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ON GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR AN
INTEGRO-DIFFERENTIAL EQUATION WITH STRONG DAMPING

Shun-Tang Wu and Long-Yi Tsai

Abstract. The initial boundary value problem for an integro-differential equa-
tion with strong damping in a bounded domain is considered. The existence,
asymptotic behavior and blow-up of solutions are discussed under some con-
ditions. The decay estimates of the energy function and the estimates of the
lifespan of blow-up solutions are given.

1. INTRODUCTION

In this paper we consider the initial boundary value problem for the following
nonlinear integro-differential equation:

(1.1) utt − M(‖∇u‖2
2)∆u +

∫ t

0
g(t − s)∆u(s)ds + h(ut) = f(u),

with initial conditions

(1.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

and boundary condition

(1.3) u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where ∆ =
N∑

j=1

∂2

∂x2
j

and Ω ⊂ RN , N ≥ 1, is a bounded domain with a smooth

boundary ∂Ω so that Divergence theorem can be applied. Here, g represents the
kernel of the memory term which is assumed to decay exponentially (see assumption
(A1)), h(ut) = −∆ut, f is a nonlinear function like f(u) = |u|p−2 u, p > 2 and
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M(s) is a positive locally Lipschitz function like M(s) = m0 + bsγ , m0 > 0,

b ≥ 0, γ ≥ 1 and s ≥ 0.
When g ≡ 0, for the case that M ≡ 1, the equation (1.1) becomes a nonlinear

wave equation which has been extensively studied and several results concerning
existence and nonexistence have been established [1, 3, 4, 8, 10, 11]. When M is not
a constant function, a special case of equation (1.1) is Kirchhoff equation which
has been introduced in order to describe the nonlinear vibrations of an elastic string.
More precisely, we have

(1.4) ρh
∂2u

∂t2
=

{
p0 +

Eh

2L

∫ L

0

(
∂u

∂x

)2

dx

}
∂2u

∂x2
+ f,

for 0 < x < L, t ≥ 0; where u is the lateral deflection, x the space coordinate, t

the time, E the Young modulus, ρ the mass density, h the cross section area, L the
length, p0 the initial axial tension and f the external force. Kirchhoff [9] was the
first one to study the oscillations of stretched strings and plates. In this case the
existence and nonexistence of solutions have been discussed by many authors and
the references cited therein [5, 6, 16, 17, 18, 19].

When g is not trivial on R, for the case that M ≡ 1, (1.1) becomes a semilinear
viscoelastic equation. Cavalcanti et al. [2] treated (1.1) for h(ut) = a(x)ut, here
a(x) may be null on a part of the domain. By assuming the kernel g in the memory
term decays exponentially, they obtained an exponentially decay rate of the energy.
This work extended the result of Zuazua [22] in which he considered (1.1) with
g = 0 and the damping is localized. On the other hand, when h = 0, Jiang and
Rivera [8] proved, in the framework of nonlinear viscoelasticity, the exponential
decay of the energy provided that the kernel g decays exponentially. Recently, Wu
and Tsai [20] discuss the global solution as well as energy decay, and blow-up
of solutions for h and f are power-like functions. In the case that M is not a
constant function, the equation (1.1) is a model to describe the motion of deformable
solids as hereditary effect is incorporated. The equation (1.1) was first studied by
Torrejon and Young [21] who proved the existence of weakly asymptotic stable
solution for large analytical datum. Later, Rivera [14] showed the existence of
global solutions for small datum and the total energy decays to zero exponentially
under some restrictions.

In this paper we show that under some conditions the solution is global in time
and the energy decays exponentially. In this way, we can extend the result of [14]
to nonzero external force term f(u) and the result of [20] to nonconstant M(s).
We also obtain the new results for blow-up properties of local solution with small
positive initial energy by using the direct method [13]. The content of this paper is
organized as follows. In section 2, we give some lemmas and assumptions which
will be used later. In section 3, we first use Faedo-Galerkin method to study the
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existence of the simpler problem (3.1)− (3.3). Then, we obtain the local existence
Theorem 3.2 by using contraction mapping principle. Moreover, the uniqueness of
solution is also given. In section 4, we first define an energy function E(t) in (4.7)
and show that it is a non-increasing function of t. We obtain global existence and
decay properties of the solutions of (1.1)− (1.3) given in Theorem 4.4. Finally, the
blow-up properties of (1.1)− (1.3) and the estimates for the blow-up time T ∗ are
also given.

2. PRELIMINARY RESULTS

In this section, we shall give some lemmas and assumptions which will be used
throughout this work.

Lemma 2.1. (Sobolev-Poincaré inequality [12]) If 2 ≤ p ≤ 2N
N−2 , then

‖u‖p ≤ B1 ‖∇u‖2 ,

for u ∈ H1
0 (Ω) holds with some constant B1, where ‖·‖p denotes the norm of

Lp(Ω).

Lemma 2.1. [13] Let δ > 0 and B(t) ∈ C 2(0,∞) be a nonnegative function
satisfying

(2.1) B′′(t) − 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0.

If

(2.2) B′(0) > r2B(0) + K0,

then
B′(t) > K0

for t > 0, where K0 is a constant, r2 = 2(δ +1)−2
√

(δ + 1)δ is the smallest root
of the equation

r2 − 4(δ + 1)r + 4(δ + 1) = 0.

Lemma 2.3. [13] If J(t) is a non-increasing function on [t 0,∞), t0 ≥ 0 and
satisfies the differential inequality

(2.3) J ′(t)2 ≥ a + bJ(t)2+ 1
δ for t0 ≥ 0,

where a > 0, b ∈ R, then there exists a finite time T ∗ such that

lim
t→T ∗−

J(t) = 0
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and the upper bound of T ∗ is estimated respectively by the following cases:
(i) If b < 0 and J (t0) < min

{
1,
√

a
−b

}
then

T ∗ ≤ t0 +
1√−b

ln

√
a
−b√

a
−b − J(t0)

.

(ii) If b = 0, then

T ∗ ≤ t0 +
J(t0)√

a
.

(iii) If b > 0, then

T ∗ ≤ J(t0)√
a

or
T ∗ ≤ t0 + 2

3δ+1
2δ

δc√
a
{1 − [1 + cJ(t0)]

−1
2δ },

where c = ( b
a)

δ
2+δ .

Lemma 2.4. [15] Let φ(t) be a non-increasing and nonnegative function on
[0, T ], T > 1, such that

φ(t)1+r ≤ ω0 (φ(t) − φ(t + 1)) on [0, T ],

where ω0 is a positive constant and r is a nonnegative constant. Then we have
(i) if r > 0, then

φ(t) ≤ (φ(0)−r + ω−1
0 r[t− 1]+

)− 1
r ,

where [t − 1]+ = max{t − 1, 0}.
(ii) if r = 0, then

φ(t) ≤ φ(0)e−ω1[t−1]+ on [0, T ],

where ω1 = ln( ω0
ω0−1 ), here ω0 > 1.

Now, we state the general hypotheses:

(A1) g : R+ → R+ is a bounded C1 function satisfying

(2.4) m0 −
∫ ∞

0
g(s)ds = l > 0,

and there exist positive constants ξ1, ξ2, and ξ3 such that

(2.5) −ξ1g(t) ≤ g′(t) ≤ −ξ2g(t).
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(A2) f(0) = 0 and there is a positive constant k1 such that

|f(u) − f(v)| ≤ k1 |u − v|
(
|u|p−2 + |v|p−2

)
,

for u, v ∈ R and 2 < p ≤ 2(N−1)
N−2 ; (∞, if N ≤ 2) .

3. LOCAL EXISTENCE

In this section, we shall discuss the local existence of solutions for integro-
differential equations (1.1)− (1.3) by using contraction mapping principle.

An important step in the proof of local existence Theorem 3.2 below is the study
of the following simpler problem :

(3.1) utt − µ(t)∆u +
∫ t

0

g(t− s)∆u(s)ds− ∆ut = f1(x, t) on Ω × (0, T ),

with initial conditions

(3.2) u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

and Dirichlet boundary condition

(3.3) u (x, t) = 0, x ∈ ∂Ω, t > 0.

Here, T > 0, f is a fixed forcing term on Ω × (0, T ), and µ is a positive locally
Lipschitz function on [0,∞) with µ(t) ≥ m0 > 0 for t ≥ 0.

Lemma 3.1. Suppose that (A1) holds, and that u 0 ∈ H1
0 (Ω) ∩ H2(Ω), u1 ∈

L2(Ω) and f1 ∈ L2([0, T ]; L2(Ω)). Then the problem (3.1)−(3.3) admits a unique
solution u such that

u ∈ C([0, T ]; H1
0(Ω) ∩ H2(Ω)),

ut ∈ C([0, T ]; L2(Ω)) ∩ L2([0, T ], H1
0(Ω)),

utt ∈ L2([0, T ]; L2(Ω)).

