TAIWANESE JOURNAL OF MATHEMATICS

Vol. 10, No. 3, pp. 631-638, March 2006

This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON CONVERGENCE OF A RECURSIVE SEQUENCE

$$x_{n+1} = f(x_{n-1}, x_n)$$

Sin-Ei Takahasi, Yasuhide Miura and Takeshi Miura

Abstract. C. H. Gibbons, M. R. S. Kulenovic and G. Ladas [1] have posed the following problem: Is there a solution of the difference equation:

$$x_{n+1} = \frac{\beta x_{n-1}}{\beta + x_n}, \quad x_{-1}, x_0 > 0, \beta > 0 \quad (n = 0, 1, 2, ...)$$

such that $\lim_{n\to\infty} x_n = 0$? S. Stevic [2] gives an affirmative answer to this open problem and generalize this result to the equation of the form:

$$x_{n+1} = \frac{x_{n-1}}{g(x_n)}, \quad x_{-1}, x_0 > 0 \quad (n = 0, 1, 2, \dots)$$

by using his ingenious device. In this note, we generalize the result of Stevic to the equation of the form:

$$x_{n+1} = f(x_{n-1}, x_n), \quad x_{-1}, x_0 > 0 \quad (n = 0, 1, 2, ...).$$

However our proof is simple and short.

1. Introduction and Main Result

Recently S. Stevic [2] has proved the following result which gives an affirmative answer to the open problem on the convergency of a recursive sequence posed in [1]:

Theorem A. Let g be a C^1 -function on $[0, \infty)$ such that g(0) = 1 and g'(x) > 0 for all $x \in [0, \infty)$. Then for any a > 0, there exists a solution of the equation $x_{n+1} = \frac{x_{n-1}}{g(x_n)}$ with $x_{-1} = a$ such that $x_0 > x_1 > x_2 > \cdots > 0$ and $\lim_{n \to \infty} x_n = 0$.

Received January 27, 2003; accepted May 6, 2004.

Communicated by Sze-Bi Hsu.

2000 Mathematics Subject Classification: Primary 39A10.

Key words and phrases: Nonlinear difference equation, Nonlinear recursive sequence.

In this note, we generalize his result. To do this we consider the convergency of the following nonlinear recursive sequence:

(1)
$$x_{n+1} = f(x_{n-1}, x_n), \quad x_{-1}, x_0 > 0 \quad (n = 0, 1, 2, ...),$$

where $f:(0,\infty)\times(0,\infty)\to(0,\infty)$ is a continuous function which satisfies the following conditions:

- (a) $f(x,y) \le x$ for each x,y > 0;
- (b) If $f(y, f(x, y)) \le f(x, y)$, then $x \ge y$.

Let $a=x_{-1},\ b=x_0$ and $x_n=x_n(a,b)$ $(n=1,2,\ldots)$. Then $\{x_n(a,b)\}$ denotes the solution of Equation (1) with initial conditions $x_{-1}=a$ and $x_0=b$. Also we can regard x_n as a continuous function $:(0,\infty)\times(0,\infty)\to(0,\infty)$ with variable (a,b). By (a), we see that the sequences $\{x_{2n}\}$ and $\{x_{2n-1}\}$ are decreasing and hence there exist $p,q\geq 0$ such that $\lim_{n\to\infty}x_{2n}=p$ and $\lim_{n\to\infty}x_{2n-1}=q$. Therefore the sequence defined by the Equation (1) converges if and only if p=q and hence the following problem is naturally posed:

(2) Is there
$$(a, b) \in (0, \infty) \times (0, \infty)$$
 such that $p(a, b) = q(a, b)$?

To solve the above problem, let $\varepsilon > 0$ and set

$$A_f(\varepsilon) = \{ a \in [\varepsilon, \infty) : b < f(a, b) \text{ for some } b \ge \varepsilon \},$$

$$B_f(\varepsilon) = \{ b \in [\varepsilon, \infty) : b < f(a, b) \text{ for some } a \ge \varepsilon \},$$

$$C_f(b; \varepsilon) = \{ a \in [\varepsilon, \infty) : b \ge f(a, b) \} \quad (b > 0).$$

Furthermore set

$$A_f = \bigcup_{\varepsilon > 0} A_f(\varepsilon)$$
 and $B_f = \bigcup_{\varepsilon > 0} B_f(\varepsilon)$.

