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EKELAND’S VARIATIONAL PRINCIPLE FOR SET-VALUED MAPS
WITH APPLICATIONS TO VECTOR OPTIMIZATION

IN UNIFORM SPACES

Qamrul Hasan Ansari*, Somayeh Eshghinezhad and Majid Fakhar

Abstract. In this paper, we introduce the concept of a weak q-distance and for
this distance we derive a set-valued version of Ekeland’s variational principle in
the setting of uniform spaces. By using this principle, we prove the existence
of solutions to a vector optimization problem with a set-valued map. Moreover,
we define the (p, ε)-condition of Takahashi and the (p, ε)-condition of Hamel
for a set-valued map. It is shown that these two conditions are equivalent. As
an application, we discuss the relationship between an ε-approximate solution
and a solution of a vector optimization problem with a set-valued map. Also, a
well-posedness result for a vector optimization problem with a set-valued map is
given.

1. INTRODUCTION

In 1972, Ekeland [12] discovered a variational principle which states that if a
real-valued function defined on a complete metric space is bounded below and lower
semicontinuous, then a slight perturbation of this function has a strict minimum. It
is known as Ekeland’s variational principle (EVP) and is one of the most important
results from nonlinear functional analysis. It has significant applications in optimiza-
tion, control theory and several other areas of science, social science, management and
engineering, see, for example, [3, 4, 9, 12] and the references therein. It is well known
that the Ekeland’s variational principle is equivalent to several important results in non-
linear analysis, see, for example, [1, 2, 3, 9, 13, 19, 26, 40] and the references therein.
To weaken the lower semicontinuity assumption in the EVP, several different kinds
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of distance functions, namely, w-distance, τ -distance, τ -function, weak τ -distance,
q-distance, etc, have been investigated and the EVP is obtained for these distances,
see, for example, [1, 2, 4, 23, 25, 30, 35, 36] and the references therein. Recently,
Włodarczyk and Plebaniak [39] introduced the concept of a J -families of general-
ized pseudodistances in a uniform space which generalizes several distance functions,
namely, distance of Tataru [38], w-distance of Kada et al. [23], τ -distance of Suzuki
[36], τ -function of Lin et al. [30] and weak τ -function of Khanh et al. [25] in metric
space setting. Very recently, Qiu et al. [35] introduced the notion of p-distance and
more generally q-distance in a uniform space and a new type of completeness for uni-
form spaces. By using q-distance and the new type of completeness, they obtained a
new version of EVP which includes several known versions of EVP. We note that the
q-distance on a metric space generalizes pseudodistance but the converse is not true,
see, Example 1.3 in [14].

During the last decade, the EVP has been extended and generalized for vector-
valued functions and for set-valued maps, see, for example, [2, 6, 9, 13, 18, 25, 26, 31,
34] and the references therein. In 1998, Chen and Huang [7] introduced the concept of
approximate solutions for set-valued maps and provided a sufficient condition for the
existence of approximate solutions for set-valued maps. They also obtained a set-valued
version of Ekeland’s variational principle. Since than, several papers have appeared in
the literature on this topic, see, for example, [7, 8, 11, 18, 20, 26, 31] and the references
therein.

Motivated by the concept of a q-distance in a uniform space and a generalized
pseudodistance in a metric space, we introduction the concept of weak q-distance in
a uniform space and sequential completeness with respect to a weak q-distance. We
establish an EVP for set-valued maps in a Hausdorff uniform space which is a sequential
complete with respect to a weak q-distance. By using this EVP, we derive the existence
of solutions to vector optimization problems with set-valued maps. We introduce the
concepts of (p, ε)-condition of Takahashi and the (p, ε)-condition of Hamel. These
concepts generalize the Takahashi’s condition in [37] and Hamel’s condition in [19],
respectively. As a consequence of our EVP, we study the equivalence between (p, ε)-
condition of Takahashi and (p, ε)-condition of Hamel. Furthermore, we discuss the
relationship between an ε-approximate solution and a solution of a vector optimization
problem with a set-valued map. Also, a well-posedness result for a vector optimization
problem with a set-valued map is given.

2. EKELEND’S VARIATIONAL PRINCIPLE FOR SET-VALUED MAPS

Definition 2.1. A nonempty subset A of a uniform space X is said to be sequen-
tially closed if for any sequence {xn} in A converges to x, we have x ∈ A.

