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A Classification Theorem for Complete PMC Surfaces with Non-negative

Gaussian Curvature in Mn(c)× R

Zhong Hua Hou* and Wang Hua Qiu

Abstract. Let Mn(c) be an n-dimensional space form with constant sectional cur-

vature c. Alencar-do Carmo-Tribuzy [5] classified all parallel mean curvature (ab-

brev. PMC) surfaces with non-negative Gaussian curvature K in Mn(c) × R with

c < 0. Later on, Fetcu-Rosenberg [28] generalized their results for c 6= 0. However,

the classification to PMC surfaces in Mn(c)× R with K ≡ 0 is still open. In this pa-

per, we give a complete classification to the PMC surfaces in Mn(c)× R with K ≡ 0

whose tangent plane spans the constant angle with factor R.

1. Introduction

Let Mn(c) be an n-dimensional space form with constant sectional curvature c 6= 0. In

the past two decades, the submanifolds theory in product manifold Mn(c)×R were widely

studied. There have been lots of interesting and significant results (cf. [6,10–12,14,18,23–

27, 29, 30] etc). For instance, Dillen etc in [19, 22] characterized surfaces with a canonical

principal direction and in [20,21] completely classified constant angle surfaces in M2(c)×R.

Abresch and Rosenberg [1] introduced a quadratic form

Q(X,Y ) = 2Hh(X,Y )− c 〈X, ∂t〉 〈Y, ∂t〉 ,

on a surface Σ2 with constant mean curvature (abbrev. CMC) immersed M2(c)×R, where

X, Y are tangent vectors on Σ2 and ∂t is the unit tangent vector to R. Denote by Q(2,0)

the (2, 0)-part of Q and it is proved to be holomorphic. Then they completely classified

CMC surfaces with vanishing Q(2,0) as four classes in M2(c)× R. The scholars call these

kinds of surfaces Abresch-Rosenberg surfaces.

Alencar, do Carmo and Tribuzy [4] extended the quadratic form Q to immersed surface

Σ2 with parallel mean curvature vector (abbrev. PMC) in Mn(c)×R, which is defined by

(1.1) Q(X,Y ) = 2
〈
h(X,Y ),

−→
H
〉
− c 〈X, ∂t〉 〈Y, ∂t〉 .
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And they concluded that Q(2,0) vanishes for surfaces of genus zero, if |dH| ≤ g
∣∣Q(2,0)

∣∣,
where g is a continuous, non-negative real function and |dH| is the norm of the differential

dH of the mean curvature H of Σ2 in M2(c)×R. We call the surfaces with Q(2,0) vanishing

Abresch-Rosenberg type surfaces.

Batista [9] introduced a (1, 1)-tensor S on a CMC surface in M2(c)×R, which is given

by

S = 2HA− c 〈T, ·〉T +
c

2
|T |2 I − 2H2I,

where A is the shape operator, I the identity transform and T the tangent part to the

surface of the unit vertical vector field ∂t of R. He proved that a complete surface in

M2(c)×R with S = 0 is an Abresch-Rosenberg surface. Fetcu and Rosebberg [28] defined

a more general (1, 1)-tensor S on immersed PMC surface Σ2 in Mn(c)× R, say

(1.2) S = 2
∑
α

HαAα − c 〈T, ·〉T +
c

2
|T |2 I − 2H2I.

They showed that |S| = 0 if and only if Q(2,0) = 0 (cf. Lemma 3.2 below). Therefore the

surface with |S| = 0 is an Abresch-Rosenberg type surface.

Alencar, do Carmo and Tribuzy [5] obtained a well-known Hopf theorem and classified

the complete PMC surfaces immersed in Mn(c)× R.

Theorem 1.1. (cf. [5]) Let x : Σ2 → Mn(c) × R with c 6= 0 be a complete PMC surface.

Then one of the following holds:

(1) Σ2 is a minimal surface of a totally umbilical hypersurface of Mn(c);

(2) Σ2 is a CMC surface in a 3-dimensional totally umbilical or totally geodesic sub-

manifold of Mn(c);

(3) Σ2 lies in M4(c)× R.

In [5], the following classification theorem is proved for c < 0, and is generalized by

Fetcu and Rosebberg [28] for c 6= 0.

Theorem 1.2. (cf. [5,28]) Let x : Σ2 →Mn(c)×R with c 6= 0 be a complete non-minimal

PMC surface with Gaussian curvature K ≥ 0. Then one of the following holds:

(1) K ≡ 0;

(2) Σ2 is a minimal surface of a totally umbilical hypersurface of Mn(c);

(3) Σ2 is a CMC surface in a totally umbilical 3-dimensional submanifold of Mn(c);

(4) Σ2 lies in M4(c)×R ⊂ R6 and there exists a plane P such that the level lines of the

height function p 7→ 〈x(p), ∂t〉 are curves lying in planes parallel to P .
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Then the authors in [5] proposed an interesting and open problem: How to characterize

those surfaces with K ≡ 0 in the above theorem. It seems to be difficult even for the case

of complete surfaces immersed in M2(c) × R. In the present paper, we intend to solve

this problem under the additional condition that |T | is constant. Precisely, we proceed to

prove the following

Main Theorem 1.3. Let Σ2 be a complete non-minimal PMC surface with non-negative

Gaussian curvature in Mn(c)× R, c 6= 0. Then one of the following holds:

(1) |S| ≡ 0, the surface is an Abresch-Rosenberg type surface;

(2) |S| is a nonzero constant and K ≡ 0. In addition, if |T | = sin θ with constant

θ ∈ [0, π/2], then

(i) θ = 0, Σ2 lies in Mn(c); or

(ii) θ = π/2, Σ2 = γ × R, where γ is a curve of Mn(c); or

(iii) θ ∈ (0, π/2) and Σ2 lies in M4(c) × R ⊂ R6 with c > 0. Up to an isometry of

M4(c)× R, Σ2 is parameterized by

(1.3) x(u, v) =

(
cos θ

b
cos(bu),

cos θ

b
sin(bu),

sin(av)

a
,
cos(av)

a
,
2H

ab
, u sin θ

)
,

where b =
√
c+ c cos2 θ, a =

√
b2 + 4H2 and H is the mean curvature of Σ2.