Then our main result is the following assertion which gives an affirmative answer to the problem (2) under some condition.

Theorem 1.

- (i) Suppose that A_f is non-empty and a is in A_f . Then there exists a solution $\{x_n\}$ of the Equation (1) such that $a = x_{-1} \ge x_0 \ge x_1 \ge x_2 \ge \cdots > 0$.
- (ii) Suppose that B_f is non-empty and b is in B_f such that $C_f(b;\varepsilon)$ is a bounded set in $[\varepsilon,\infty)$ for each $\varepsilon\in(0,b)$. Then there exists a solution $\{x_n\}$ of the Equation (1) such that $x_{-1}\geq b=x_0\geq x_1\geq x_2\geq \cdots>0$.

2. Proof of the Main Result

Let $\varepsilon > 0$. Choose $a \in A_f(\varepsilon)$ and $b \in B_f(\varepsilon)$ with $b > \varepsilon$. For each $n \ge -1$, set

$$A_n(b;\varepsilon) = \{ u \in [\varepsilon, \infty) : x_n(u,b) \ge x_{n+1}(u,b) \}$$

and

$$B_n(a;\varepsilon) = \{ v \in [\varepsilon, \infty) : x_n(a,v) \ge x_{n+1}(a,v) \}.$$

Then both $A_n(b;\varepsilon)$ and $B_n(a;\varepsilon)$ are closed sets in $[\varepsilon,\infty)$. Note that

(3)
$$A_{n+2}(b;\varepsilon) \subseteq A_n(b;\varepsilon) \text{ and } B_{n+2}(a;\varepsilon) \subseteq B_n(a;\varepsilon).$$

Indeed, if $u \in A_{n+2}(b; \varepsilon)$, then

$$f(x_n(u,b), x_{n+1}(u,b)) = x_{n+2}(u,b) \ge x_{n+3}(u,b)$$

= $f(x_{n+1}(u,b), f(x_n(u,b), x_{n+1}(u,b))).$

By (b), we have $x_n(u,b) \ge x_{n+1}(u,b)$ and so $u \in A_n(b;\varepsilon)$. Consequently, $A_{n+2}(b;\varepsilon) \subseteq A_n(b;\varepsilon)$. Similarly for $B_{n+2}(a;\varepsilon) \subseteq B_n(a;\varepsilon)$. Now set

$$X_n(b;\varepsilon) = A_n(b;\varepsilon) \cap A_{n+1}(b;\varepsilon)$$
 and $Y_n(a;\varepsilon) = B_n(a;\varepsilon) \cap B_{n+1}(a;\varepsilon)$.

Then both $X_n(b;\varepsilon)$ and $Y_n(a;\varepsilon)$ are closed sets in $[\varepsilon,\infty)$ such that

$$X_{-1}(b;\varepsilon) \supset X_1(b;\varepsilon) \supset X_3(b;\varepsilon) \supset \dots$$

and

$$Y_{-1}(a;\varepsilon) \supseteq Y_1(a;\varepsilon) \supseteq Y_3(a;\varepsilon) \supseteq \dots$$

by (3). We assert that $X_{2n+1}(b;\varepsilon) \neq \emptyset$ and $Y_{2n+1}(a;\varepsilon) \neq \emptyset$. Indeed, suppose $X_{2n+1}(b;\varepsilon) = \emptyset$. Then $A_{2n+1}(b;\varepsilon)^c \cup A_{2n+2}(b;\varepsilon)^c = [\varepsilon,\infty)$. Also $A_{2n+1}(b;\varepsilon)^c \cap A_{2n+2}(b;\varepsilon)^c = \emptyset$. Suppose to the contrary that there is a $u \in [\varepsilon,\infty)$ such that $x_{2n+1}(u,b) < x_{2n+2}(u,b) < x_{2n+3}(u,b)$. This contradicts the fact that the sequence $\{x_{2k-1}\}$ is decreasing. Note that $A_{-1}(b;\varepsilon)^c = \{u \in [\varepsilon,\infty) : u < b\} \neq \emptyset$ because $b > \varepsilon$ and that $A_0(b;\varepsilon)^c = \{u \in [\varepsilon,\infty) : b < f(u,b)\} \neq \emptyset$ because $b \in B_f(\varepsilon)$. By (3), $A_{-1}(b;\varepsilon)^c \subseteq A_{2n+1}(b;\varepsilon)^c$ and $A_0(b;\varepsilon)^c \subseteq A_{2n+2}(b;\varepsilon)^c$ and so both $A_{2n+1}(b;\varepsilon)^c$ and $A_{2n+2}(b;\varepsilon)^c$ are non-empty disjoint open sets in $[\varepsilon,\infty)$. Then we arrive at a contradiction since $[\varepsilon,\infty)$ is connected. Consequently, we have $X_{2n+1}(b;\varepsilon) \neq \emptyset$. Also since $B_{-1}(a;\varepsilon)^c = \{v \in [\varepsilon,\infty) : a < v\} \neq \emptyset$ and $B_0(a;\varepsilon)^c = \{v \in [\varepsilon,\infty) : v < f(a,v)\} \neq \emptyset$ because $a \in A_f(\varepsilon)$, it follows from a similar argument that $Y_{2n+1}(a;\varepsilon) \neq \emptyset$.