Proof. Let (wn)n∈N be a basis in H 1
0 (Ω) ∩ H2(Ω) and Vn be the space

generated by w1,· · · , wn, n = 1, 2, · · · .
Let us consider

un(t) =
n∑

i=1

rin(t)wi
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be the weak solution of the following approximate problem corresponding to (3.1)−
(3.3)

(3.4)

∫
Ω

u′′
n(t)wdx + µ(t)

∫
Ω

∇un(t) · ∇wdx

−
∫ t

0

g(t− τ)
∫

Ω

∇un(τ) · ∇wdxdτ +
∫

Ω

∇u′
n(t) · ∇wdx

=
∫

Ω
f1(x, t)wdx for w ∈ Vn,

with initial conditions

(3.5) un(0) = u0n ≡
n∑

i=1

pinwi → u0 in H1
0 (Ω) ∩ H2(Ω),

and

(3.6) u′
n(0) = u1n ≡

n∑
i=1

qinwi → u1 in L2(Ω),

where pin =
∫
Ω u0widx, qin =

∫
Ω u1widx and u′ = ∂u

∂t .

By standard methods in differential equations, we prove the existence of solu-
tions to (3.4)− (3.6) on some interval [0, tn), 0 < tn < T . In order to extend the
solution of (3.4) − (3.6) to the whole interval [0, T ], we need following a prior
estimate.

Step 1. Setting w = u′
n(t) in (3.4), we obtain

d

dt

(
1
2

∥∥u′
n(t)

∥∥2

2
+

µ(t)
2

‖∇un(t)‖2
2

)
+
∥∥∇u′

n(t)
∥∥2

2

=
∫

Ω

f1(x, t)u′
n(t)dx +

∫ t

0

g(t− τ)
∫

Ω

∇un(τ) · ∇u′
n(t)dxdτ

+
µ′(t)

2
‖∇un(t)‖2

2 .

Noting that, by Hölder inequality and Young’s inequality, we have

(3.8)

∫ t

0
g(t− τ)

∫
Ω
∇un(τ) · ∇u′

n(t)dxdτ

≤ 1
2

∥∥∇u′
n(t)

∥∥2

2
+

‖g‖L1

2

∫ t

0
g(t− τ) ‖∇un(τ)‖2

2 dτ,
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and

(3.9)
∫

Ω

f1(x, t)u′
n(t)dx ≤ 1

2
‖f1‖2

2 +
1
2

∥∥u′
n(t)

∥∥2

2
.

Then, by using (3.8) and (3.9), we obtain from (3.7)

(3.10)

d

dt

(
1
2

∥∥u′
n(t)

∥∥2

2
+

µ(t)
2

‖∇un(t)‖2
2

)
+

1
2

∥∥∇u′
n(t)

∥∥2

2

≤ 1
2
‖f1‖2

2 +
‖g‖L1

2

∫ t

0
g(t − τ) ‖∇un(τ)‖2

2 dτ

+
µ′(t)

2
‖∇un(t)‖2

2 +
1
2

∥∥u′
n(t)

∥∥2

2
.

By integrating (3.10), we get

(3.11)

∥∥u′
n(t)

∥∥2

2
+ µ(t) ‖∇un(t)‖2

2 +
∫ t

0

∥∥∇u′
n(t)

∥∥2

2
dt

≤c1+
∫ t

0

[
1+

1
µ(t)

(∣∣µ′(t)
∣∣+‖g‖2

L1

)][∥∥u′
n(t)

∥∥2

2
+ µ(t) ‖∇un(t)‖2

2

]
dt.

where c1 = ‖u1n‖2
2 + µ(0) ‖∇u0n‖2

2 +
∫ t
0 ‖f1‖2

2 dt.
Thus, by employing Gronwall’s Lemma, we see that

(3.12)
∥∥u′

n(t)
∥∥2

2
+ µ(t) ‖∇un(t)‖2

2 +
∫ t

0

∥∥∇u′
n(t)

∥∥2

2
dt ≤ L1,

for t ∈ [0, T ] and L1 is a positive constant independent of n ∈ N.

Step 2. Setting w = u′′
n(t) in (3.4), we have

(3.13)

∥∥u′′
n(t)

∥∥2

2
+

d

dt

(
µ(t)

∫
Ω
∇un(t) · ∇u′

n(t)dx +
1
2
∥∥∇u′

n(t)
∥∥2

2

)

= µ′(t)
∫

Ω
∇un(t) · x∇u′

n(t)dx + µ(t)
∥∥∇u′

n(t)
∥∥2

2

+
d

dt

(∫ t

0
g(t−τ)

∫
Ω
∇un(τ)·∇u′

n(t)dxdτ

)
−g(0)

∫
Ω
∇un(t)·∇u′

n(t)dx

−
∫ t

0
g′(t − τ)

∫
Ω
∇un(τ) · ∇u′

n(t)dxdτ +
∫

Ω
f1(x, t)u′′

n(t)dx.

Noting that, by (2.5), Hölder inequality and Young’s inequality, we have

(3.14)
−
∫ t

0
g′(t − τ)

∫
Ω
∇un(τ) · ∇u′

n(t)dxdτ

≤ η
∥∥∇u′

n(t)
∥∥2

2
+

ξ2
1 ‖g‖L1

4η

∫ t

0
g(t − τ) ‖∇un(τ)‖2

2 dτ.
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By Hölder inequality and Young’s inequality again, we get

(3.15) g(0)
∫

Ω
∇un(t) · ∇u′

n(t)dx ≤ η
∥∥∇u′

n(t)
∥∥2

2
+

g(0)2

4η
‖∇un(t)‖2

2 ,

and

(3.16)
∣∣∣∣µ′(t)

∫
Ω
∇un(t) · ∇u′

n(t)dx

∣∣∣∣ ≤ η
∥∥∇u′

n(t)
∥∥2

2
+

M2
1

4η
‖∇un(t)‖2

2 ,

where 0 < η ≤ 1
4 is some positive constant and M1 = sup

0≤t≤T
{|µ′(t)|} .

Thus, integrating (3.13) over (0, t), and using (3.14)− (3.16), we obtain

(3.17)

1
2

∥∥∇u′
n(t)

∥∥2

2
+

1
2

∫ t

0

∥∥u′′
n(t)

∥∥2

2
dt

≤ M2
1 + ξ2

1 ‖g‖2
L1 + g(0)2

4η

∫ t

0
‖∇un(τ)‖2

2 dτ + µ(t)
∫ t

0

∥∥∇u′
n(t)

∥∥2

2
dt

+3η

∫ t

0

∥∥∇u′
n(t)

∥∥2

2
dt +

1
2

∫ t

0
‖f1‖2

2 dt

+
∫ t

0
g(t− τ)

∫
Ω
∇un(τ) · ∇u′

n(t)dxdτ

+µ(t)
∣∣∣∣
∫

Ω
∇un(t) · ∇u′

n(t)dx

∣∣∣∣+ µ(0)
∣∣∣∣
∫

Ω
∇u0n · ∇u1ndx

∣∣∣∣ .
By using Hölder inequality and Young’s inequality on the fifth and sixth term in
(3.17) and by (3.12), we deduce(

1
2
− 2η

)∥∥∇u′
n(t)

∥∥2

2
+

1
2

∫ t

0

∥∥u′′
n(t)

∥∥2

2
dt

≤ c2 + (M2 + 3η)
∫ t

0

∥∥∇u′
n(τ)

∥∥2

2
dτ,

where c2 = µ(0) ‖∇u0n‖2 ‖∇u1n‖2 + [(M2
1 +ξ2

1‖g‖2
L1+g(0)2+‖g‖L1‖g‖L∞)T+M2

2 ]L1

4ηm0

+1
2

∫ t
0 ‖f1‖2

2 dt and M2 = sup
0≤t≤T

{|µ(t)|} .

Then, by Gronwall’s Lemma, we have

(3.18)
∥∥∇u′

n(t)
∥∥2

2
+
∫ t

0

∥∥u′′
n(t)

∥∥2

2
dt ≤ L2,

for all t ∈ [0, T ] and L2 is a positive constant independent of n ∈ N.
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Step 3. Setting w = −∆un in (3.4), we deduce

(3.19)

d

dt

(
−
∫

Ω

u′
n(t)∆un(t)dx +

1
2
‖∆un(t)‖2

2

)

− ∥∥∇u′
n(t)

∥∥2

2
+ µ(t) ‖∆un‖2

2

≤ 1
4η

‖f1‖2
2 + η ‖∆un‖2

2 +
∫ t

0

g(t− τ)
∫

Ω

∆un(τ)∆un(t)dxdτ,

where 0 < η ≤ m0
2 is some positive constant.