Note that if A is closed, then A is sequentially closed but the converse need not be
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true. Also, if some subsets of a uniform space are sequentially closed, then we cannot
conclude that the space is metrizable.

Definition 2.2. Let X be a Hausdorff uniform space. A function p : X × X →
[0,∞) is said to be a weak q-distance on X if the following conditions hold:
(P1) p(x, y) ≤ p(x, z) + p(z, y), for all x, y, z ∈ X ;
(P2) If {xn} is a sequence in X and lim sup

n→∞
{p(xn, xm) : m > n} = 0, then {xn} is

a Cauchy sequence in X ;
(P3) If {xn} is a sequence in X and p(xn, x) → 0, then xn → x in X .

Remark 2.1. If in addition to conditions (P1)–(P3), the following condition is also
satisfied:
(P4) for all x, y, z ∈ X , p(x, y) = 0 and p(x, z) = 0 imply y = z,

then a weak q-distance becomes q-distance defined in [35].

Example 2.1. [14, Example 1.3]. Let p : [0, 2] × [0, 2] → [0,∞) be a function
defined by

p(x, y) =

⎧⎪⎨
⎪⎩

0, if x− y = −2;
|x− y|, if − 2 < x − y ≤ 0;
x− y + 2, if 0 < x− y ≤ 2.

Then, it can be easily seen that p is a weak q-distance but not q-distance.

Definition 2.3. Let X be a Hausdorff uniform space and p be a weak q-distance on
X . Then, X is said to be sequentially complete with respect to p if for any sequence
{xn} in X with lim sup

n→∞
{p(xn, xm) : m > n} = 0, there exists x̄ ∈ X such that

p(xn, x̄) → 0 as n→ ∞.

Several examples of sequentially complete spaces with respect to a q-distance can
be found in [35]. Note that there are some examples of uniform spaces which are
not sequentially complete, but they are sequentially complete with respect to a weak
q-distance, see, for example, Example 3.5 in [35].

The following result is an extension of Theorem 1 in [27] from complete metric
space to Hausdorff uniform space.

Theorem 2.1. Let X be a Hausdorff uniform space and p be a weak q-distance
on X . Assume that X is sequentially complete with respect to p, T : X ⇒ X is a
set-valued map with nonempty sequentially closed values, and the following conditions
hold.

(i) T (T (x)) ⊆ T (x), for all x ∈ X;
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(ii) For all x ∈ X and ε > 0, there exists y ∈ T (x) such that ry(T (y)) < ε, where
ry(T (y)) = sup{p(y, v) : v ∈ T (y)}.

Then, there exists x̄ ∈ X such that T (x̄) = {x̄}.

Proof. Let x0 ∈ X be arbitrary. By condition (ii), there exists x1 ∈ T (x0) such
that rx1(T (x1)) < 1. Continuing this process, we can choose a sequence {xn}n≥0 in
X such that rxn(T (xn)) < 1

n and xn ∈ T (xn−1), for all n ∈ N. On the other hand,
from condition (i), we obtain

T (x0) ⊇ T (x1) ⊇ · · · .
Therefore, p(xn, xm) < 1

n for all m > n > 0, and so, lim sup
n→∞

{p(xn, xm) : m > n} =

0. SinceX is sequentially complete w. r. t. p, there exists x̄ ∈ X such that p(xn, x̄) → 0
as n → ∞. Thus, xn → x̄, and sequentially closedness of T (xn) implies x̄ ∈ T (xn)
for all n ∈ N. Also, if y ∈ ⋂n∈N

T (xn), then p(xn, y) < 1
n . Thus, p(xn, y) → 0,

and so, xn → y. Since X is Hausdorff, x̄ = y. Therefore,
⋂

n∈N
T (xn) = {x̄}.

Furthermore, from condition (i), it follows that T (x̄) ⊆ ⋂
n∈N

T (xn) = {x̄}. Hence,
T (x̄) = {x̄}.

Definition 2.4. Let Y be a locally convex space ordered by a closed convex cone
C. A nonempty subset A of Y is said to be C-order-bounded from below if there
exists b ∈ Y such that A ⊆ b+C.

The epigraph of a set-valued map F : X ⇒ Y is defined as

epiF := {(x, y) ∈ X × Y : y ∈ F (x) + C}.
The following result is a set-valued version of Ekeland’s variational principle which

extends Theorem 4.1 in [26] to uniform spaces.