Proof of (i). Let $a \in A_f$. Then there is an $\varepsilon_0 > 0$ such that $a \in A_f(\varepsilon_0)$. Since $Y_{-1}(a; \varepsilon_0) \subseteq B_{-1}(a; \varepsilon_0) = \{v \in [\varepsilon_0, \infty) : a \ge v\}$, it follows that $Y_{-1}(a; \varepsilon_0)$ is a

bounded set in $[\varepsilon_0, \infty)$. Therefore by the above argument, we see that $\{Y_{-1}(a; \varepsilon_0), Y_1(a; \varepsilon_0), Y_3(a; \varepsilon_0), \ldots\}$ is a decreasing sequence of non-empty compact sets in $[\varepsilon_0, \infty)$. Then there exists an element v_0 of $\bigcap_{n=-1}^{\infty} Y_{2n+1}(a; \varepsilon_0)$ by the Heine-Borel covering theorem. Hence we have that

$$a = x_{-1}(a, v_0) \ge x_0(a, v_0) \ge x_1(a, v_0) \ge x_2(a, v_0) \ge \dots > 0,$$

and then the assertion (i) holds.

Proof of (ii). Let $b \in B_f$ be such that $C_f(b; \varepsilon)$ is a bounded set in $[\varepsilon, \infty)$ for each $\varepsilon \in (0,b)$. Then there is an $\varepsilon_1 > 0$ such that $b \in B_f(\varepsilon_1)$. Note that $B_f(\varepsilon_1) \subseteq B_f(\varepsilon_1/2)$. Then $b \in B_f(\varepsilon_1/2)$ and $b > \frac{\varepsilon_1}{2}$. Since $X_{-1}(b; \varepsilon_1/2) \subseteq A_0(b; \varepsilon_1/2) = C_f(b; \varepsilon_1/2)$, it follows that $X_{-1}(b; \varepsilon_1/2)$ is a bounded set in $\left[\frac{\varepsilon_1}{2}, \infty\right)$. Therefore by the above argument, we see that $\{X_{-1}(b; \varepsilon_1/2), X_1(b; \varepsilon_1/2), X_3(b; \varepsilon_1/2), \ldots\}$ is a decreasing sequence of non-empty compact sets in $\left[\frac{\varepsilon_1}{2}, \infty\right)$. Then there exists an element u_0 of $\bigcap_{n=-1}^{\infty} X_{2n+1}(b; \varepsilon_1/2)$ by the Heine-Borel covering theorem. Hence we have that

$$x_{-1}(u_0, b) \ge b = x_0(u_0, b) \ge x_1(u_0, b) \ge x_2(u_0, b) \ge \dots > 0,$$

and then the assertion (ii) holds.

3. APPLICATION

Let $g \colon (0,\infty) \times (0,\infty) \to (0,\infty)$ be a continuous function which satisfies the following conditions

(c) $g(x, \cdot)$ is an increasing function for any fixed x > 0;

(d)
$$\frac{g(y,x)-g(x,y)}{x-y} \ge 0$$
 for each $x,y>0$ with $x \ne y$.