Since

(3.20)

∫ t

0
g(t − τ)

∫
Ω

∆un(τ)∆un(t)dxdτ

≤ η ‖∆un(t)‖2
2 +

‖g‖L1

4η

∫ t

0
g(t − τ) ‖∆un(τ)‖2

2 dτ,

then by integrating (3.19) and using (3.20) and (3.18), we obtain

1
4
‖∆un‖2

2 + (m0 − 2η)
∫ t

0
‖∆un(τ)‖2

2 dτ

≤ c3 +
‖g‖2

L1

4η

∫ t

0
‖∆un(τ)‖2

2 dτ,

where c3 = ‖u1n‖2 ‖∆u0n‖2 + 1
2 ‖∆u0n‖2

2 + 1
4η

∫ t
0 ‖f1‖2

2 dt + L1 + L2T.
Thus, by Gronwall’s Lemma, we have

(3.21) ‖∆un‖2
2 +

∫ t

0
‖∆un(τ)‖2

2 dτ ≤ L3,

for all t ∈ [0, T ] and L3 is a positive constant independent of n ∈ N.

Step 4. Let j ≥ n be two natural numbers and consider zn = uj − un.

Then, applying the same way as in the estimate step 1 and step3 and observing that
{u0n} and {u1n} are Cauchy sequence in H1

0 (Ω)∩H2(Ω) and L2(Ω), respectively,
we deduce

(3.22)
∥∥z′n(t)

∥∥2

2
+ µ(t) ‖∇zn(t)‖2

2 +
∫ t

0

∥∥∇z′n(t)
∥∥2

2
dt → 0,

and

(3.23) ‖∆zn‖2
2 +

∫ t

0
‖∆zn(τ)‖2

2 dτ → 0, as n → ∞,
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for all t ∈ [0, T ].
Therefore, from (3.12), (3.18), (3.21), (3.22) and (3.23), we see that

(3.24) ui → u strongly in C(0, T ; H1
0(Ω)),

(3.25) u′
i → u′ strongly in C(0, T ; L2(Ω)),

(3.26) u′
i → u′ strongly in L2(0, T ; H1

0(Ω)),

(3.27) u′′
i → u′′ weakly in L2(0, T ; L2(Ω)).

Then (3.24)− (3.27) are sufficient to pass the limit in (3.4) to obtain

utt − µ(t)∆u +
∫ t

0

g(t− s)∆u(s)ds− ∆ut = f1(x, t) in L2(0, T ; H−1(Ω)).

Next, we want to show the uniqueness of (3.1)− (3.3). Let u(1), u(2) be two
solutions of (3.1)− (3.3). Then z = u(1) − u(2) satisfies

(3.28)

∫
Ω

z′′(t)wdx+µ(t)
∫

Ω

∇z(t) · ∇wdx −
∫ t

0

g(t−τ)
∫

Ω

∇z(τ)·∇wdxdτ

+
∫

Ω
∇z′(t) · ∇wdx = 0 for w ∈ H1

0 (Ω),

z(x, 0) = 0, z′(x, 0) = 0, x ∈ Ω,

and
z(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

Setting w = z′(t) in (3.28), then as in deriving (3.12), we see that

∥∥z′(t)∥∥2

2
+ µ(t) ‖∇z(t)‖2

2 +
∫ t

0

∥∥∇z′(t)
∥∥2

2
dt

≤
∫ t

0

[
1 +

1
µ(s)

(∣∣µ′(s)
∣∣+ ‖g‖2

L1

)][∥∥z′(s)∥∥2

2
+ µ(s) ‖∇z(s)‖2

2

]
dt.

Thus, employing Gronwall’s Lemma, we conclude that

(3.29)
∥∥z′(t)∥∥

2
= ‖∇z(t)‖2 = 0 for all t ∈ [0, T ].

Therefore, we have the uniqueness.
Now, we are ready to to show the local existence of the problem (1.1)− (1.3).
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Theorem 3.2. Suppose that (A1) and (A2) hold, and that u 0 ∈ H1
0 (Ω)∩H2(Ω),

u1 ∈ L2(Ω), then there exists a unique solution u of (1.1)− (1.3) satisfying

u ∈ C([0, T ]; H1
0(Ω) ∩ H2(Ω)) and ut ∈ C([0, T ]; L2(Ω)) ∩ L2([0, T ]; H1

0(Ω)).

Moreover, at least one of the following statements holds true :

(3.30)
(i)T = ∞,

(ii)e(u(t)) ≡ ‖ut(t)‖2
2 + ‖∆u(t)‖2

2 → ∞ as t → T−.

Proof. Define the following two-parameter space: XT,R0 ={
v ∈ C([0, T ]; H1

0(Ω) ∩ H2(Ω)), vt ∈ C([0, T ]; L2(Ω)) ∩ L2([0, T ]; H1
0(Ω)) :

e(v(t)) ≤ R2
0, t ∈ [0, T ], with v(0) = u0 and vt(0) = u1.

}
,

for T > 0, R0 > 0. Then XT,R0 is a complete metric space with the distance

(3.31) d(y, z) = sup
0≤t≤T

e(y(t) − z(t))
1
2 .

where y, z ∈ XT,R0.
Given v ∈ XT,R0, we consider the following problem

(3.32) utt − M(‖∇v‖2
2)∆u +

∫ t

0

g(t − s)∆u(s)ds − ∆ut = f(v),

with initial conditions

(3.33) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

and boundary condition

(3.34) u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

First of all, we observe that

(3.35)

d

dt
M(‖∇v‖2

2) = 2M ′(‖∇v‖2
2)
∫

Ω

∇v · ∇vtdx

≤ 2M3 ‖∆v‖2 ‖vt‖2

≤ 2M3R
2
0,

where M3 = sup{|M ′(s)| ; 0 ≤ s ≤ B2
1R2

0}. And by (A2), we see that f ∈
L2([0, T ]; L2(Ω)).

Thus, by Lemma 3.1, there exists a unique solution u of (3.32)− (3.34). We
define the nonlinear mapping Sv = u, and then, we shall show that there exist
T > 0 and R0 > 0 such that
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(i) S : XT,R0 → XT,R0,

(ii) S is a contraction mapping in XT,R0with respect to the metric d(·, ·) defined
in (3.31).

(i) Multiplying (3.32) by 2ut, and then integrating it over Ω× (0, t), we obtain

(3.36)

d

dt

[
‖ut‖2

2 +
(

M(‖∇v‖2
2) −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 + (g � ∇u)(t)
]

+2 ‖∇ut‖2
2 − (g′ � ∇u)(t) + g(t) ‖∇u(t)‖2

2

= I1 + I2,

where
I1 =

(
d

dt
M(‖∇v‖2

2)
)
‖∇u(t)‖2

2 ,

and
I2 = 2

∫
Ω

f(v)utdx.

The equality in (3.36) is obtained, because

(3.37)

−
∫ t

0

∫
Ω

g(t − τ)∇u(τ) · ∇ut(t)dxdτ

=
1
2

d

dt

[
(g � ∇u)(t)−

∫ t

0
g(τ) ‖∇u(t)‖2

2 dτ

]

−1
2
(g′ � ∇u)(t) +

1
2
g(t) ‖∇u(t)‖2

2 ,

where

(3.38) (g � ∇u)(t) =
∫ t

0
g(t− τ)

∫
Ω
|∇u(τ)−∇u(t)|2 dxdτ.

Noting that by using (3.35) and (3.30), we have

(3.39) |I1| ≤ 2M3B
2
1R2

0e(u(t)),

and by (A2), Hölder inequality and Poincaré inequality, we get

(3.40)

|I2| ≤ 2k1

∫
Ω
|v|p−1 |ut| dx

≤ 2k1B
2(p−1)
1 ‖∆v‖p−1

2 ‖ut‖2

≤ 2k1B
2(p−1)
1 Rp−1

0 e(u(t))
1
2 .
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Then, by (3.39), (3.40) and (A1), we have from (3.36)

(3.41)

d

dt

[
‖ut‖2

2 +
(

M(‖∇v‖2
2) −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 + (g � ∇u)(t)
]

+2 ‖∇ut‖2
2

≤ 2M3B
2
1R2

0e(u(t)) + 2k1B
2(p−1)
1 Rp−1

0 e(u(t))
1
2 .