Theorem 2.2. Let X be a Hausdorff uniform space and p : X ×X → [0,∞) be
a weak q-distance on X . Let Y be a locally convex space ordered by a closed convex
cone C and D be a nonempty convex subset of C such that 0 /∈ cl(C +D). Assume
that x0 ∈ X and F : X ⇒ Y is a set-valued map such that the following conditions
hold:
(A1) The set F (X) is C-order-bounded from below.
(A2) The set S = {y ∈ X : F (x0) ⊆ F (y) + p(x0, y)D + C} is nonempty and

sequentially complete with respect to p.
(A3) For any x ∈ X , the set {y ∈ X : F (x) ⊆ F (y)+p(x, y)D+C} is sequentially

closed.

Then, there exists x̄ ∈ X such that
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(a) F (x0) ⊆ F (x̄) + p(x0, x̄)D +C;
(b) F (x̄) � F (x) + p(x̄, x)D+C, for all x �= x̄.

Proof. For all x ∈ S, define a set-valued map T : S ⇒ S by

T (x) := {y ∈ S : F (x) ⊆ F (y) + p(x, y)D+ C}.

By condition (A3), T (x) is sequentially closed for all x ∈ S. Assume that T (x) �= ∅,
for all x ∈ S. Then, T is a set-valued map with nonempty sequentially closed values.
Now, we show that T satisfies conditions (i) and (ii) of Theorem 2.1.

Suppose that x ∈ S, y ∈ T (x) and z ∈ T (y). Then,

(2.1) F (x) ⊆ F (y) + p(x, y)D+C and F (y) ⊆ F (z) + p(y, z)D+C.

By convexity of D, we have

p(x, y)
p(x, y) + p(y, z)

D +
p(y, z)

p(x, y) + p(y, z)
D ⊆ D,

since p(x,y)
p(x,y)+p(y,z) ≥ 0, p(y,z)

p(x,y)+p(y,z) ≥ 0, and p(x,y)
p(x,y)+p(y,z) + p(y,z)

p(x,y)+p(y,z) = 1. There-
fore,

(2.2) p(x, y)D+ p(y, z)D ⊆ (p(x, y) + p(y, z))D.

Clearly, for all d ∈ D,

(p(x, y) + p(y, z))d = p(x, z)d+ (p(x, y) + p(y, z)− p(x, z))d.

But p(x, z) ≤ p(x, y) + p(y, z), D ⊆ C and C is a cone, we have

(p(x, y) + p(y, z)− p(x, z))d ∈ C.

Therefore,

(2.3) (p(x, y) + p(y, z))D ⊆ p(x, z)D+ C.

From relations (2.2) and (2.3), we have

p(x, y)D+ p(y, z)D ⊆ p(x, z)D+ C.

Hence, by (2.1), we obtain

F (x) ⊆ F (z) + p(x, y)D+ p(y, z)D+ C ⊆ F (z) + p(x, z)D+ C,

and thus, T (T (x)) ⊆ T (x).
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To prove condition (ii) of Theorem 2.1, assume to the contrary that there exist
ε > 0 and x ∈ S such that

(2.4) ry(T (y)) ≥ ε, for all y ∈ T (x).

Let y1 ∈ T (x) be arbitrary. Then, ry1(T (y1)) ≥ ε, and therefore, there exists y2 ∈
T (y1) such that p(y1, y2) ≥ ε

2 . Since y2 ∈ T (y1) ⊆ T (x), we have ry2(T (y2)) ≥ ε.
Continuing in this way, we can choose a sequence {yn} in T (x) such that for all n ∈ N,

(2.5) yn+1 ∈ T (yn) and p(yn, yn+1) ≥ ε

2
.

Since yn+1 ∈ T (yn), we have

(2.6) F (yn) ⊆ F (yn+1) + p(yn, yn+1)D +C.

Hence,

F (y1) ⊆ F (y2) + p(y1, y2)D +C

⊆ F (y3) + p(y2, y3)D +C + p(y1, y2)D + C

...
⊆ F (yn+1)+p(yn, yn+1)D+C+p(yn−1, yn)D+C +· · ·+p(y1, y2)D+C.

Since C is a convex cone, we have C +C ⊆ C, and therefore, we deduce that

(2.7) F (y1) ⊆ F (yn+1) +
n∑

i=1

p(yi, yi+1)D +C.

Since 0 /∈ cl((C+D), by Hahn-Banach separation theorem, there exists y∗ ∈ Y ∗ such
that

inf
c∈C,d∈D

y∗(c+ d) > 0.