2. Preliminaries

Let Σ2 be a surface in an (n+1)-dimensional Riemannian manifold M
n+1

. Choose a local

orthonormal frame field {e1, e2, . . . , en+1} in TM
n+1

along Σ2 so that {e1, e2} are tangent

to Σ2 and the others are normal to Σ2. Denote the dual frame by
{
ω1, ω2, . . . , ωn+1

}
.

Let ∇ (resp. ∇) be the Riemannian connection of Σ2 (resp. M
n+1

). We use the following

convention on index ranges in the whole paper:

1 ≤ i, j, k, l ≤ 2; 3 ≤ α, β, γ ≤ n+ 1; 1 ≤ A,B,C ≤ n+ 1.

Let
{
ωAB
}

be the connection form. The second fundamental form h and the mean curvature

vector
−→
H are defined by

(2.1) h =
∑
α,i

ωi ⊗ ωαi ⊗ eα =
∑
α,i,j

hαijω
i ⊗ ωj ⊗ eα,

−→
H =

∑
α

Hαeα,

where

(2.2) ωαi =
∑
j

hαijω
j , hαij = hαji, Hα =

(∑
i

hαii

)
/2.
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The mean curvature H is defined to be

(2.3) H =
∣∣∣−→H ∣∣∣ =

[∑
α

(Hα)2

]1/2

.

The Gauss-Ricci equations are expressed as

Rijkl = R
i
jkl +

∑
α

(hαikh
α
jl − hαilhαjk), Rαβkl = R

α
βkl +

∑
i

(hαikh
β
il − h

α
ilh

β
ik).(2.4)

We define the covariant differential of h by

∇hαij =
∑
k

hαijkω
k = dhαij −

∑
k

hαikω
k
j −

∑
k

hαkjω
k
i +

∑
γ

hγijω
α
γ .(2.5)

Then the Codazzi equation is

hαijk − hαikj = R
α
ikj .(2.6)

Let M
n+1

= Mn(c)×R with c 6= 0. Naturally, the ambient space Mn(c)×R is endowed

with the metric

ds2
Mn(c)×R = ds2

Mn(c) + dt2.

The induced metric on Σ2 is denoted by 〈 , 〉. Let ∂t = T + N , where T is the tangent

part and N the normal part of ∂t. Then

(2.7) T =
∑
i

T iei, T i = 〈ei, ∂t〉 ; N =
∑
α

Nαeα, Nα = 〈eα, ∂t〉 .

For any X ∈ Γ(TM
n+1

), we denote X|Mn(c) = X − 〈X, ∂t〉 ∂t, which is the projection of

X onto the factor Mn(c). Then

ei|Mn(c) = ei − T i∂t, eα|Mn(c) = eα −Nα∂t.

It follows that

R
A
BCD = c

(〈
eA|Mn(c), eC |Mn(c)

〉 〈
eB|Mn(c), eD|Mn(c)

〉
−
〈
eA|Mn(c), eD|Mn(c)

〉 〈
eB|Mn(c), eC |Mn(c)

〉)
,

from which we obtain

R
i
jkl = c

{
δikδjl − δilδjk + δilT

jT k + δjkT
iT l − δikT jT l − δjlT iT k

}
,(2.8)

R
α
ikj = cNα(T jδik − T kδij), R

α
βkl = 0.(2.9)
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3. Some lemmas

In this section, we introduce several lemmas needed for the proof of the Main Theorem.

The fundamental formulae of submanifolds are given by

∇eiej = ∇eiej + h(ei, ej),(3.1)

∇eieα = −Aα(ei) +∇⊥eieα,(3.2)

where Aα is the shape operator with respect to eα, and

(3.3) ∇eiej = ωkj (ei)ek, ∇⊥eieα = ωβα(ei)eβ, Aα(ei) = hαijej , h(ei, ej) = hαijeα.

Lemma 3.1. (cf. [14, 33]) Let Σ2 be a surface in Mn(c)× R. Then we have

∇T i =
∑
α,j

Nαhαijω
j ,(3.4)

∇⊥Nα = −
∑
i,j

T ihαijω
j .(3.5)

Let Σ2 be a PMC surface in Mn(c) × R. According to (1.2), the coefficients {Sij} of

S are given by

(3.6) Sij = 2
∑
α

Hαhαij − cT iT j +
c

2
|T |2 δij − 2H2δij ,

for any i, j. The covariant derivatives {Sijk} of {Sij} are defined by

(3.7)
∑
k

Sijkω
k = dSij −

∑
k

Sikω
k
j −

∑
k

Skjω
k
i .

It is known that ∇⊥
−→
H = ∇⊥Hαeα, where

(3.8) ∇⊥Hα = dHα +Hβωαβ = Hα
,kω

k.

