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A REMARK ON A PAPER OF BLASCO

Z. Ercan

Abstract. We generalize and give a simple proof of a Theorem of Blasco.

For a topological space X , C(X) denotes the algebra of real valued continuous
functions on X under the operation

(αf + gh)(x) := αf(x) + h(x)g(x)

for each f, g, h ∈ C(X) and α ∈ R. An algebra A on X means a subalgebra of
C(X) which contains the constant functions. By a ∗-algebra A on X we mean an
algebra on X and all bounded functions in A separate points from the closed sets.

Let A be an algebra on X and π : A −→ R be a (algebra) homomorphism and
α be a cardinal number. π is said to be α-evaluating if for each subset B of A with
cardinality at most α there exits xB ∈ X such that

π(f) = f(xB)

for each f ∈ B. If α = |N|(=the cardinal number of the set of the natural numbers
N), the α-evaluating homomorphism is called countable evaluating.

Let α be a cardinal number. Recall that a topological space X is called α-
Lindelöf if for each open cover U has a subcover V such that the cardinality of V
is at most α. A lindelöf space means a |N|-Lindelöf space.

The following theorem is given in [1] as one of the main results.

Theorem 1. Let X be a completely regular Hausdorff space. Then X is
Lindelöf if and only if each countable evaluating homomorphism π on a ∗-algebra
A on X is point evaluating.
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This is applied to give a characterization of Lindel̈of spaces in terms of algebra homomorphism.
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The proof of the sufficiency part of the above theorem is given in [1] directly,
but the necessity part is not direct. We can generalize and give a direct proof of the
necessity part of the theorem as in the following remark.

Remark 1. Let X be an α-Lindelöf space (not necessarily regular). Then each
α-evaluating homomorphism π on an algebra A on X is point evaluating. To see
this: Suppose that is not true. Then there exits an α-evaluating homomorphism π

on an algebra A such that π is not point evaluating. Then for each x ∈ X there
exits fx ∈ A such that π(fx) �= fx(x). Let

gx := (fx − π(fx)1)2 (x ∈ X).

Then gx ∈ A. As 0 < gx(x), for each x ∈ X there exits an open set Ox with
x ∈ Ox such that 0 < gx(y) for each y ∈ Ox. As {Ox : x ∈ X} is an open cover
of X there exits a subset I of X with cardinality at most α such that X = ∪x∈IOx.

Then there exits x0 ∈ X such that π(fx) = fx(x0) for each x ∈ I . Also there
exists a ∈ I with x0 ∈ Oa. In particular π(fa) = fa(x0). This contradicts the fact
0 < ga(y) for each y ∈ Oa as x0 ∈ Oa.

By combining the above theorem with the previous remark we have the following
theorem.

Theorem 2. Let X be a completely regular Hausdorff space. Then the
followings are equivalent.

(i) X is Lindelöf.

(ii) Each countable evaluating homomorphism on any ∗-algebra on X is point
evaluating.

(iii) Each countable evaluating homomorphism on any algebra on X is point
evaluating.
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