Set $f(x,y)=\frac{x}{1+g(x,y)}$ for each x,y>0. Then f is a continuous function of $(0,\infty)\times(0,\infty)$ into $(0,\infty)$ which satisfies the condition (a). Also f satisfies the condition (b). In fact, let x,y>0 with $x\neq y$ and suppose $f(y,f(x,y))\leq f(x,y)$. By (c), we have

$$\frac{x}{1+g(x,y)} = f(x,y) \ge f(y, f(x,y))$$

$$= \frac{y}{1+g(y, \frac{x}{1+g(x,y)})} \ge \frac{y}{1+g(y,x)}$$

and hence

$$(x-y)\left(1+g(y,x)+y\,\frac{g(y,x)-g(x,y)}{x-y}\right) \ge 0.$$

It follows from (d) that $x-y \ge 0$ and so f satisfies the condition (b). Moreover since

$$A_f(\varepsilon) = \{a \in [\varepsilon, \infty) : b(1 + g(a, b)) < a \text{ for some } b \ge \varepsilon\}$$

for each $\varepsilon>0$, it follows from (c) that $A_f=(0,\infty)$. Therefore we have from Theorem 1 that for any a>0, there exists a solution $\{x_n\}$ of Equation (1) such that $a=x_{-1}\geq x_0\geq x_1\geq x_2\geq \cdots>0$. Set $\alpha=\lim_{n\to\infty}x_n$. If $\alpha\neq 0$, then $\alpha=\frac{\alpha}{1+g(\alpha,\alpha)}$ and so $\alpha g(\alpha,\alpha)=0$, hence we arrive at a contradiction since $g(\alpha,\alpha)>0$. Therefore we have that $\lim_{n\to\infty}x_n=0$. Moreover if $g(x,\cdot)$ is strictly increasing for any fixed x>0, then we have $a=x_{-1}>x_0>x_1>x_2>\cdots>0$. In fact, suppose that there exists an $N\geq -1$ such that $x_N=x_{N+1}$. Then we have

$$\frac{x_N}{1 + g(x_N, x_{N+2})} = x_{N+3} \le x_{N+2} = \frac{x_N}{1 + g(x_N, x_{N+1})}$$

and hence $g(x_N,x_{N+1}) \leq g(x_N,x_{N+2})$. Therefore $x_{N+1} \leq x_{N+2}$ and so $x_{N+1} = x_{N+2}$ whenever $g(x,\cdot)$ is strictly increasing for any fixed x>0. By repeating this argument, we have that $x_N=x_{N+1}=x_{N+2}=x_{N+3}=\ldots$ and so $\lim_{n\to\infty}x_n=x_N>0$, a contradiction. Therefore we have the following:

Theorem 2. Let $g:(0,\infty)\times(0,\infty)\to(0,\infty)$ be a continuous function which satisfies the conditions (c) and (d). Then for any a>0, there exists a solution $\{x_n\}$ of $x_{n+1}=\frac{x_{n-1}}{1+g(x_{n-1},x_n)}$ such that $a=x_{-1}\geq x_0\geq x_1\geq x_2\geq \cdots>0$ and $\lim_{n\to\infty}x_n=0$.

In particular if $g(x, \cdot)$ is a strictly increasing function for any fixed x > 0, then the above solution $\{x_n\}$ is strictly decreasing.

Let $h: (0, \infty) \to (0, \infty)$ be a continuous increasing function and set

$$f(x,y) = \frac{x}{1 + h(y)}$$
 $(x, y > 0).$

Note that g(x,y) = h(y) (x,y>0) satisfies the conditions (c) and (d). Note also that $A_f = B_f = (0,\infty)$ and $C_f(b;\varepsilon) = \{u \ge \varepsilon : u \le b(1+h(b))\}$, hence bounded, for each pair (b,ε) with $0 < \varepsilon < b$. Then by Theorems 1 and 2, we have the following

Corollary 3. Let $h: (0, \infty) \to (0, \infty)$ be a continuous increasing function. Then

- (i) For any a > 0, there exists a solution of the equation $x_{n+1} = \frac{x_{n-1}}{1 + h(x_n)}$ such that $a = x_{-1} \ge x_0 \ge x_1 \ge x_2 \ge \cdots > 0$ and $\lim_{n \to \infty} x_n = 0$. In particular if h is strictly increasing, then the above solution $\{x_n\}$ is strictly decreasing.
- (ii) For any b>0, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}}{1+h(x_n)}$ such that $x_{-1} \ge b = x_0 \ge x_1 \ge x_2 \ge \cdots > 0$ and $\lim_{n \to \infty} x_n = 0$. In particular if h is strictly increasing, then the above solution $\{x_n\}$ is strictly decreasing.