Then ∇⊥
−→
H = 0 implies Hα

,k = 0, for all k and α. Taking the covariant derivatives of both

sides of equation (3.6) and using (3.4), we get

Sijk = 2
∑
α

Hαhαijk − cT i∇ekT
j − cT j∇ekT

i +
c

2
δij∇ek(|T |2)

= 2
∑
α

Hαhαijk − cT i
∑
α

Nαhαjk − cT j
∑
α

Nαhαik + cδij
∑
α,l

NαT lhαlk.
(3.9)

Lemma 3.2. (cf. [9,28]) Let Σ2 be a complete PMC surface immersed Mn(c)×R. Then

|S| = 0 if and only if
∣∣Q(2,0)

∣∣ = 0.
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Using the results in [39], the authors in [28] obtained the following Simons type equa-

tion for |S|2:

Theorem 3.3. (cf. [28]) Let Σ2 be a PMC surface immersed Mn(c)× R. Then

(3.10)
1

2
∆(|S|2) = |∇S|2 + 2K |S|2 ,

where |∇S|2 =
∑

i,j,k S
2
ijk and K is the Gaussian curvature of Σ2.

At the end of this section, we prove the following lemma:

Lemma 3.4. Let Σ2 be a complete PMC surface in Mn(c)× R. Let {e1, e2} be the local

orthonormal tangent frame field on Σ2 such that {Sij} is diagonalized. If |∇S| = 0, then

|S| = 0 or |S| is nonzero constant and (ωij) = 0.

Proof. From (3.6), it is easy to see that S is symmetric and trace-free. Choose the or-

thonormal tangent frame filed {e1, e2} on Σ2 such that Sij = µiδij . Then µ1 = −µ2 = µ.

So |S|2 = 2µ2.

|∇S| = 0 implies Sijk = 0, for any i, j, k. Setting i = j = 1 and i = 1, j = 2 in (3.7),

we obtain

0 =
∑
k

S11kω
k = dµ−

∑
k

S1kω
k
1 −

∑
k

Sk1ω
k
1 = dµ,

0 =
∑
k

S12kω
k = −

∑
k

S1kω
k
2 −

∑
k

Sk2ω
k
1 = 2µω2

1,

which imply µ = 0 or µ is nonzero constant and ω2
1 = 0. The proof of Lemma 3.4 is

completed.

4. A classification theorem

In this section, we firstly prove a classification theorem. Then, we solve the problem

proposed in [5] under the condition that |T | is constant.

Theorem 4.1. Let x : Σ2 → Mn(c) × R be a complete PMC surface with Gaussian cur-

vature K ≥ 0. Then |S| = 0 or |S| is nonzero constant and K = 0.

Proof. According to (3.10) and the hypothesis, it follows that ∆ |S|2 ≥ 0. By a result of

Huber [34], a complete surface with non-negative Gaussian curvature is a parabolic space.

Therefore, |S|2 is harmonic. One can immediately get |∇S| = 0 by (3.10) again. Note

that dω1
2 = Kω1 ∧ ω2. Following Lemma 3.4, we complete the proof.
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It is known that the surface with |S| = 0 is an Abresch-Rosenberg type surface. In the

sequel, we proceed to consider the rest case.

Denote |T | = sin θ with θ ∈ [0, π/2]. It is obvious that Σ2 lies in Mn(c) when θ = 0

and Σ2 = γ × R in case θ = π/2, where γ is a curve in Mn(c). So we need only to treat

the problem for θ ∈ (0, π/2).

Lemma 4.2. Let x : Σ2 →Mn(c)×R with c 6= 0 be a complete non-minimal PMC surface

with non-negative Gaussian curvature so that |S| is nonzero constant. If θ ∈ (0, π/2) is

constant, then Σ2 lies in M4(c)× R and the mean curvature vector is orthogonal to ∂t.

Proof. According to Theorem 1.1 and the fact that θ is a non-zero constant, it follows

that the surface Σ2 lies in M4(c)× R. By Lemma 3.4, |S| is nonzero constant and

(4.1) ωij = 0,

under the chosen tangent frame {e1, e2}. We choose a local orthonormal normal frame

field {e3, e4, e5} so that span
{−→
H,N

}
= span {e3, e4}. Then

−→
H and N can be decomposed

as
−→
H = H3e3 +H4e4, N = N3e3 +N4e4.

Using (3.4), we get

(4.2) ∇ej |T |
2 = 2

∑
α,i

NαT ihαij = 0,

for j ∈ {1, 2}. From (4.2), we have a linear system of linear equations on
{
T 1, T 2

}
,(∑

α

Nαhα1j

)
T 1 +

(∑
α

Nαhα2j

)
T 2 = 0,

for j ∈ {1, 2}, which has non-zero solutions. Hence we obtain(∑
α

Nαhα11

)(∑
α

Nαhα22

)
−

(∑
α

Nαhα12

)2

= 0,

which is equivalent to

(4.3) (N3)2 det(A3) + (N4)2 det(A4) +N3N4(h3
11h

4
22 + h4

11h
3
22 − 2h3

12h
4
12) = 0.

Following (4.2) again, we get another system of linear equations on
{
N3, N4

}
,(∑

i

T ih3
ik

)
N3 +

∑
j

T jh4
jk

N4 = 0,
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for j ∈ {1, 2}, which has also non-zero solutions. And we also get

(4.4)
∑
i,j

T iT j(h3
i1h

4
j2 − h4

i1h
3
j2) = 0.

Suppose that ∇⊥
−→
H = 0. From the first equality in (3.8) we have, for every α,

dHα +Hβωαβ = 0.(4.5)

Taking the exterior derivative on both-sides of (4.5) and using the structure equation, we

obtain ∑
β,i

Hβ(dωαβ − ω
γ
β ∧ ω

α
γ ) =

∑
β,i,j

HβRαβijωi ∧ ωj = 0.