Since D ⊆ D +C, we have

inf
d∈D

y∗(d) ≥ inf
c∈C,d∈D

y∗(c+ d) > 0.

Also, y∗(c+ d) > 0, for all d ∈ D and c ∈ C. Thus, y∗(c) > −y∗(d), for all d ∈ D,
c ∈ C. If d ∈ D is arbitrary but fixed and c ∈ C, then y∗(nc) > −y∗(d), for all
n ∈ N because C is a cone. That is, y∗(c) > −1

n y
∗(d), for all n ∈ N. If n→ ∞, then

y∗(c) ≥ 0, for all c ∈ C. Therefore,

(2.8) inf
d∈D

y∗(d) > 0,
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and

(2.9) y∗(c) ≥ 0, for all c ∈ C.

Define ϕ : 2Y → R ∪ {+∞,−∞} by

ϕ(M) := inf{y∗(y) : y ∈M}, for all M ∈ 2Y \ {∅}.

Then, from (2.7), we have

(2.10)
ϕ(F (y1)) ≥ inf

{
y∗(y) : y ∈ F (yn+1) +

n∑
i=1

p(yi, yi+1)D +C

}

= inf
y∈F (yn+1)

y∗(y) + inf
v∈∑n

i=1 p(yi,yi+1)D
y∗(v) + inf

c∈C
y∗(c).

Since 0 ∈ C, by (2.9), we obtain

(2.11) inf
c∈C

y∗(c) = 0.

If v ∈ ∑n
i=1 p(yi, yi+1)D, then there exists di ∈ D for i = 1, 2, . . . , n such that

v ∈∑n
i=1 p(yi, yi+1)di. So,

(2.12)

y∗(v) = y∗
(

n∑
i=1

p(yi, yi+1)di

)

=
n∑

i=1

p(yi, yi+1)y∗(di)

≥
n∑

i=1

p(yi, yi+1)ϕ(D),

and therefore,

(2.13) inf
v∈∑n

i=1 p(yi,yi+1)D
y∗(v) ≥

n∑
i=1

p(yi, yi+1)ϕ(D).

Hence, by relations (2.10), (2.11) and (2.13), we have

(2.14) ϕ(F (y1)) ≥ ϕ(F (yn+1)) +
n∑

i=1

p(yi, yi+1)ϕ(D).

By condition (A1), there exists z ∈ Y such that

F (yn+1) ⊆ z + C, for all n ∈ N.
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From (2.9), ϕ(C) = 0, and thus,

ϕ(F (yn+1)) ≥ ϕ(z) + ϕ(C) = ϕ(z) = y∗(z).

Hence, by (2.14), we get

n∑
i=1

p(yi, yi+1)ϕ(D) ≤ ϕ(F (y1)) − ϕ(F (yn+1)) ≤ ϕ(F (y1)) − ϕ(z) < +∞.

From (2.8), ϕ(D) > 0, and thus the sequence {∑n
i=1 p(yi, yi+1)}∞n=1 is bounded. Also,

p(yi, yi+1) ≥ 0, then the series
∑∞

i=1 p(yi, yi+1) is convergent. Hence,

p(yn, yn+1) → 0.

This contradicts (2.5). Therefore, by Theorem 2.1, there exists x̄ ∈ S such that
T (x̄) = {x̄}. Hence,

(2.15) F (x̄) � F (x) + p(x̄, x)D+ C, for all x ∈ S, x �= x̄.

If there exists x̄ ∈ S such that T (x̄) = ∅, then

F (x̄) � F (x) + p(x̄, x)D+ C, for all x ∈ S.

Thus, in any case, there exists x̄ ∈ S such that

(2.16) F (x̄) � F (x) + p(x̄, x)D+ C, for all x ∈ S, x �= x̄.

Now, we show that

(2.17) F (x̄) � F (x) + p(x̄, x)D+C, for all x ∈ X, x �= x̄.

Suppose contrary that (2.17) does not hold. Then, there exists x ∈ X such that

x �= x̄ and F (x̄) ⊆ F (x) + p(x̄, x)D+ C.

By (2.16), x �∈ S. Moreover,

F (x0) ⊆ F (x̄) + p(x0, x̄)D ⊆ F (x) + p(x0, x̄)D+ p(x̄, x)D+C.