On the other hand, multiplying (3.32) by −2∆u, and integrating it over Ω, we get

d

dt

{
‖∆u‖2

2 − 2
∫

Ω
ut∆udx

}
+ 2M

(‖∇v‖2
2

) ‖∆u(t)‖2
2

≤ 2
∫

Ω
ut∆utdx − 2

∫
Ω

f(v)∆udx + 2
∫ t

0
g(t − τ)

∫
Ω

∆u(τ)∆u(t)dxdτ.

Using similar arguments as for (3.20) and (3.40), we deduce

(3.42)

d

dt

{
‖∆u‖2

2 − 2
∫

Ω
ut∆udx

}
+ 2

(
M
(‖∇v‖2

2

)− η
) ‖∆u(t)‖2

2

≤ 2k1B
2(p−1)
1 R

p−1
0 e(u)

1
2 +

‖g‖L1

2η

∫ t

0
g(t − τ) ‖∆u(τ)‖2

2 dτ

+2 ‖∇ut‖2
2 ,

where 0 < η ≤ ‖g‖L1

2 is some constant.
Multiplying (3.42) by ε, 0 < ε ≤ 1, and adding (3.41) together, we obtain

(3.43)

d

dt
e∗(u(t)) + 2(1− ε) ‖∇ut‖2

2 + 2ε
(
M
(‖∇v‖2

2

)− η
) ‖∆u(t)‖2

2

≤ 2M3B
2
1R2

0e(u(t)) + 2k1(1 + ε)B2(p−1)
1 Rp−1

0 e(u(t))
1
2

+ε
‖g‖L1

2η

∫ t

0
g(t − τ) ‖∆u(τ)‖2

2 dτ,

where

e∗(u(t))

= ‖ut‖2
2 +

(
M(‖∇v‖2

2) −
∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 + (g � ∇u)(t)

−2ε

∫
Ω

ut∆udx + ε ‖∆u‖2
2 .
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By Young’s inequality, we get∣∣∣∣2ε

∫
Ω

ut∆udx

∣∣∣∣ ≤ 2ε ‖ut‖2
2 +

ε

2
‖∆u‖2

2 .

Hence

e∗(u(t)) ≥ (1 − 2ε) ‖ut‖2
2 +

ε

2
‖∆u‖2

2 +
(

M(‖∇v‖2
2) −

∫ t

0
g(s)ds

)
‖∇u‖2

2

+(g � ∇u)(t).

Choosing ε = 2
5 and by (2.4), we have

(3.44) e∗(u(t)) ≥ 1
5
e(u(t)),

and

(3.45)
e∗(u0) ≤ (1 + 2ε) ‖u1‖2

2 + 3ε
2 ‖∆u0‖2

2 + M
(‖∇u0‖2

2

) ‖∇u0‖2
2

≤ c2,

where
c2 = 2 ‖u1‖2

2 + ‖∆u0‖2
2 + M

(‖∇u0‖2
2

) ‖∇u0‖2
2 .

Integrating (3.43) over (0, t), we get

(3.46)

e∗(u(t)) +
4
5

(
m0 − η − ‖g‖2

L1

4η

)∫ t

0

‖∆u(s)‖2
2 ds

≤ e∗(u0) +
∫ t

0
[10M3B

2
1R2

0e
∗(u(s))

+
14

√
5

5
k1B

2(p−1)
1 Rp−1

0 e∗(u(s))
1
2 ]ds

Taking η = ‖g‖L1

2 in (3.46), then from (2.4), we deduce

e∗(u(t)) ≤ e∗(u0)+
∫ t

0

(
10M3B

2
1R2

0e
∗(u(s)) +

14
√

5
5

k1B
2(p−1)
1 Rp−1

0 e∗(u(s))
1
2

)
ds.

Thus, by Gronwall’s Lemma and using (3.45), we have

(3.47) e∗(u(t)) ≤
(
√

c2 +
7
√

5
20

k1B
2(p−1)
1 Rp−1

0 T

)2

e10M3B
2
1R2

0T .
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Then, by (3.44), we obtain

(3.48) e(u(t)) ≤ χ(u0, u1, R0, T )2e10M3B2
1R2

0T ,

for any t ∈ (0, T ] and

χ(u0, u1, R0, T ) =
√

5c2 +
7
4
k1B

2(p−1)
1 Rp−1

0 T.

We see that if parameters T and R0 satisfy

(3.49) χ(u0, u1, R0, T )2e20M3B
2
1R2

0T ≤ R2
0.

Moreover, by Lemma 3.1, u ∈ C0([0, T ]; H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, T ]; L2(Ω)).

On the other hand, it follows from (3.41) and (3.48) that ut ∈ L2((0, T ); H1
0(Ω)).

Thus, S maps XT,R0 into itself.
Next, we will show that S is a contraction mapping with respect to the metric

d(·, ·). Let vi ∈ XT,R0 and u(i) ∈ XT,R0, i = 1, 2 be the corresponding solution to
(3.32)− (3.34).

Let w(t) = (u(1) − u(2))(t), then w satisfy the following system:

(3.50)
wtt − M

(‖∇v1‖2
2

)
∆w +

∫ t

0
g(t− τ)∆w(τ)dτ − ∆wt

= f(v1) − f(v2) +
[
M
(‖∇v1‖2

2

)− M
(‖∇v2‖2

2

)]
∆u(2),

with initial conditions

(3.51) w(0) = 0, wt(0) = 0,

and boundary condition

(3.52) w(x, t) = 0, x ∈ ∂Ω and t ≥ 0.

Multiplying (3.50) by 2wt, and integrating it over Ω, we have
(3.53)

d

dt

[
‖wt‖2

2 +
(

M(‖∇v1‖2
2) −

∫ t

0
g(s)ds

)
‖∇w(t)‖2

2 + (g � ∇w)(t)
]

+2 ‖∇wt‖2
2 − (g′ � ∇w)(t) + g(t) ‖∇w(t)‖2

2

= I3 + I4 + I5,

where
I3 = 2

[
M
(‖∇v1‖2

2

)− M
(‖∇v2‖2

2

)] ∫
Ω

∆u(2)wtdx,
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I4 = 2
∫

Ω
(f(v1) − f(v2))wtdx,

and

I5 =
(

d

dt
M(‖∇v1‖2

2)
)
‖∇w(t)‖2

2 .

To proceed the estimates of Ii, i = 3, 4, 5, we observe that

(3.54)
|I3| ≤ 2L (‖∇v1‖2 + ‖∇v2‖2) ‖∇v1 −∇v2‖2

∥∥∆u(2)
∥∥

2
‖wt‖2

≤ 4LB2
1R2

0e(v1 − v2)
1
2 e(w(t))

1
2 ,

(3.55) |I4| ≤ 4k1B
2(p−1)
1 Rp−2

0 e(v1 − v2)
1
2 e(w(t))

1
2 ,

and

(3.56) |I5| ≤ 2M3B
2
1R2

0e(w(t)),

where L = L(R0) is the Lipschitz constant of M(r) in [0, R0].
Thus, by using (3.54)− (3.56) in (3.53), we get

(3.57)

d

dt

[
‖wt‖2

2 +
(

M(‖∇v1‖2
2)−

∫ t

0
g(s)ds

)
‖∇w(t)‖2

2+(g � ∇w)(t)
]

+2 ‖∇wt‖2
2

≤ 2M3B
2
1R2

0e(w(t)) + c3e(v1 − v2)
1
2 e(w(t))

1
2 ,

where c3 = 4
(
LB2

1R2
0 + k1B

2(p−1)
1 Rp−2

0

)
.

On the other hand, multiplying (3.50) by −2∆w, and as in deriving (3.42),
(3.54) and (3.56), we deduce

(3.58)

d

dt

{
‖∆w‖2

2 − 2
∫

Ω
wt∆wdx

}
+ 2

(
M
(‖∇v1‖2

2

)− η
) ‖∆w(t)‖2

2

≤ c3e(v1 − v2)
1
2 e(w)

1
2 +

‖g‖L1

2η

∫ t

0
g(t− τ) ‖∆w(τ)‖2

2 dτ

+2 ‖∇wt‖2
2 ,

where 0 < η ≤ ‖g‖L1

2 .
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Multiplying (3.58) by ε, 0 < ε ≤ 1, and adding (3.57) together, we obtain

(3.59)

d

dt
e∗(w(t)) + 2(1 − ε) ‖∇wt‖2

2 + 2ε
(
M
(‖∇v1‖2

2

)− η
) ‖∆w‖2

2

≤ 2M3B
2
1R2

0e(w(t)) + (1 + ε)c3e(v1 − v2)
1
2 e(w(t))

1
2

+ε
‖g‖L1

2η

∫ t

0

g(t − τ) ‖∆w(τ)‖2
2 dτ,

where

(3.60)

e∗(w(t))

= ‖wt‖2
2 +

(
M(‖∇v1‖2

2) −
∫ t

0
g(s)ds

)
‖∇w‖2

2 + (g � ∇w)(t)

−2ε

∫
Ω

wt∆wdx + ε ‖∆w‖2
2 .