It follows from (2.4), (2.9) and the third equality in (3.3) that

(4.6)
[
A−→
H
, Aα

]
= A−→

H
Aα −AαA−→H =

∑
β

HβRαβij


2×2

= 0,

for any α. Setting α = 3, 4 respectively, one has

H3(A3A4 −A4A3) = H4(A3A4 −A4A3) = 0.

Since (H3)2 + (H4)2 > 0, we obtain

(4.7) A3A4 = A4A3.

According (4.7), one can obtain

(4.8) h3
12(h4

11 − h4
22) = h4

12(h3
11 − h3

22),

which is equivalent with

(4.9) h3
11h

4
12 − h4

11h
3
12 = h3

22h
4
12 − h4

22h
3
12.

Define four normal vectors in the normal space span {e3, e4} as follows:

A =

4∑
α=3

hα11eα, B =
4∑

α=3

hα22eα, C =
4∑

α=3

hα12eα, D = A−B =
4∑

α=3

(hα11 − hα22)eα.

In order to prove
−→
H⊥∂t, it suffices to prove

〈
N,
−→
H
〉

= 0. Now, we divide our proof in two

cases.

Case 1. D is nonzero.

It is clear that C is parallel to D by (4.8). So we have C = λD for some function λ on

Σ2, which implies

(4.10) hα12 = λ(hα11 − hα22),
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for α ∈ {3, 4}. Substituting (4.9) and (4.10) into (4.4), we have

0 =
[
(T 1)2 − (T 2)2

]
(h3

11h
4
12 − h4

11h
3
12) + T 1T 2(h3

11h
4
22 − h4

11h
3
22)

= λ
[
(T 1)2 − (T 2)2

]
(h4

11h
3
22 − h3

11h
4
22) + T 1T 2(h3

11h
4
22 − h4

11h
3
22)

=
{
λ
[
(T 1)2 − (T 2)2

]
− T 1T 2

}
(h4

11h
3
22 − h3

11h
4
22),

(4.11)

which implies λ
[
(T 1)2 − (T 2)2

]
= T 1T 2 or h4

11h
3
22 = h3

11h
4
22. We discuss it in two subcases.

Subcase 1. λ
[
(T 1)2 − (T 2)2

]
= T 1T 2.

If T 1T 2 6= 0, then (T 1)2 6= (T 2)2 and λ 6= 0. From (3.6) and (4.10), we have

S12 = 2
∑
α

Hαhα12 − cT 1T 2 = 2
∑
α

Hαλ(hα11 − hα22)− cT 1T 2

= 4λ

(∑
α

Hαhα11 −H2

)
− cT 1T 2 = 0,

from which we obtain

µ = S11 = 2
∑
α

Hαhα11 − c(T 1)2 +
c

2
|T |2 − 2H2

= 2

(
cT 1T 2

4λ
+H2

)
+
c

2

[
(T 2)2 − (T 1)2

]
− 2H2

=
c

2λ

{
T 1T 2 + λ

[
(T 2)2 − (T 1)2

]}
= 0,

(4.12)

that contradicts to the assumption |S| 6= 0. Therefore, T 1T 2 = 0. Without loss of

generality, we assume T 2 = 0 and T 1 = sin θ. It follows from (4.1) that

∇T i = dT i +
∑
k

T kωik = T 1ωi1 = 0,

for any i. Using (3.4), we obtain

(4.13) ∇ejT i =
∑
α

Nαhαij = 0,

for any i, j. Setting i = j and taking summation, we have
〈
N,
−→
H
〉

=
∑

αN
αHα = 0.

Subcase 2. h4
11h

3
22 = h3

11h
4
22.

In this case, A is parallel to B. Owing to the non-minimal property, A and B do not vanish

simultaneously. Without loss of generality, we assume that hα11 = νhα22 for α ∈ {3, 4},
where ν 6= −1 is a function on Σ2 since H 6= 0. Using (4.10), we obtain

(4.14) hα11 =
2ν

ν + 1
Hα, hα22 =

2

ν + 1
Hα, hα12 =

2λ(ν − 1)

ν + 1
Hα,

which is equivalent with Aα = HαA0, where

(4.15) A0 =
2

ν + 1

 ν λ(ν − 1)

λ(ν − 1) 1

 .
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By (4.14) and (4.15), we have

(4.16) det(Aα) = (Hα)2 det(A0), det(A0) =
4

(ν + 1)2

[
ν − λ2(ν − 1)2

]
.

Substituting (4.14) and (4.16) into (4.3), we get

(4.17) 0 = (N3H3 +N4H4)2 det(A0) =
〈
N,
−→
H
〉2

det(A0).

It follows that
〈
N,
−→
H
〉

= 0 or det(A0) = 0. In latter case, we have ν = λ2(ν − 1)2. By

applying (3.6) and (4.14), we obtain

(4.18) S12 = 2
∑
α

Hαhα12 − cT 1T 2 = 4λH2

(
ν − 1

ν + 1

)
− cT 1T 2 = 0.

Moreover, we have

µ = S11 = 2H2

(
ν − 1

ν + 1

)
− c(T 1)2 +

c

2
|T |2

which implies

(4.19) c(T 1)2 =
c

2
|T |2 + 2H2

(
ν − 1

ν + 1

)
− µ, c(T 2)2 =

c

2
|T |2 − 2H2

(
ν − 1

ν + 1

)
+ µ.