Hence,
F (x0) ⊆ F (x) + p(x0, x)D+C,

and so, x ∈ S, a contradiction.
Remark 2.2. (a) The condition 0 /∈ cl(C +D) in the above theorem was con-

sidered by Bednarczuk and Zagrodny [6].
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(b) Liu and Ng [31, Theorem 3.5] obtained Theorem 2.2 in the case where (X, d) is
a complete metric space and Y is a normed space under the following conditions:

(i) epiF = {(x, y) ∈ X × Y : y ∈ F (x) +C} is closed.
(ii) H̃(coneD,−C) := inf{d(b,−C) : b ∈ coneD, ‖ b ‖= 1} > 0,

where d(y, A) = inf{d(y, a) : a ∈ A} and cone(D) is a closed convex cone
generated by the set D.

From the proof of Theorem 3.5 in [31], one can see that if H̃(coneD,−C) > 0
and D is bounded, then 0 /∈ cl(C +D).

The following example shows that the above condition (ii) is incomparable with
the condition 0 /∈ cl(C +D) in Theorem 2.2.

Example 2.2. Let Y = R2 be ordered by a closed convex cone C = (−∞,∞) ×
[0,∞), and let D = (−∞,∞) × [1,∞). Then, coneD = (−∞,∞) × [0,∞) and
H̃(coneD,−C) = 0. Hence, condition (ii) of Liu and Ng [31] does not hold. But
(0, 0) /∈ cl(C +D).

Consider Y = R2 ordered by a closed convex cone C = R2
+, and D = intR2

+.
Then, H̃(coneD,−C) = H̃(R2

+,−R2
+) > 0. Therefore, condition (ii) of Liu and Ng

[31] holds. Moreover, (0, 0) ∈ cl(C +D).

It is a natural question that under what assumptions, condition (A3) in Theorem
2.2 holds? The following result gives an answer to this question.

Proposition 2.1. Let X be a Hausdorff uniform space and p : X×X → [0,∞) be
a weak q-distance on X . Let Y be a locally convex space ordered by a closed convex
cone C, and D be a nonempty convex subset of C. Suppose that D is sequentially
compact and p is lower semicontinuous in the second argument. If the epigraph of
set-valued map F : X ⇒ Y is closed, then condition (A3) of Theorem 2.2 holds.

Proof. For all x ∈ X , let

S(x) := {y ∈ X : F (x) ⊆ F (y) + p(x, y)D+ C}.
Let {yn} be a sequence in S(x) converging to ȳ. Then, we have

F (x) ⊆ F (yn) + p(x, yn)D+ C ⊆ F (yn) +C.

Since epiF is closed, we have

F (x) ⊆ F (ȳ) + C.

If p(x, ȳ) = 0, then
F (x) ⊆ F (ȳ) + p(x, ȳ)D +C.
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Now, suppose that p(x, ȳ) > 0 and m ∈ N is an arbitrary point such that 0 < 1
m <

p(x, ȳ). From the lower semicontinuity of p in the second argument, there exists
Q(m) ∈ N such that

p(x, yn) ≥ p(x, ȳ) − 1
m
, for all n > Q(m).

As D ⊆ C, we obtain

(2.18) p(x, yn)D ⊆
(
p(x, ȳ)− 1

m

)
D +C.

Since yn ∈ S(x), we have

F (x) ⊆ F (yn) + p(x, yn)D +C.

Thus,

F (x) ⊆ F (yn) +
((

p(x, ȳ) − 1
m

)
D + C

)
+C,

and so,

F (x) ⊆ F (yn) +
(
p(x, ȳ)− 1

m

)
D +C.

Therefore, for any y ∈ F (x), there exists dm ∈ D such that

y ∈ F (yn) +
(
p(x, ȳ)− 1

m

)
dm +C.

Hence,

y −
(
p(x, ȳ) − 1

m

)
dm ∈ F (yn) +C.

Since the above relation hold for sufficiently large n, the closedness of epiF implies

y −
(
p(x, ȳ) − 1

m

)
dm ∈ F (ȳ) +C.

Since 0 < 1
m < p(x, ȳ) and D is sequentially compact, there exists a subsequence

{dmk
} of {dm} that converges to d ∈ D. Since epiF is closed, (ȳ, y−p(x, ȳ)d) ∈ epiF ,

and therefore,

y ∈ F (ȳ) + p(x, ȳ)d+ C ⊆ F (ȳ) + p(x, ȳ)D +C.

