)) = u(B(z,2t)) + v(B(x,2t)) <
Kip(B(z,t)) + Kov(B(z,t)) < (K1 + K2)(u + v)(B(z,t)). So we have two
operations, addition and multiplication, defined on the set of doubling measures.
Also, given a < b, it is immediate from the definitions that (15 + pg)([a, b]) =
L+g([a, b)), so addition of measures corresponds to addition of the associated maps.

Definition 1.1. ([4], Def. 2.1 pp. 8-9) A nonempty set S with two binary
operations —+, - defined on it is called a semiring if
(1) (S,+) is a commutative semigroup.
(2) (S,-) is a semigroup.
(3) The distributive laws a - (b+c¢)=a-b+a-cand (a+b)-c=a-c+b-c
hold for all a,b,ce S.
If in addition (S, -) is commutative, (.S, +, -) is said to be a commutative semir-
ing.
Theorem 1.2. The set of doubling measures on the real line, with operations

defined via sums and quasisymmetric products of the associated quasisymmetric
functions, is a commutative semiring.
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A comment on terminology: Quite often a more restrictive notion of semiring is
used (cf., for instance [1], p.1): Besides the above conditions, it is usually required
that there exist an absorbing additive identity O (i.e. for every a, 0 =0-a = a-0)
and a multiplicative identity 1. The existence of an absorbing additive identity poses
no difficulties: Just consider the constant zero measure. But it is easy to check that
no doubling measure can play the role of multiplicative identity, so if we used the
terminology from [1], in our main theorem we would have to say that the set of
doubling measures on the real line is a commutative hemiring, rather than semiring
(the only difference between semirings and hemirings as defined in [1] is precisely
whether or not of a multiplicative identity exists).

This paper was written during a stay at the University of Michigan in Ann Arbor.
I am indebted to the Department of Mathematics for its hospitality, and specially to
Prof. Juha Heinonen, for several useful conversations.

2. ResuLTs AND PrROOFs

Lemma 2.1. Suppose that either 0 < z1 < zo < xz3 and 0 < 7 < Y2 < Y3,
orxy <ay <xg<0andy <y <ys3<0. Let Ky, Ky > 1 be such that

1 — 1 —
BT g and — < BT g
Ky = 2o —x Ko = yo—m
Then .
< 18U 1ol < KiKs + K1+ K.

Ki1Ky+ K1+ Ky = moy2 — 2141

Proof. Assume first that 0 < 1 < z9 < 23 and 0 < y; < y2 < y3. Note that
fori=1,2,

(L) i Y= (T —2)Yir + (Y1 —Yi) T > (T —T4)Yir1,
(21.2) zityiv1 2y = Yir1 —¥i)Tiv1+ (g1 —2:)yi > (Yir1—yi)ir1, and

(2.13) Tit1Yi1 — Ty = (Tiv1 —23) (Yir1 —vi) +(@iv1 — ) vi + (Yir1 — i) @i
o > (ig1 — 24) (Yie1 — Yi)-

To get the upper bound we use (2.1.3), (2.1.1) and (2.1.2) as follows:

w3ys — 22y _ (23— x2)(ys — y2) + (@3 — x2)y2 + (y3 — Y2)72
T2Y2 — X1Y1 T2Y2 — X1Y1
(3 — 22)(y3 — y2)

(z2 —21)(y2 —y1) + (z2 — 21)y1 + (Y2 — y1)71
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N (3 — 22)Y2 N (y3 — y2)x2
(2 —21)y2+ (y2 —y1)zr (Y2 —y1)x2 + (22 — 1)U

(3 —w2) (Y3 —y2) | (w3 —22)y2 (Y3 — y2)22
T (2 —2)(ye—y1)  (2—71)y2 (Y2 —y1)72

< K1Ky+ Ky + Ka.