By using Young’s inequality on the fourth term of right hand side of (3.60), we get

e∗(w(t)) ≥ (1 − 2ε) ‖wt‖2
2 +

ε

2
‖∆w‖2

2

+
(

M(‖∇v1‖2
2) −

∫ t

0
g(s)ds

)
‖∇w(t)‖2

2 + (g � ∇w)(t).

Choosing ε = 2
5 and by (2.4), we have

(3.61) e∗(w(t)) ≥ 1
5
e(w(t)),

and by (3.51)− (3.52), we also see that

(3.62) e∗(w(0)) = 0.

Then, applying the same way as in obtaining (3.46) and then taking η = ‖g‖L1

2 , we
deduce

e∗(w(t)) ≤ e∗(w(0)) +
∫ t

0
[10M3B

2
1R2

0e∗(w(s))

+
7
√

5c3

5
e(v1 − v2)

1
2 e∗(w(s))

1
2 ]ds.

Thus, by Gronwall’s Lemma, we obtain

e∗(w(t)) ≤
(

7
√

5c3

20
B

2(p−1)
1 Rp−2

0

)2

T 2e10M3B
2
1R2

0T sup
0≤t≤T

e(v1 − v2).
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By (3.61) and (3.31), we have

(3.63) d(u1, u2) ≤ C(T, R0)
1
2 d(v1, v2),

where

C(T, R0) = 5

(
7
√

5c3

20
B

2(p−1)
1 Rp−2

0

)2

T 2e10M3B2
1R2

0T .

Hence, under inequality (3.49), S is a contraction mapping if C(T, R0) < 1. Indeed,
we choose R0 sufficient large and T sufficient small so that (3.49) and (3.63) are
satisfied at the same time. By applying Banach fixed point theorem, we obtain the
local existence result.

The second statement of the theorem is proved by a standard continuation argu-
ment. The proof of Theorem 3.2 is now completed.

4. GLOBAL EXISTENCE AND ENERGY DECAY

In this section, we consider the global existence and energy decay of solutions
for a kind of the problem (1.1)− (1.3) :

(4.1) utt − M(‖∇u‖2
2)∆u +

∫ t

0
g(t − s)∆u(s)ds − ∆ut = |u|p−2 u,

with initial conditions

(4.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

and boundary condition

(4.3) u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where 2 < p ≤ 2(N−1)
N−2 and M(s) = m0 + bsγ , m0 > 0, b ≥ 0, γ ≥ 1 and s ≥ 0.

Let

(4.4)
I1(t) ≡ I1(u(t)) =

(
m0 −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 + (g � ∇u)(t)

−‖u(t)‖p
p,

(4.5)
I2(t) ≡ I2(u(t)) =

(
m0 −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 + b ‖∇u(t)‖2(γ+1)
2

+(g � ∇u)(t) − ‖u(t)‖p
p,
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and

(4.6)
J(t) ≡ J(u(t)) =

1
2

(
m0 −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 +
1
2
(g � ∇u)(t)

+
b

2(γ + 1)
‖∇u(t)‖2(γ+1)

2 − 1
p
‖u(t)‖p

p,

for u(t) ∈ H1
0 (Ω), t ≥ 0, and (g � ∇u)(t) is given in (3.38).

We define the energy of the solution u of (4.1)− (4.3) by

(4.7) E(t) =
1
2
‖ut‖2

2 + J(t).

Lemma 4.1. E(t) is a non-increasing function on [0,∞) and

(4.8) E ′(t) = −‖∇ut‖2
2 +

1
2
(g′ � ∇u)(t)− 1

2
g(t) ‖∇u(t)‖2

2 .

Proof. By using Divergence theorem, (4.1) − (4.3) and (3.37), we see that
(4.8) follows at once.

Lemma 4.2. Let u be the solution of (4.1)− (4.3). Assume the conditions of
Theorem 3.2 hold. If I1(u0) > 0 and

(4.9) α =
Bp

1

l

(
2p

l(p− 2)
E(0)

)p−2
2

< 1,

then I2(t) > 0, for all t ≥ 0.

Proof. Since I1(u0) > 0, it follows from the continuity of u(t) that

(4.10) I1(t) > 0,

for some interval near t = 0. Let tmax > 0 be a maximal time (possibly tmax = T ),
when (4.10) holds on [0, tmax).

From (4.6) and (4.4), we have

(4.11)
J(t) ≥ 1

2

(
m0 −

∫ t

0
g(s)ds

)
‖∇u‖2

2 +
1
2
(g � ∇u)(t)− 1

p
‖u‖p

p

≥ p − 2
2p

[(
m0 −

∫ t

0
g(s)ds

)
‖∇u‖2

2 + (g � ∇u)(t)
]

+
1
p
I1(t).
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By using (4.11), (4.7) and Lemma 4.1, we get

(4.12)
l ‖∇u‖2

2 ≤
(

m0 −
∫ t

0
g(s)ds

)
‖∇u‖2

2 ≤ 2p

p − 2
J(t)

≤ 2p

p − 2
E(t) ≤ 2p

p − 2
E(0).

Then, from Poincaré inequality and (4.9), we obtain from (4.12)

(4.13)
‖u‖p

p ≤ Bp
1‖∇u‖p

2 ≤ Bp
1

l

(
2p

l(p− 2)
E(0)

)p−2
2

l ‖∇u‖2
2

= αl ‖∇u‖2
2 <

(
m0 −

∫ t

0
g(s)ds

)
‖∇u‖2

2 on [0, tmax).

Thus

(4.14) I1(t) =
(

m0 −
∫ t

0
g(s)ds

)
‖∇u‖2

2+(g�∇u)(t)−‖u‖p
p > 0 on [0, tmax).

This implies that we can take tmax = T. But, from (4.4) and (4.5), we see that

I2(t) ≥ I1(t), t ∈ [0, T ].

Therefore, we have I2(t) > 0, t ∈ [0, T ].
Next, we want to show that T = ∞. Multiplying (4.1) by −2∆u, and integrating

it over Ω, we get

d

dt

{
‖∆u‖2

2 − 2
∫

Ω
ut∆udx

}
+ 2M

(‖∇v‖2
2

) ‖∆u‖2
2

≤ 2 ‖∇ut‖2
2 − 2

∫
Ω
|u|p−2 u∆udx + 2

∫ t

0
g(t− τ)

∫
Ω

∆u(τ)∆u(t)dxdτ.

Applying the same arguments as in (3.42), we have

(4.15)

d

dt

{
‖∆u‖2

2 − 2
∫

Ω
ut∆udx

}
+
(
2M

(‖∇u‖2
2

)− 2η
) ‖∆u‖2

2

≤ 2 ‖∇ut‖2
2 +

‖g‖L1

2η

∫ t

0
g(t− τ) ‖∆u(τ)‖2

2 dτ

−2
∫

Ω

|u|p−2 u∆udx,

where 0 < η ≤ ‖g‖L1

2 .
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Multiplying (4.15) by ε, 0 < ε ≤ 1, and multiplying (4.8) by 2, and then adding
them together, we obtain

(4.16)

d

dt
E∗(t) + 2(1 − ε) ‖∇ut‖2

2 + 2ε
(
M
(‖∇u‖2

2

)− η
) ‖∆u‖2

2

≤ −2ε

∫
Ω
|u|p−2 u∆udx + ε

‖g‖L1

2η

∫ t

0
g(t− τ) ‖∆u(τ)‖2

2 dτ,

where

(4.17) E∗(t) = 2E(t)− 2ε

∫
Ω

ut∆udx + ε ‖∆u‖2
2 .

By Young’s inequality, we get∣∣∣∣2ε

∫
Ω

ut∆udx

∣∣∣∣ ≤ 2ε ‖ut‖2
2 +

ε

2
‖∆u‖2

2 .

Hence, choosing ε = 2
5 and by (4.14), we see that

(4.18) E∗(t) ≥ 1
5

(
‖ut‖2

2 + ‖∆u‖2
2

)
.

Moreover, we note that

(4.19)
2
∣∣∣∣
∫

Ω
|u|p−2 u∆udx

∣∣∣∣ ≤ 2(p− 1)
∫
Ω |u|p−2 |∇u|2 dx

≤ 2(p− 1) ‖u‖p−2
(p−2)θ1

‖∇u‖2
2θ2

,

where 1
θ1

+ 1
θ2

= 1, so that, we put θ1 = 1 and θ2 = ∞, if N = 1; θ1 = 1 + ε1 (
for arbitrary small ε1 > 0 ), if N = 2; and θ1 = N

2 , θ2 = N
N−2 , if N ≥ 3.