Hence,
F (x) ⊆ F (ȳ) + p(x, ȳ)D +C,

that is, ȳ ∈ S(x). Thus, condition (A3) holds.
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A set-valued map F : X ⇒ Y is said to be C-lower semicontinuous on X if for
any y ∈ Y , the set {x ∈ X : y ∈ F (x) +C} is closed.

If epiF is closed, then it is easy to see that F is C-lower semicontinuous. Con-
versely, if F is C-lower semicontinuous, then by Proposition 2.3 in [15] and Proposition
3.1 in [16], epiF is closed provided that either F (x) is weakly compact or F (x) +C

is closed. Notice that, in general, C-lower semicontinuity does not imply closedness
of epiF , see Muselli [33].

Remark 2.3. Assume that the space X in Proposition 2.1 is sequentially complete
with respect to weak q-distance p and all the conditions of Proposition 2.1 hold. If
there exists x0 ∈ X such that the set {y ∈ X : F (x0) ⊆ (F (y) + p(x0, y)D) + C} is
nonempty, then condition (A2) of Theorem 2.2 holds.

The following example shows that a weak q-distance can be used to consider the
set-valued version of EVP.

Example 2.3. Let p be the same as in Example 2.1, Y = R, C = R+ and D =
[1, 2]. Let F : [0, 2] ⇒ R be defined by

F (x) =

{
[1, 2]ex, if x �= 0,

{1 + e}, if x = 0.

If x̄ = ln3, then

(2.19) F (x̄) � F (x) + p(x, x̄)D +C, for all x �= x̄.

In order to show our claim, we consider the following cases.

Case 1. Let 0 < x̄ − x ≤ 2. If x ∈ (0, 2], then

ex̄ = 3 /∈ [1, 2]ex + [1, 2](x̄− x + 2) + R+.

If x = 0, then
ex̄ = 3 /∈ {e+ 1}+ [1, 2](x̄+ 2) + R+.

Therefore, the relation (2.19) is satisfied.

Case 2. If −2 < x̄ − x < 0, then ex̄ < ex and

ex̄ /∈ [1, 2]ex + [1, 2] | x̄− x | +R+.

Case 3. If x̄− x = −2, then ex̄ < ex and

ex̄ /∈ [1, 2]ex + R+.
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Hence, in any case, the relation (2.19) holds. However, there is no x̄ ∈ [0, 2] such
that

(2.20) F (x̄) � F (x)+ | x̄− x | D + C, for all x �= x̄.

It is well-known that ex − x is nondecreasing on [0, 2], If x̄ �= 0, then for x < x̄,

ex̄ − x̄ ≥ ex − x.

Thus,
[1, 2](ex̄ − x̄) ⊆ [1, 2](ex − x) + R+.

By convexity of [1, 2], we have

[1, 2]ex̄ − [1, 2]x̄ ⊆ [1, 2]ex − [1, 2]x+ R+,

that is,
[1, 2]ex̄ ⊆ [1, 2]ex + [1, 2] | x− x̄ | +R+.

If x̄ = 0, then
{e+ 1} ⊆ [1, 2]e1 + [1, 2] | 1 − 0 | +R+.

Hence, for any x̄ ∈ [0, 2], there exists x �= x̄ such that

F (x̄) ⊆ F (x)+ | x̄− x | D + C.

3. APPLICATIONS TO VECTOR OPTIMIZATION

In this section, we present some applications of Theorem 2.2 to vector optimiza-
tion for set-valued maps. We derive the existence of solutions to vector optimization
problems for set-valued maps. We introduce (p, ε)-Takahashi’s condition and (p, ε)-
Hamel’s condition for set-valued maps. By using Theorem 2.2, we show that these
conditions are equivalent. Moreover, we introduce the concept of an ε-approximate so-
lution of a vector optimization problem with set-valued maps and then we discuss the
relationship between ε-approximate solutions of a vector optimization problem with
set-valued function and its solution set. Furthermore, a well-posedness result for a
vector optimization problem for a set-valued map is also given.

Let X be a Hausdorff uniform space, p be a weak q-distance on X , Y be a locally
convex space ordered by a pointed closed convex cone C, and D be a nonempty convex
subset of C such that 0 /∈ cl(C +D).