Regarding the lower bound, we have:

x3y3 — Tay2 (Y3 — y2)x3 + (T3 — T2)12

Toys —w1y1 (Y2 —y1)w2 + (22 — 1)1
> (y3 — y2)x2 + (23 — T2)Y1 _ 1
T (e —y)re+ (ze—z)yr (2 — vz + (22 — 1))

(y3 1— yo)xo + (13 — 9{2)2/1

> 1 > > .
T (pmy)re | (m—x)yn T K+ Ky T KKy + Ky + Ko
(y3 —y2)za (23— 22)U1
The case where 21 < z9 < 23 < 0 and y1 < y2 < y3 < 0 follows immediately by
applying the previous argument to —x; > —xo > —x3 > 0, —y; > —y2 > —y3 >
0, and simplifying. ]

The next theorem is essentially the same as Theorem 3.1 of [3], the difference
being that we work on the whole real line, rather than the interval [—1, M]. The
proof can be adapted without difficulty (in fact it is simpler in our case), and
we include it here for the reader’s convenience. | am indebted to Professor Juha
Heinonen for pointing out this result to me.

Theorem 2.1. (Heinonen and Hinkkanen) Let f : R — R be an increasing
homeomorphism with f(0) = 0. If the restrictions of f to (—oo, 0] and [0, o) are
K-quasisymmetric maps, and for every ¢t > 0

L)
g T

then f is (K + 1)3-quasisymmetric on R.

)

Proof. By hypothesis, it is enough to consider the case where x —t < 0 < z+t
(so = < t), and we may also assume that = > 0 (the argument for x < 0 is similar).
Since f(0) =0, given y > 0, from

L f(2y) = f(y) <K 1 < —f(=y) <K

(2.2.1) ?g 7o) = F(0) and 174
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we obtain
@22 (g +1) S <N =(K 1050 s0 <L <pepn,
and
1
@2y (5+1)10)< W) - f-0) < (K +11G)

We consider separately the cases 2z < ¢ and 2x > ¢. If 2z < ¢, then replacing y
with ¢/2 in (2.2.1), with ¢/2 and ¢ in (2.2.2), and with ¢ in (2.2.3), we get

LY _ OS2 _ fett) - @)
KK+ 12 = KK+ Df0) = [0~ f(~0) = f@)~ f@—1)
F2)_JE) 0 F2) o

T f(=t2)  F@) f(E/2) (- f(=1/2))
And if 2z > t, again by (2.2.1), (2.2.2), and (2.2.3), we have

Y | () B (¢ N (1) e 1)
KE+1? - KK +0f0) - KE+0f0) ~ f@) - (1)
B (CRR) I (O e N (C) W (O NP .

~f@) = fla—t) T f@/2)  f() f(E/2) T
We recall from the introduction the notion of quasisymmetric product.

Definition 2.3. Let f,¢g: R — R be increasing homeomorphisms with f(0) =
g(0) = 0. The quasisymmetric product f e g of f and g is defined via f e g(z) :=
f(@)g(z)ifz>0and feg(zx):=—f(x)g(x)if z <O0.

Corollary 2.4. If f,g: R — R are increasing homeomorphisms with f(0) =
g(0) =0, then so is f e g. If in addition f and g are K, and K»-quasisymmetric
maps respectively, then f e g is (K 1Ko + K1 + Ko + 1)3-quasisymmetric.

Proof. The first assertion is obvious, so we only need to verify that the hy-
potheses of Theorem 2.2 are satisfied. Let ¢ > 0. Since

feg®) _  f(D) g(t)

—feg(=t)  (=f(=1)) (=g(=1))’

it follows that

1 feg(t)

< < K1 K.
K1Ky =~ —feg(—t) = 12
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To see that the restrictions of feg to [0, c0) and to (—oo, 0] are (K1 Ko+ K1+ Ko)-
quasisymmetric maps, set 21 = f(x —t),x0 = f(x), 23 = f(x + 1), y1 = g(x —
t),y2 = g(x),ys = g(x +t) and apply Lemma 2.1. [ |

Proof of Theorem 1.2. Denote by D the set of doubling measures on R.
Clearly addition and multiplication are both associative and commutative on D, so
(D, +) and (D, e) are commutative semigroups. And distributivity follows from
the corresponding fact for functions: iy ® (11g + 1) = fif ® pigrn = fife(g+h) =
Hfeg+feh = [Lfeg + [Lfeh = [Lf ® flg + [Lf ® [ip. u
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