Then, by Poincaré inequality, (4.12) and (4.18), we have

(4.20)
2
∣∣∣∣
∫

Ω

|u|p−2 u∆udx

∣∣∣∣ ≤ 2Bp
1(p − 1) ‖∇u‖p−2

2 ‖∆u‖2
2

≤ c1E
∗(t),

where c1 = 10B
p
1(p − 1)

(
2p

l(p−2)E(0)
)p−2

2
.

Substituting (4.20) into (4.16), and then integrating it over (0, t), we obtain

(4.21)
E∗(t) +

4
5

(
m0 − η − ‖g‖2

L1

4η

)∫ t

0
‖∆u(s)‖2

2 ds

≤ E∗(0) +
∫ t

0
c1E

∗(s)ds
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Taking η = ‖g‖L1

2 in (4.21), and then by Gronwall’s Lemma, we deduce

E∗(t) ≤ E∗(0) exp(c1t),

for any t ≥ 0. Therefore by Theorem 3.2, we have T = ∞.

Lemma 4.3. If u satisfies the assumptions of Lemma 4.2, then there exists
0 < η1 < 1 such that

(4.22) ‖u(t)‖p
p ≤ (1− η1)

(
m0 −

∫ t

0

g(s)ds

)
‖∇u(t)‖2

2 on [0,∞),

where η1 = 1 − α.

Proof. From (4.11), we get

‖u‖p
p ≤ αl ‖∇u‖2

2 .

Let η1 = 1 − α, then we have (4.22).

Theorem 4.4. (Global existence and Energy decay) Suppose that (A1) holds.
Assume I1(u0) > 0 and (4.9) holds, then the problem (4.1)− (4.3) admits a global
solution u if u0 ∈ H1

0 (Ω) ∩ H2(Ω) and u1 ∈ L2(Ω).
Furthermore, we have the following decay estimates:

E(t) ≤ E(0)e−τ1t on [0,∞),

where τ1 is given in (4.38).

Proof. By integrating (4.8) over [t, t + 1], we get

(4.23) E(t)− E(t + 1) ≡ D(t)2,

where

D(t)2 =
∫ t+1

t
‖∇ut‖2

2 dt − 1
2

∫ t+1

t
(g′ � ∇u)(t)dt +

1
2

∫ t+1

t
g(t) ‖∇u(t)‖2

2 dt

Hence, by (A1), there exist t1 ∈ [t, t + 1
4 ], t2 ∈ [t + 3

4 , t + 1] such that

(4.24) ‖∇ut(ti)‖2
2 ≤ 4D(t)2, i = 1, 2.
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Next, multiplying (4.1) by u and integrating it over Ω × [t1, t2], we have

∫ t2

t1

[(
m0 −

∫ t

0
g(s)ds

)
‖∇u‖2

2 + b ‖∇u‖2(γ+1)
2 − ‖u‖p

p

]
dt

= −
∫ t2

t1

∫
Ω

uttudxdt−
∫ t2

t1

∫
Ω

∇ut · ∇udxdt

+
∫ t2

t1

∫
Ω

∫ t

0
g(t− s)∇u(t) · [∇u(s) −∇u(t)] dsdxdt.

Then, by (4.5), we obtain

∫ t2

t1

I2(t)dt

= −
∫ t2

t1

∫
Ω

uttudxdt −
∫ t2

t1

∫
Ω
∇ut · ∇udxdt +

∫ t2

t1

(g � ∇u)(t)dt

+
∫ t2

t1

∫
Ω

∫ t

0
g(t − s)∇u(t) · [∇u(s) −∇u(t)]dsdxdt.

By using Hölder inequality and Young’s inequality, we have

(4.25)
∣∣∣∣
∫ t2

t1

∫
Ω
∇ut · ∇udxdt

∣∣∣∣ ≤
∫ t2

t1

‖∇ut‖2 ‖∇u‖2 dt,

and

(4.26)

∫ t2

t1

∫
Ω

∫ t

0
g(t − s)∇u(t) · [∇u(s) −∇u(t)]dsdxdt

≤ δ

∫ t2

t1

∫ t

0
g(t − s) ‖∇u‖2

2 dsdt +
1
4δ

∫ t2

t1

(g � ∇u)(t)dt,

where δ is some positive constant to be chosen later.
Note that by integrating by parts, Hölder inequality and Poincaré inequality, we

get

(4.27)

∣∣∣∣
∫ t2

t1

∫
Ω

uttudxdt

∣∣∣∣
≤ B2

1

2∑
i=1

‖∇ut(ti)‖2 ‖∇u(ti)‖2 + B2
1

∫ t+1

t
‖∇ut‖2

2 dt.
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Then, by (4.25)− (4.27), we deduce∫ t2

t1

I2(t)dt

≤ B2
1

2∑
i=1

‖∇ut(ti)‖2 ‖∇u(ti)‖2 + B2
1

∫ t+1

t
‖∇ut‖2

2 dt

+
∫ t2

t1

‖∇ut‖2 ‖∇u‖2 dt + (
1
4δ

+ 1)
∫ t2

t1

(g � ∇u)(t)dt

+δ

∫ t2

t1

∫ t

0
g(t− s) ‖∇u(t)‖2

2 dsdt.

Furthermore, by (4.24) and (4.12), we have

(4.28) ‖∇ut(ti)‖2 ‖∇u(ti)‖2 ≤ c2D(t) sup
t1≤s≤t2

E(s)
1
2 ,

and

(4.29)
∫ t2

t1

‖∇ut‖2 ‖∇u‖2 dt ≤ c2

2
D(t) sup

t1≤s≤t2

E(s)
1
2 ,

where c2 = 2
(

2p
l(p−2)

) 1
2
.

Thus, by using (4.28) and (4.29), we obtain

(4.30)

∫ t2

t1

I2(t)dt

≤ c3D(t) sup
t1≤s≤t2

E(s)
1
2 + B2

1D(t)2 + (
1
4δ

+ 1)
∫ t2

t1

(g � ∇u)(t)dt

+δ

∫ t2

t1

∫ t

0
g(t − s) ‖∇u(t)‖2

2 dsdt,

where c3 =
(
2B2

1 + 1
2

)
c2.

On the other hand, from (2.5) and (4.23), we get

(4.31)

∫ t2

t1

(g � ∇u)(t)dt

≤ − 1
ξ2

∫ t2

t1

(g′ � ∇u)(t)dt

≤ 2
ξ2

D(t)2,
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and by (2.4) and Lemma 4.3, we have

(4.32)

∫ t2

t1

∫ t

0
g(t− s)‖∇u(t)‖2

2 dsdt≤ −1
ξ2

∫ t2

t1

∫ t

0
g′(t−s) ‖∇u(t)‖2

2 dsdt

=
1
ξ2

∫ t2

t1

[g(0)− g(t)]‖∇u(t)‖2
2 dt

≤ 1
ξ2

∫ t2

t1

g(0) ‖∇u(t)‖2
2 dt

≤ g(0)
η1lξ2

∫ t2

t1

I2(t)dt,

where the last inequality is derived by (4.22), because

(4.33)
(

m0 −
∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 ≤ 1
η1

I1(t) ≤ 1
η1

I2(t) for t ≥ 0.

Hence, by choosing δ such that δg(0)
η1lξ2

= 1
2 and by (4.31)− (4.32), we obtain from

(4.30)

(4.34)
∫ t2

t1

I2(t)dt ≤ 2c3D(t) sup
t1≤s≤t2

E(s)
1
2 + c4D(t)2,

where c4 = 4
[
B2

1 + ( g(0)
2η1lξ2

+ 1) 1
ξ2

]
.

Moreover, from (4.7), (4.4) and using (4.14), we see that

(4.35)
E(t) ≤ 1

2
‖ut‖2

2 + c5

(
m0 −

∫ t

0
g(s)ds

)
‖∇u‖2

2 + c5(g � ∇u)(t)

+c6I2(t),

where c5 = 1
2 − 1

p and c6 =
(

1
p + 1

2(γ+1)

)
.

By integrating (4.35) over (t1, t2), we obtain∫ t2

t1

E(t)dt ≤ 1
2

∫ t2

t1

‖ut‖2
2 dt + c6

∫ t2

t1

I2(t)dt + c5

∫ t2

t1

(g � ∇u)(t)dt

+c5

∫ t2

t1

(
m0 −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 dt.