Using (4.18) and (4.19), we obtain via a straightforward calculation

16νH4

(ν + 1)2
=

16λ2(ν − 1)2H4

(ν + 1)2
= c2(T 1)2(T 2)2 =

c2

4
|T |4 −

[
µ− 2(ν − 1)H2

ν + 1

]2

,

where we used ν = λ2(ν − 1)2 in the first equality. Simplifying the above equation, we

find

(4.20)
ν − 1

ν + 1
=
c2 |T |4 − 16H4 − 4µ2

16µH2
,

which is constant. Therefore, both T 1 and T 2 are constant by (4.19) and (4.20). By

similar argument as in Subcase 1, we obtain (4.13), from which we obtain
〈
N,
−→
H
〉

= 0.

Case 2. D is a zero vector.

In this case we have A = B =
−→
H . Applying (4.4), we have

0 = (T 1)2(H3h4
12 −H4h3

12) + (T 2)2(h3
21H

4 − h4
21H

3) + T 1T 2(H3H4 −H4H3)

=
[
(T 1)2 − (T 2)2

]
(H3h4

12 −H4h3
12),

(4.21)

from which we get (T 1)2 = (T 2)2 or H3h4
12 = H4h3

12. When (T 1)2 = (T 2)2, we can see

that T 1 and T 2 are constant, which implies that
〈
N,
−→
H
〉

= 0.
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Suppose that H3h4
12 = H4h3

12. Then C is parallel to
−→
H . Set C = ρ

−→
H . Then hα12 = ρHα

for α ∈ {3, 4}. It follows that det(A3) = (H3)2(1 − ρ2) and det(A4) = (H4)2(1 − ρ2).

According to (4.3), we find

0 = (N3H3)2(1− ρ2) + (N4H4)2(1− ρ2) + 2N3N4H3H4(1− ρ2)

= (1− ρ2)
〈
N,
−→
H
〉2
,

(4.22)

from which we have
〈
N,
−→
H
〉

= 0 or ρ2 = 1. In case ρ2 = 1, we have from (3.6) that

0 = S12 = 2
∑
α

Hαhα12 − cT 1T 2 = 2ρH2 − cT 1T 2,

which implies

(4.23) (cT 1T 2)2 = (2ρH2)2 = 4H4.

According (4.23) and the fact that (T 1)2 + (T 2)2 = sin2 θ, it follows that T 1 and T 2 are

constant, which means that
〈
N,
−→
H
〉

= 0.

Summarizing the above cases, we claim that
−→
H is orthogonal to N . Our statement is

proved.

Then we present an example that satisfies all the conditions described in Lemma 4.2.

Example 4.3. Define the map x : R2 → R6 as follows:

x(u, v) = (x1, . . . , x6)

=

(
cos θ

b
cos(bu),

cos θ

b
sin(bu),

sin(av)

a
,
cos(av)

a
,
2H

ab
, u sin θ

)
,

(4.24)

where b =
√
c+ c cos2 θ, a =

√
b2 + 4H2 and H, c > 0, θ are constant. Let Σ2 = x(R2).

Then Σ2 is a surface described as in Lemma 4.2.

Firstly,
∑5

i=1(xi)2 = 1/c, thus Σ2 lies in M4(c)× R. Let ∂t = (0, . . . , 0, 1) and

(4.25) ∂u = xu = (− cos θ sin(bu), cos θ cos(bu), 0, 0, 0, sin θ) ,

(4.26) ∂v = xv = (0, 0, cos(av),− sin(av), 0, 0) .

Then we have

(4.27) |xu|2 = |xu|2 = 1, 〈xu, xv〉 = 0, ωij = 0, K = 0,

(4.28) T = 〈∂t, xu〉xu + 〈∂t, xv〉xv = sin θxu, |T |2 = sin2 θ.
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Let us consider M4(c)×R as a hypersurface in R6. Its normal vector e6 = (x1, . . . , x5, 0).

Denote its unit normal vector by e6 =
√
ce6. Let D be Euclidean connection and h be the

second fundamental form of M4(c)× R in R6. Then

(4.29) h(X,Y ) = −c
〈
X|M4(c), Y |M4(c)

〉
e6 = c(〈X, ∂t〉 〈Y, ∂t〉 − 〈X,Y 〉 e6,

for any X,Y ∈X (M4(c)× R). From (3.1), (4.29) and the third fact in (4.27), we have

(4.30) h(X,Y ) = DXY −∇XY − h(X,Y ) = DXY + c
〈
X|M4(c), Y |M4(c)

〉
e6,

for any tangent vectors X,Y ∈X (Σ2). Using (4.25), (4.26) and (4.30), we obtain

(4.31)

h(∂u, ∂u) = xuu + c cos2 θ · e6
= (−b cos θ cos(bu),−b cos θ sin(bu), 0, 0, 0, 0)

+ c cos2 θ

(
cos θ

b
cos(bu),

cos θ

b
sin(bu),

sin(av)

a
,

cos(av)

a
,

2H

ab
, 0

)
= c cos θ

(
−cos(bu)

b
,− sin(bu)

b
,

cos θ sin(av)

a
,

cos θ cos(av)

a
,

2H cos θ

ab
, 0

)
,

h(∂u, ∂v) = xuv + c
〈
∂u|M4(c), ∂v|M4(c)

〉
e6 = 0,

h(∂v, ∂v) = xvv + ce6 = (0, 0,−a sin(av),−a cos(av), 0, 0)

+ c

(
cos θ

b
cos(bu),

cos θ

b
sin(bu),

sin(av)

a
,

cos(av)

a
,

2H

ab
, 0

)
=

(
c cos θ

b
cos(bu),

c cos θ

b
sin(bu),

c− a2

a
sin(av),

c− a2

a
cos(av),

2cH

ab
, 0

)
.