Let A be a nonempty subset of Y and a ∈ A. We say that a is an efficient point
of A with respect to C if (A− a) ∩ (−C \ {0}) = ∅. The set of all efficient points of
A is denoted by Eff(A).
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Let F : X ⇒ Y be a set-valued map with nonemptyvalues. The vector optimization
problem for a set-valued map F is defined as

(VOP) minF (x), subject to x ∈ X,

which means to find x̄ ∈ X with the property that there exists ȳ ∈ F (x̄) such that

(F (X)− ȳ) ∩ (−C \ {0}) = ∅.

In fact, x̄ is a solution of (VOP) if F (x̄) contains an efficient point of F (X).
The set of all solutions of (VOP) is denoted by E(F). For further details on vector

optimization and set-valued vector optimization, we refer to [22, 29, 32].
The following result a set-valued version of Takahashi’s nonconvex minimization

theorem.

Theorem 3.1. Suppose that all the conditions of Theorem 2.2 are satisfied and
for each x ∈ X with x /∈ E(F ), there exists y ∈ X, y �= x such that F (x) ⊆
F (y) + p(x, y)D+ C. Then, E(F ) �= ∅.

Proof. By Theorem 2.2, there exists x̄ ∈ X such that

(3.21) F (x̄) � F (x) + p(x̄, x)D+C, for all x �= x̄.

We show that x̄ ∈ E(F ). Assume to the contrary that x̄ /∈ E(F ). Then from
hypothesis, there exists y ∈ X , y �= x̄ such that

F (x̄) ⊆ F (y) + p(x̄, y)D+C,

which contradictions (3.21). Hence, x̄ ∈ E(F ).

The following nonlinear scalarization function due to Gerstewitz [17], is modified
in [34].

Definition 3.1. Let e ∈ C \ {0}. The nonlinear scalarization function ξe : Y →
R ∪ {+∞} is defined as follows: if there exists r ∈ R such that y ∈ re − C, define
ξe(y) := inf{r ∈ R : y ∈ re−C}; or else define ξe(y) = +∞.

The following lemma describes some properties of ξe.

Lemma 3.1. [34]. The nonlinear scalarization function ξe : Y → R ∪ {+∞} is
sublinear with the following properties:

(a) ξe(y) ≤ r ⇔ y ∈ re− C.
(b) ξe(y) > r ⇔ y /∈ re− C.
(c) ξe(y + αe) = ξe(y) + α, for any y ∈ Y , α ∈ R.
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As an application of Theorem 2.2, we derive the following result which is crucial
in obtaining the existence of solutions of (VOP).

Theorem 3.2. Let X0 ⊆ X be nonempty sequentially complete with respect to
p and p be lower semicontinuous in the second argument. Assume that intC �= ∅,
G : X ⇒ Y has a continuous selection g, G(X)∩ (G(X0)−C) ⊆ G(X0), and there
exists y∗ ∈ Y ∗ such that

(i) sup{y∗(g(x)) : x ∈ X0} <∞,
(ii) p(x, y) ≤ y∗(g(y)−g(x)) for all x ∈ X0 and y ∈ X withG(y)∩(−C+G(x)) �=

∅.

Then, there exists x̄ ∈ X such that G(X)∩ (−C +G(x̄)) ⊆ G(x̄).

Proof. Let m = sup{y∗(g(x)) : x ∈ X0} and e ∈ intC. Define F : X0 ⇒ Y by

F (x) = {[m− y∗(g(x))]e}.
Since g is continuous, then the epigraph F is closed. If we set D = {e}, then all the
assumptions of Proposition 2.1 are satisfied. Therefore, condition (A3) of Theorem
2.2, holds. Also it is easy to see that condition (A1) of Theorem 2.2 holds. Moreover,
X0 is sequentially complete w.r.t. p, thus by Theorem 2.2, there exists x̄ ∈ X0 such
that

(3.22) F (x̄) � F (x) + p(x̄, x)e+C, for all x �= x̄.

Hence,

(3.23) [m− y∗(g(x̄))]e /∈ [m− y∗(g(x))]e+ p(x̄, x)e+C, for all x �= x̄.

By parts (b) and (c) of Lemma 3.1, we have

ξe(−[m− y∗(g(x̄))]e) > −[m− y∗(g(x))]− p(x̄, x).

Therefore,

(3.24) p(x̄, x) > y∗(g(x)− g(x̄)), for all x �= x̄.

Now, let v ∈ G(X) ∩ (−C + G(x̄)). Since G(X) ∩ (−C + G(x̄)) ⊆ G(X0), there
exists x0 ∈ X0 such that v ∈ G(x0). By assumption (ii), we have

(3.25) p(x̄, x0) ≤ y∗(g(x0) − g(x̄)).