Thus, by Poincaré inequality, (4.23), (4.31) and (4.33), we have

(4.36)
∫ t2

t1

E(t)dt ≤ B2
1

2
D(t)2 + (c6 +

c5

η1
)
∫ t2

t1

I2(t)dt +
2c5

ξ2
D(t)2.
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By multiplying (4.1) by ut and then integrating it over [t, t2] × Ω, we obtain

E(t) = E(t2) +
∫ t2

t
‖∇u(t)‖2

2 dt − 1
2

∫ t2

t
(g′ � ∇u)(t)dt

+
1
2

∫ t2

t
g(s) ‖∇u(s)‖2

2 ds.

Since t2 − t1 ≥ 1
2 , we get

E(t2) ≤ 2
∫ t2

t1

E(t)dt.

Then, thanks to (4.23), we have

E(t) ≤ 2
∫ t2

t1

E(t)dt +
∫ t+1

t
‖∇u(t)‖2

2 dt − 1
2

∫ t+1

t
(g′ � ∇u)(t)dt

+
1
2

∫ t+1

t
g(s) ‖∇u(s)‖2

2 ds

= 2
∫ t2

t1

E(t)dt + D(t)2.

Thus, by using (4.36) and (4.34), we obtain

E(t) ≤ c7D(t)2 + c8D(t) sup
t1≤s≤t2

E(s)
1
2 ,

where c7 = B2
1 + 4c5

ξ2
+ 2(c6 + c5

η1
)c4 + 1 and c8 = 4c3(c6 + c5

η1
).

Hence, by Young’s inequality, we deduce

(4.37) E(t) ≤ c9D(t)2,

where c9 is some positive constant.
Therefore, we have the following decay estimates:
From (4.37) and (4.23), we have

E(t) ≤ c10 [E(t)− E(t + 1)] for t ≥ 0,

c10 = max{c9, 1}.
Thus, by Lemma 2.4, we obtain

(4.38) E(t) ≤ E(0)e−τ1t, on [0,∞),

where τ1 = ln c10
c10−1 .
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5. BLOW-UP PROPERTY

In this section, we shall discuss the blow up phenomena of problem (1.1)−(1.3);

(5.1) utt − M(‖∇u‖2
2)∆u +

∫ t

0
g(t − s)∆u(s)ds − ∆ut = f(u).

In order to state our results, we make further assumptions on f , M and g:

(A3) there exists a positive constant δ such that

sf(s) ≥ (2 + 4δ)F (s), for all s ∈ R,

where
F (s) =

∫ s

0
f(r)dr,

and
(2δ + 1)M(s) − (M(s) + 2δm0) s ≥, for all s ≥ 0,

where
M(s) =

∫ s

0
M(r)dr.

(A4) We make the following extra assumption on g∫ ∞

0
g(s)ds <

4δm0

1 + 4δ
,

here δ is the constant appeared in (A3).

Remark. (1) In this case, we define the energy function of the solution u of
(5.1), (1.2) and (1.3) by

(5.2)
E(t) =

1
2
‖ut‖2

2 +
1
2
M(‖∇u(t)‖2

2) +
1
2
(g � ∇u)(t)

−1
2

∫ t

0
g(s)ds ‖∇u(t)‖2

2 −
∫

Ω
F (u(t))dx,

for t ≥ 0. Then we have

(5.3)
E(t) = E(0)−

∫ t

0
‖∇ut(t)‖2

2 dt +
1
2

∫ t

0
(g′ � ∇u)(t)dt

−1
2

∫ t

0
g(t) ‖∇u(t)‖2

2 dt.



1006 Shun-Tang Wu and Long-Yi Tsai

We note that the energy function E(t) defined by (5.2) is the same as in (4.7).
(2) It is clear that f(u) = |u|p−2 u, p > 2 satisfies (A3) with δ = p−2

4 and
M (s) = m0 + bsγ satisfies (A3) for m0 > 0, b ≥ 0, γ ≥ 1, s ≥ 0.

Definition. A solution u of (5.1), (1.2), (1.3) is called blow-up if there exists
a finite time T ∗ such that

lim
t→T ∗−

(∫
Ω
|∇u|2 dx

)−1

= 0.

Now, let u be a solution of (5.1) and define

(5.4) a (t) =
∫

Ω

u2dx +
∫ t

0

∫
Ω

|∇u|2 dxdt, t ≥ 0.

Lemma 5.1. Assume that (A1)−(A4) hold, then we have

(5.5) a′′ (t) − 4 (δ + 1)
∫

Ω
u2

t dx ≥ (−4 − 8δ)E (0) + (4 + 8δ)
∫ t

0
‖∇ut‖2

2 dt.

Proof. Form (5.4), we have

(5.6) a′ (t) = 2
∫

Ω
uutdx + ‖∇u‖2

2 .

By (5.1) and Divergence theorem, we get

(5.7)
a′′ (t) = 2 ‖ut‖2

2 − 2M
(
‖�u‖2

2

)
‖∇u‖2

2 + 2
∫

Ω
f(u)udx

+2
∫ t

0

∫
Ω

g(t− s)∇u(s) · ∇u(t)dxds.

By (5.2) and (5.3), we have from (5.7)

a′′ (t) − 4 (δ + 1) ‖ut‖2
2

≥ (−4−8δ)E (0)+(4+8δ)
∫ t

0
‖∇ut(t)‖2

2 dt +
∫

Ω
2 [f(u)u−(2+4δ)F (u)]dx

+
{
(2+4δ)M

(
‖�u(t)‖2

2

)
−
[
2M

(
‖�u(t)‖2

2

)
+(2+4δ)

∫ t

0
g(s)ds

]
‖∇u(t)‖2

2

}

+2
∫ t

0

∫
Ω

g(t− s)∇u(s) · ∇u(t)dxds− (2 + 4δ)
∫ t

0
(g′ � ∇u)(t)dt

+(2 + 4δ)(g � ∇u)(t).
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By using Hölder inequality and Young’s inequality, we have

(5.8)

∫
Ω

∫ t

0
g(t−s)∇u(s)·∇u(t)dsdx

=
∫

Ω

∫ t

0

g(t−s)∇u(t)·(∇u(s)−∇u(t))dsdx+
∫ t

0

g(t−s)ds ‖∇u(t)‖2
2

≥ −
[
1
2
(g � ∇u)(t) +

1
2

∫ t

0

g(s)ds ‖�u(t)‖2
2

]
+
∫ t

0

g(s)ds ‖∇u(t)‖2
2 .

Then by (5.8), we get

a′′ (t) − 4 (δ + 1) ‖ut‖2
2

≥ (−4 − 8δ)E (0) + (4 + 8δ)
∫ t

0
‖∇ut(t)‖2

2 dt

+
∫

Ω
2 [f(u)u− (2 + 4δ)F (u)]dx

+
{

(2 + 4δ)M
(
‖�u(t)‖2

2

)
−
[
2M

(
‖�u(t)‖2

2

)
+ (1 + 4δ)

∫ t

0

g(s)ds

]
‖∇u(t)‖2

2

}

+2
∫ t

0

∫
Ω

g(t − s)∇u(s) · ∇u(t)dxds− (2 + 4δ)
∫ t

0

(g′ � ∇u)(t)dt

+(1 + 4δ)(g � ∇u)(t).

Therefore by (A3), (A4) and (A1), we obtain (5.5) .

Now, we consider three different cases on the sign of the initial energy E (0) .

(1) If E (0) < 0, then from (5.5), we have

a′ (t) ≥ a′ (0)− 4 (1 + 2δ)E (0) t, t ≥ 0.

Thus we get a′ (t) > ‖∇u0‖2
2 for t > t∗, where

(5.9) t∗ = max

{
a′ (0)− ‖∇u0‖2

2

4 (1 + 2δ)E (0)
, 0

}
.

(2) If E (0) = 0, then a′′ (t) ≥ 0 for t ≥ 0.

Furthermore, if a′ (0) > ‖∇u0‖2
2 , then a′ (t) > ‖∇u0‖2

2 , t ≥ 0
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(3) For the case that E (0) > 0, we first note that

(5.10) 2
∫ t

0

∫
Ω
∇u · ∇utdxdt = ‖∇u(t)‖2

2 − ‖∇u0‖2
2 .

By using Hölder inequality and Young’s inequality, we have from (5.10)

(5.11) ‖∇u(t)‖2
2 ≤ ‖∇u0‖2

2 +
∫ t

0
‖∇u(t)‖2

2 dt +
∫ t

0
‖∇ut(t)‖2

2 dt.