Thus

(4.32)
−→
H =

1

2
[h(∂u, ∂u) + h(∂v, ∂v)] =

H

a
(0, 0,−2H sin(av),−2H cos(av), b, 0) ,

and

(4.33)
〈−→
H,h(∂u, ∂u)

〉
=
〈−→
H,h(∂u, ∂v)

〉
= 0,

〈−→
H,h(∂v, ∂v)

〉
= 2H2.

From (3.6) and (4.33), we get

〈S∂u, ∂u〉 = − c
2

sin2 θ − 2H2 = −〈S∂v, ∂v〉 , 〈S∂u, ∂v〉 = 0,

which imply

(4.34) |S|2 = 2
( c

2
sin2 θ + 2H2

)2
,

which is a nonzero constant. From (4.25), (4.26) and (4.32), we have〈−→
H, ∂t

〉
=
〈−→
H, ∂u

〉
=
〈−→
H, ∂v

〉
= 0.
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Using (4.29), we get

h(∂u,
−→
H ) = h(∂v,

−→
H ) = 0,

from which, together with (3.1), (3.2) and (4.33), we obtain

∇⊥∂u
−→
H = D∂u

−→
H +A−→

H
∂u − h(∂u,

−→
H ) = (

−→
H )u + 0 + 0 = 0,

∇⊥∂v
−→
H = D∂v

−→
H +A−→

H
∂v − h(∂v,

−→
H ) = −2H2∂v + 2H2∂v + 0 = 0,

(4.35)

which imply ∇⊥
−→
H = 0. Therefore, Σ2 defined by (4.24) satisfies all conditions described

in Lemma 4.2.

In the sequel, we proceed to characterize the surfaces in Lemma 4.2 and prove that

the kind of surfaces in Example 4.3 is the only class, up to an isometry of M4(c)× R.

Lemma 4.4. Under the same conditions as in Lemma 4.2, Σ2 lies in M4(c) × R with

c > 0 and
−→
H⊥N . With respect to the normal frame field

{
e3 =

−→
H/H, e4 = N/ |N | , e5

}
,

the shape operators Aα and the connection form matrix (ωAB) are represented as

(4.36) A3 =

0 0

0 2H

 , A4 = 0, A5 =

√c cos θ 0

0 −
√
c cos θ

 ,

(4.37) (ωAB) =



0 0 0 0
√
c cos θ ω1

0 0 2Hω2 0 −
√
c cos θ ω2

0 −2Hω2 0 0 0

0 0 0 0 −
√
c sin θ ω1

−
√
c cos θ ω1

√
c cos θ ω2 0

√
c sin θ ω1 0


.

Proof. Owing to ∇⊥
−→
H = 0, we have

0 = dHα +
∑
β

Hβωαβ = Hωα3 ,

which implies ωα3 = ωα4 = 0, for α ∈ {3, 4}. Thus by (3.5), we have∑
i,j

T ihαijω
j = −∇⊥Nα = −dNα −

∑
β

Nβωαβ = − |N |ωα4 = 0,

which is equivalent with

(4.38) T 1hα11 + T 2hα12 = 0 and − T 2hα11 + T 1hα12 = −2HαT 2,

for α ∈ {3, 4}. By Cramer’s Rule, we obtain

(4.39) A3 =
2H

|T |2

 (T 2)2 −T 1T 2

−T 1T 2 (T 1)2

 ,
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and A4 = 0 which is the desired form. From (3.6) and (4.39), we get

µ = S11 = 2Hh3
11 − c(T 1)2 +

c

2
|T |2 − 2H2 =

1

2

[
(T 2)2 − (T 1)2

](
c+

4H2

|T |2

)
,(4.40)

0 = S12 = 2Hh3
12 − cT 1T 2 = −T 1T 2

(
c+

4H2

|T |2

)
,(4.41)

which imply T 1T 2 = 0. Without loss of generality, we assume T 2 = 0 and T 1 = |T |. Then,

A3 becomes the desired form. From (4.6), we get A3A5 = A5A3, which implies h5
12 = 0.

It follows that

(4.42) 0 = K = c cos2 θ +
∑
α

det(Aα) = c cos2 θ + det(A5) = c cos2 θ − (h5
11)2,

which implies that c > 0. We can set h5
11 =

√
c cos θ (one can change the direction of e5

if necessarily). Consequently, A5 has the desired form. At last, by (3.5), we obtain

cos θ ω5
4 = dN5 +

∑
α

Nαω5
α = ∇⊥N5

= −
∑
i,j

T ih5
ijω

j = −T 1h5
11ω

1 = −
√
c sin θ cos θ ω1,

(4.43)

which implies ω5
4 = −

√
c sin θ ω1. To summarize what we have proven, and applying

ωαi =
∑

j h
α
ijω

j , we can see that the connection form matrix is given by (4.37). This

completes the proof of Lemma 4.4.

In Lemma 4.4, we obtain the connection form of the surface and, following the existence

and uniqueness theorem of submanifolds, the surface is unique (up to an isometry of

M4(c)× R) for a fixed θ, and given by Example 4.3. Next, we will give a way of looking

for the surface of Example 4.3, which is similar to that in [20,21].

Theorem 4.5. Let x : Σ2 → Mn(c) × R with c 6= 0 be a complete non-minimal PMC

surface with non-negative Gaussian curvature and |S| 6= 0. If θ ∈ (0, π/2) is constant,

then Σ2 lies in M4(c)×R with c > 0. Up to an isometry of M4(c)×R, the immersion is

given by (4.24).