We note that Theorem A follows immediately from Corollary 3-(i): In fact take h to be a C^1 -function such that h(0) = 0 and h'(x) > 0 for all $x \in [0, \infty)$.

4. OTHER TYPICAL EXAMPLES

In this section, we give other typical examples of Theorem 2.

- 1. Let $f(x,y)=\frac{x}{1+x+y}$. Then $A_f=(0,\infty),\ B_f=(0,1)$ and $C_f=(0,1)$ $\left[\varepsilon, \frac{b(1+b)}{1-b}\right]$ for each pair (b, ε) with $0 < \varepsilon < b \in B_f$. Then it follows from Theorems 1 and 2 that

 - $\begin{array}{l} \text{(i) For any } a\!>\!0\text{, there exists a solution of the equation } x_{n+1}\!=\!\frac{x_{n-1}}{1\!+\!x_{n-1}\!+\!x_n}\\ \text{ such that } a=x_{-1}>x_0>x_1>x_2>\cdots>0 \text{ and } \lim_{n\to\infty}x_n\!=\!0.\\ \text{(ii) For any } b\in(0,1)\text{, there exists a solution of the equation } x_{n+1}=\frac{x_{n-1}}{1+x_{n-1}+x_n} \text{ such that } x_{-1}>b=x_0>x_1>x_2>\cdots>0 \text{ and } \lim_{n\to\infty}x_n=0.\\ \\ \lim_{n\to\infty}x_n=0. \end{array}$
- 2. Let $f(x,y) = \frac{x}{1+xy}$. Then $A_f = (0,\infty)$, $B_f = (0,1)$ and $C_f(b;\varepsilon) =$ $\left[\varepsilon, \frac{b}{1-b^2}\right]$ for each pair (b, ε) with $0 < \varepsilon < b \in B_f$. Then it follows from Theorems 1 and 2 that
 - (i) For any a>0, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}}{1+x_{n-1}x_n}$ such that $a=x_{-1}>x_0>x_1>x_2>\cdots>0$ and $\lim_{n\to\infty}x_n=0$.

- (ii) For any $b\in(0,1)$, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}}{1+x_{n-1}x_n}$ such that $x_{-1}>b=x_0>x_1>x_2>\cdots>0$ and $\lim_{n\to\infty}x_n=0$.
- 3. Let $f(x,y)=rac{x^2}{x+y}$. Then $A_f=B_f=(0,\infty)$ and $C_f(b;\varepsilon)=\left[arepsilon,rac{\sqrt{5}+1}{2}\,b
 ight]$

for each pair (b, ε) with $0 < \varepsilon < b \in B_f$. Then it follows from Theorems 1 and 2 that

- (i) For any a>0, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}^2}{x_{n-1}+x_n}$ such that $a=x_{-1}>x_0>x_1>x_2>\cdots>0$ and $\lim_{n\to\infty}x_n=0$.
- (ii) For any b>0, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}^2}{x_{n-1}+x_n}$ such that $x_{-1}>b=x_0>x_1>x_2>\cdots>0$ and $\lim_{n\to\infty}x_n=0$.

ACKNOWLEDGEMENT

The first and third authors are partially supported by the Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

REFERENCES

- 1. C. H. Gibbons, M. R. S. Kulenovic and G. Ladas, On the recursive sequence $x_{n+1} = (\alpha + \beta x_{n-1})/(\gamma + x_n)$, Math. Sci. Res. Hot-Line, 4 (2000), 1-11.
- 2. S. Stevic, On the recursive sequence $x_{n+1} = x_{n-1}/g(x_n)$, Taiwanese J. Math., 6 (2002), 405-414.

Sin-Ei Takahasi Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan E-mail: sin-ei@emperor.yz.yamagata-u.ac.jp

Yasuhide Miura
Department of Mathematics,
Faculty of Humanities and Social Sciences,
Iwate University,
Morioka 020-8550, Japan
E-mail: ymiura@iwate-u.ac.jp

Takeshi Miura Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

E-mail: miura@yz.yamagata-u.ac.jp