By Hölder inequality and Young’s inequality in (5.6) and by (5.11), we get

(5.12) a′ (t) ≤ a (t) + ‖∇u0‖2
2 + ‖ut‖2

2 +
∫ t

0
‖∇ut(t)‖2

2 dt.

Hence by (5.5) and (5.12) , we obtain

a′′ (t) − 4 (δ + 1) a′ (t) + 4 (δ + 1) a (t) + K1 ≥ 0,

where
K1 = (4 + 8δ)E (0) + 4(δ + 1) ‖∇u0‖2

2 .

Let
b (t) = a (t) +

K1

4(1 + δ)
, t > 0.

Then b (t) satisfies (2.1). By (2.2), we see that if

(5.13) a′ (0) > r2

[
a (0) +

K1

4(1 + δ)

]
+ ‖∇u0‖2

2 ,

then a′ (t) > ‖∇u0‖2
2 , t > 0.

Consequently, we have

Lemma 5.2. Assume that (A1)−(A4) hold and that either one of the following
conditions is satisfied:

(i) E (0) < 0,

(ii) E (0) = 0 and a′ (0) > ‖∇u0‖2
2 ,

(iii) E (0) > 0 and (5.13) holds, then a ′ (t) > ‖∇u0‖2
2 for t > t0, where t0 = t∗

is given by (5.9) in case (i) and t0 = 0 in cases (ii) and (iii) .

Now, we will find the estimate for the life span of a (t) .

Let

(5.14) J (t) = (a (t) + (T1 − t) ‖∇u0‖2
2)

−δ, for t ∈ [0, T1],
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where T1 > 0 is a certain constant which will be specified later.
Then we have

J ′ (t) = −δJ (t)1+ 1
δ

(
a′ (t) − ‖∇u0‖2

2

)
and

(5.15) J ′′ (t) = −δJ (t)1+ 2
δ V (t) ,

where

(5.16) V (t) = a′′ (t)
(
a (t) + (T1 − t) ‖∇u0‖2

2

)
− (1 + δ)

(
a′ (t) − ‖∇u0‖2

2

)2
.

For simplicity of calculation, we denote

P =
∫

Ω

u2dx,

Q =
∫ t

0

‖∇u(t)‖2
2 dt,

R =
∫

Ω
u2

t dx,

S =
∫ t

0
‖∇ut(t)‖2

2 dt.

From (5.6) , by (5.10) and Hölder inequality, we get

(5.17)
a′ (t) = 2

∫
Ω

utudx + ‖∇u0‖2
2 + 2

∫ t

0

∫
Ω
∇u · ∇utdxdt

≤ 2(
√

RP +
√

QS) + ‖∇u0‖2
2 .

By (5.5), we have

(5.18) a′′ (t) ≥ (−4 − 8δ)E (0) + 4 (1 + δ) (R + S) .

Thus, by using (5.17) and (5.18) in (5.16), we obtain

V (t) ≥ [(−4 − 8δ)E (0) + 4 (1 + δ) (R + S)] (a (t) + (T1 − t) ‖∇u0‖2
2)

−4 (1 + δ) (
√

RP +
√

QS)2.

And by (5.14), we have

V (t) ≥ (−4 − 8δ)E (0)J (t)−
1
δ + 4(1 + δ)(R + S)(T1 − t) ‖∇u0‖2

2

+4 (1 + δ)
[
(R + S) (P + Q) − (

√
RP +

√
QS)2

]
.
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By Schwarz inequality, the last term in the above inequality is nonnegative. Hence
we have

(5.19) V (t) ≥ (−4 − 8δ)E (0)J (t)−
1
δ , t ≥ t0.

Therefore by (5.15) and (5.19), we get

(5.20) J ′′ (t) ≤ δ (4 + 8δ)E (0)J (t)1+ 1
δ , t ≥ t0.

Note that by Lemma 5.2, J′ (t) < 0 for t > t0. Multiplying (5.20) by J′ (t) and
integrating it from t0 to t, we have

J ′ (t)2 ≥ α + βJ (t)2+ 1
δ for t ≥ t0,

where

(5.21) α = δ2J (t0)
2+ 2

δ

[
(a′ (t0)− ‖∇u0‖2

2)
2 − 8E (0)J(t0)

−1
δ

]
and

(5.22) β = 8δ2E (0) .

We observe that

α > 0 iff E (0) <

(
a′ (t0) − ‖∇u0‖2

2

)2

8
[
a (t0) + (T1 − t0) ‖∇u0‖2

2

] .
Then by Lemma 2.3, there exists a finite time T ∗ such that lim

t→T ∗−
J (t) = 0 and

the upper bounds of T ∗ are estimated respectively according to the sign of E (0) .
This will imply that

lim
t→T ∗−

{∫
Ω

u2dx +
∫ t

0
‖∇u‖2

2 dt

}−1

= 0.

Thus by Poincaré inequality, we deduce

(5.23) lim
t→T ∗−

(∫
Ω
|∇u|2 dx

)−1

= 0.

Theorem 5.3. Assume that (A1)-(A4) hold and that either one of the following
conditions is satisfied:

(i) E (0) < 0,
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(ii) E (0) = 0 and a′ (0) > ‖∇u0‖2
2 ,

(iii) 0 < E (0) <
(a′(t0)−‖∇u0‖2

2)
2

8[a(t0)+(T1−t0)‖∇u0‖22]
and (5.13) holds, then the solution u

blows up at finite time T ∗ in the sense of (5.23).

In case (i),

(5.24) T ∗ ≤ t0 − J (t0)
J ′ (t0)

.

Furthermore, if J (t0) < min
{
1,
√

α
−β

}
, then we have

(5.25) T ∗ ≤ t0 +
1√−β

ln

√
α
−β√

α
−β − J (t0)

.

In case (ii),

(5.26) T ∗ ≤ t0 − J (t0)
J ′ (t0)

or

(5.27) T ∗ ≤ t0 +
J (t0)√

α
.

In case (iii),

(5.28) T ∗ ≤ J (t0)√
α

or

(5.29) T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
α

{
1 − [1 + cJ (t0)]

−1
2δ

}
,

where c =
(

β
α

) δ
2+δ

, here α and β are in (5.21) and (5.22) respectively.

Note that in case (i), t0 = t∗ is given in (5.9) and t0 = 0 in case (ii) and (iii).

Remark. The choice of T1 in (5.14) is possible under some conditions. We
shall discuss it as follows :

(i) for the case E(0) = 0,
First, we note that the condition a′ (0) > ‖∇u0‖2

2 implies
∫
Ω u0u1dx > 0.
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By (5.26), we choose

T1 ≥ − J (0)
J ′ (0)

.

Then, by Hölder inequality, Poincaré inequality and Young’s inequality, we have

‖u0‖2
2 + T1 ‖∇u0‖2

2 ≤ δ

(
εB2

1 ‖∇u0‖2
2 +

1
ε
‖u1‖2

2

)
T1.

where ε is some positive constant.
Choosing ε = 1

δB2
1
, we get

T1 ≥ ‖u0‖2
2

δ2B2
1 ‖u1‖2

2

.

In particular, we choose T1 as

T1 =
‖u0‖2

2

δ2B2
1 ‖u1‖2

2

.

We then get

T ∗ ≤ ‖u0‖2
2

δ2B2
1 ‖u1‖2

2

.

(ii) for the case E(0) < 0,

(1) If
∫
Ω u0u1dx > 0, then a′(t) > ‖∇u0‖2

2 and t∗ = 0. Thus T1 can be chosen
as in (i).

(2) If
∫
Ω u0u1dx ≤ 0, then t∗ = a′(0)−‖∇u0‖2

2
4(1+2δ)E(0) . Thus, by (5.24), we choose

T1 ≥ t∗ − J(t∗)
J ′(t∗) .

(iii) for the case E(0) > 0. Under the condition

E(0) < min{κ1, κ2} ,

where

κ1 =
(1 + δ)

[
a′(0)− r2a(0)− (r2 + 1)‖∇u0‖2

2

]
r2(1 + 2δ)

,

and

κ2 =

[
4
(∫

Ω

u0u1dx

)2

− 1

][
δ − ‖∇u0‖2

2

]
8δ ‖∇u0‖2

2

.
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If ‖∇u0‖2
2 < δ, T1 is chosen to satisfy

κ3 ≤ T1 ≤ κ4,

here

κ3 =
‖u0‖2

2

δ − ‖∇u0‖2
2

,

κ4 =
4
(∫

Ω
u0u1dx

)2

− 8E(0)‖u0‖2
2 − 1

8E(0)‖∇u0‖2
2

.

Therefore we have

T ≤ T ∗ ≤ κ3√
4(
∫
Ω u0u1dx)2 − 8E(0)κ3

.
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