Proof. By Lemma 4.4, Σ2 lies in M4(c)× R with c > 0. Let x(u, v) = (x1, . . . , x6) be the

position vector satisfying
∑5

i=1(xi)2 = 1/c. We choose the same frame {e1, . . . , e5} as in

Lemma 4.4. Thus, one can take coordinates (u, v) on Σ2 with ∂u = e1, ∂v = e2. Then we

have

T = sin θ ∂u,
−→
H = He3, N = cos θ e4.

Regard M4(c) × R as a hypersurface in R6. The normal vector of M4(c) × R in R6 is

e6 = (x1, . . . , x5, 0). Let e6 =
√
ce6 and denote

eα = (ξα1 , . . . , ξ
α
6 ),
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for α ∈ {3, 4, 5}. Then {eα}6α=3 forms a normal frame of Σ2 in R6. We denote by

D (resp. D⊥) the Euclidean connection (resp. the normal connection). Then, for any

X ∈X (Σ2), we have

(4.44)

DXe6 = X|M4(c) = X − 〈X, ∂t〉 ∂t, D⊥Xe6 =
5∑

α=3

〈DXe6, eα〉 eα = − cos θ 〈X,T 〉 e4,

from which one gets

(4.45) Ae6X = −DXe6 +D⊥Xe6 = −X
∣∣
M4(c)

− cos θ 〈X,T 〉 e4 = −X + 〈X,T 〉T.

By applying (4.45), we obtain

− cos2 θ ∂u = −∂u + 〈∂u, T 〉T = Ae6(∂u) = −∂u
∣∣
M4(c)

− cos θ sin θ e4,

−∂v = −∂v + 〈∂v, T 〉T = Ae6(∂v) = −∂v
∣∣
M4(c)

.

It follows that

e4 =
1

sin θ cos θ

(
−∂u

∣∣
M4(c)

+ cos2 θ ∂u

)
, ∂v = ∂v

∣∣
M4(c)

,

from which we have, by rewriting them into components of e4,

(4.46) (xj)u = −ξ4
j cot θ, 1 ≤ j ≤ 5,

(4.47) (x6)u = ξ4
6 tan θ = tan θ 〈e4, ∂t〉 = sin θ, (x6)v = 0.

From (4.47), we can take x6 = u sin θ. Using (4.29), we have

(4.48) h(X, eα) = c 〈X,T 〉 〈eα, N〉 e6 = cδ4α cos θ 〈X,T 〉 e6,

for any α ∈ {3, 4, 5} and X ∈ X (Σ2). By the fundamental formulae of submanifolds, we

get

DXeα = −AαX +∇⊥Xeα + h(X, eα)

= −AαX +

5∑
β=3

ωβα(X)eβ + cδ4α cos θ 〈X,T 〉 e6,
(4.49)

from which we obtain

D∂ue3 = −A3(∂u) = 0, D∂ve3 = −A3(∂v) = −2H∂v,

D∂ue4 = ω5
4(∂u) e5 + c cos θ 〈∂u, T 〉 e6

= −
√
c sin θ e5 + c sin θ cos θ e6, D∂ve4 = 0,

D∂ue5 = −A5(∂u) + ω4
5(∂u) e4 = −

√
c cos θ ∂u +

√
c sin θ e4,

D∂ve5 = −A5(∂v) + ω4
5(∂v) e4 =

√
c cos θ ∂v.

(4.50)
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By rewriting (4.50) into components of eα’s, we have

(ξ3
A)u = 0, (ξ3

A)v = −2H(xA)v,(4.51)

(ξ4
j )u = −

√
c sin θ ξ5

j + c sin θ cos θ xj ,(4.52)

(ξ4
6)u = −

√
c sin θ ξ5

6 ,(4.53)

(ξ4
A)v = 0,(4.54)

(ξ5
A)u = −

√
c cos θ (xA)u +

√
c sin θ ξ4

A,(4.55)

(ξ5
A)v =

√
c cos θ (xA)v,(4.56)

where 1 ≤ A ≤ 6 and 1 ≤ j ≤ 5. Substituting (4.46) into (4.55), we have

(4.57) (ξ5
j )u =

√
c cos θ cot θ ξ4

j +
√
c sin θ ξ4

j =

√
c

sin θ
ξ4
j .

Taking the derivative of (4.52) with respect to u and using (4.46) and (4.57), we obtain

(4.58) (ξ4
j )uu = −

√
c sin θ

√
c

sin θ
ξ4
j + c sin θ cos θ (− cot θ ξ4

j ) = −c(1 + cos2 θ)ξ4
j .

By solving (4.58) and using (4.54), we get

(4.59) ξ4
j = C1

j sin(bu) + C2
j cos(bu) + C6

j ,

where b =
√
c+ c cos2 θ and C1

j , C2
j , C6

j are constants. Combing (4.46) and (4.59), we

have

(xj)u = − cot θ
[
C1
j sin(bu) + C2

j cos(bu) + C6
j

]
,

from which, we obtain

(4.60) xj =
cot θ

b

[
C1
j cos(bu)− C2

j sin(bu)
]
− cot θ C6

j u+ ψj(v),

where ψj(v) is a function with respect to v, for all 1 ≤ j ≤ 5.

From (4.29), we have h(∂v, ∂v) = −ce6. From

D∂v∂v = ∇∂v∂v +

5∑
α=3

〈Aα(∂v), ∂v〉 eα + h(∂v, ∂v) = 2He3 −
√
c cos θ e5 − ce6,

it follows that

(xj)vv = 2Hξ3
j −
√
c cos θ ξ5

j − cxj .(4.61)

Substituting (4.60) into the second equality of (4.51), we obtain

(ξ3
j )v = −2H(xj)v = −2Hψ′j(v),
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from which, combining with the first equality of (4.51), we get

(4.62) ξ3
j = −2Hψj(v) + C3

j ,

where C3
j is a constant. According to (4.52) and (4.59), we have

ξ5
j =

1√
c sin θ

[
c sin θ cos θ xj − (ξ4

j )u
]

=
1√

c sin θ

[
c sin θ cos θ xj − bC1

j cos(bu) + bC2
j sin(bu)

]
.

(4.63)

Substituting (4.60), (4.62), (4.63) into (4.61), we obtain

ψ′′j (v) = −4H2ψj(v) + 2HC3
j − cot θ

[
c sin θ cos θ xj − bC1

j cos(bu) + bC2
j sin(bu)

]
− cxj

= −4H2ψj(v) + 2HC3
j + b cot θ

[
C1
j cos(bu)− C2

j sin(bu)
]
− b2xj

= −(4H2 + b2)ψj(v) + 2HC3
j + b2 cot θ C6

j u,

which is equivalent with

(4.64) ψ′′j (v) + a2ψj(v) = 2HC3
j + b2 cot θ C6

j u,

where a =
√

4H2 + b2. Since u, v are two independent parameters, we have from (4.64)

that

(4.65) C6
j = 0,

(4.66) ψ′′j (v) + a2ψj(v) = 2HC3
j ,

for any 1 ≤ j ≤ 5. From (4.66), we have

(4.67) ψj(v) = C4
j sin(av) + C5

j cos(av) +
2H

a2
C3
j ,

where C4
j , C5

j are constants. Putting (4.65), (4.67) into (4.60), we get

(4.68) xj = ϕj(u) + ψj(v),

for any 1 ≤ j ≤ 5, where

(4.69) ϕj(u) =
cot θ

b

[
C1
j cos(bu)− C2

j sin(bu)
]
.

Next, let us characterize Cij for 1 ≤ i, j ≤ 5. Denote Cj = (Cj1 , . . . , C
j
5), and suppose

that

ϕ(u) =
cot θ

b

[
cos(bu)C1 − sin(bu)C2

]
,

ψ(v) = sin(av)C4 + cos(av)C5 +
2H

a2
C3.

(4.70)
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Then from (4.59), (4.62), (4.63) and (4.68), we have

(4.71)

e1 = xu = (ϕ′(u), sin θ), e2 = xv = (ψ′(v), 0),

e3 = (−2Hψ(v) + C3, 0), e4 = (− tan θ ϕ′(u), cos θ),

e5 = (
√
c(cos θψ(v)− cos−1 θϕ(u)), 0), e6 =

√
c(ϕ(u) + ψ(v), 0).

From 〈e1, e1〉 = 1, we get

1

2

(∣∣C1
∣∣2 +

∣∣C2
∣∣2)+

1

2

(∣∣C2
∣∣2 − ∣∣C1

∣∣2) cos(2bu) +
〈
C1, C2

〉
sin(2bu) = sin2 θ,

which implies

(4.72)
∣∣C1
∣∣2 =

∣∣C2
∣∣2 = sin2 θ,

〈
C1, C2

〉
= 0.

Similarly, by 〈e2, e2〉 = 1, we have

1

2

(∣∣C4
∣∣2 +

∣∣C5
∣∣2)+

1

2

(∣∣C4
∣∣2 − ∣∣C5

∣∣2) cos(2av) +
〈
C4, C5

〉
sin(2av) =

1

a2
,

which implies

(4.73)
∣∣C4
∣∣2 =

∣∣C5
∣∣2 =

1

a2
,
〈
C4, C5

〉
= 0.

By 〈e1, e6〉 = 0, we obtain

0 =

[〈
C1, C4

〉
sin(av) +

〈
C1, C5

〉
cos(av) +

2H

a2

〈
C1, C3

〉]
sin(bu)

+

[〈
C2, C4

〉
sin(av) +

〈
C2, C5

〉
cos(av) +

2H

a2

〈
C2, C3

〉]
cos(bu).

It follows that

(4.74)
〈
C1, Cα

〉
=
〈
C2, Cα

〉
= 0

for any α ∈ {3, 4, 5}. In the same way, we have from 〈e2, e6〉 = 0 and 〈e3, e6〉 = 0 that

(4.75)
〈
C3, C4

〉
=
〈
C3, C5

〉
= 0,

∣∣C3
∣∣2 =

a2

b2
.

Using (4.72) to (4.75), we conclude that
{
Ci
}5

i=1
is orthogonal with each other and∣∣C1

∣∣2 =
∣∣C2
∣∣2 = sin2 θ,

∣∣C3
∣∣2 = a2/b2,

∣∣C4
∣∣2 =

∣∣C5
∣∣2 = 1/a2. Through an orthogonal

transformation, the surface is given by (4.24) and it is unique for a given θ, up to an

isometry of M4(c)× R.

Remark 4.6. For any fixed θ ∈ (0, π/2) and given real number H, we construct a class of

surfaces with constant mean curvature H, as described in Lemma 4.2. Therefore, we get

a kind of surface which is not Abresch-Rosenberg type surfaces.
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Proof of Main Theorem. Following Theorem 4.1, we obtain case (1) and case (2). In the

latter case, θ = 0 implies that Σ2 lies in Mn(c), and θ = π/2 means that Σ2 = γ × R
where γ is a curve of Mn(c). When θ ∈ (0, π/2), we have from Theorem 4.5 that Σ2 lies

in M4(c)×R with c > 0 and is parameterized by (4.24), up to an isometry of M4(c)×R.

This completes the proof of Main Theorem.
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