Therefore, from relations (3.24) and (3.25), we have x0 = x̄. Thus, v ∈ G(x̄), and so,
G(X)∩ (−C +G(x̄)) ⊆ G(x̄).

As a consequence of the above theorem, we obtain the following existence result
for a solution of vector optimization problem for single-valued maps.
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Corollary 3.1. Let X0, p be the same as in the above theorem and intC �= ∅.
Assume that g : X → Y is a continuous vector-valued function, g(X)∩(g(X0)−C) ⊆
g(X0), and there exists y∗ ∈ Y ∗ such that
(h1) sup{y∗(g(x)) : x ∈ X0} <∞,
(h2) p(x, y) ≤ y∗(g(y)− g(x)) for all x ∈ X0 and y ∈ X with g(y) ∈ −C + g(x).

Then, there exists x̄ ∈ X such that (g(X)− g(x̄))∩−C = {g(x̄)}, that is, E(g) �= ∅.

Proof. It is follows from Theorem 3.2 by considering G(x) = {g(x)} for all
x ∈ X .

Definition 3.2. We say that x0 ∈ X is an ε-approximate solution with respect to
D of (VOP) if there exists y0 ∈ F (x0) such that

(F (x) − y0 + εD) ∩ (−C \ {0}) = ∅, for all x ∈ X.

Remark 3.1. Let x0 be an ε-approximate solution with respect to D. Assume that
the conditions (A1)-(A3) of Theorem 2.2 are satisfied. Then, there exists x̄ ∈ X such
that the conclusions (a) and (b) of Theorem 2.2 hold and

p(x0, x̄) < ε.

Now we generalize the p-condition of Takahashi and Hamel [30] and the (ψ, ε)-
condition of Takahashi and Hamel [34].

Definition 3.3. Let ε > 0. A set-valued map F : X ⇒ Y is said to satisfy
(C1) (p, ε)-condition of Takahashi if for all ε-approximate solution x0 ∈ X with

respect to D of (VOP) which is not a solution of (VOP), there exists x́ ∈ X ,
x́ �= x0 such that

F (x0) ⊆ F (x́) + p(x0, x́)D+ C.

(C2) (p, ε)-condition of Hamel if for all ε-approximate solution x0 ∈ X with respect
to D of (VOP) which is not a solution of (VOP), there exists x̄ ∈ E(F ), x̄ �= x0

such that
F (x0) ⊆ F (x̄) + p(x0, x̄)D+ C.

It is clear that if F satisfies the (p, ε)-condition of Hamel, then F satisfies the
(p, ε)-condition of Takahashi.

As an application of Theorem 2.2, the following result shows that the (p, ε)-
condition of Takahashi implies the (p, ε)-condition of Hamel. This result extends
Theorem 4.1 in [34] to set-valued maps.

Theorem 3.3. Let F satisfy the assumptions (A1) and (A3) of Theorem 2.2 and
(p, ε)-condition of Takahashi. If assumption (A2) holds for any ε-approximate solution
x0, then F satisfies the (p, ε)-condition of Hamel.



2014 Qamrul Hasan Ansari, Somayeh Eshghinezhad and Majid Fakhar

Proof. Let x0 ∈ X be an ε-approximate solution with respect to D of (VOP).
Assume that x0 is not a solution of (VOP). Then, there exists y0 ∈ F (x0) such that

(F (x) − y0 + εD) ∩ (−C \ {0}) = ∅, for all x ∈ X.

By Theorem 2.2, there exists x̄ ∈ X such that

(a) F (x0) ⊆ F (x̄) + p(x0, x̄)D +C,
(b) F (x̄) � F (x) + p(x̄, x)D+C, for all x �= x̄.

By (a), F (x0) ⊆ F (x̄) + p(x0, x̄)D + C ⊆ F (x̄) + C, hence there exists ȳ ∈ F (x̄),
c∗ ∈ C such that y0 = ȳ + c∗. We show that

(3.26) (F (x) − ȳ + εD) ∩ (−C \ {0}) = ∅, for all x ∈ X.

Assume to the contrary that there exists x ∈ X such that (F (x)−ȳ+εD)∩(−C\{0}) �=
∅. Then, (F (x) − ȳ + εD − c∗) ∩ (−C \ {0}) �= ∅. Therefore,

(F (x) − y0 + εD) ∩ (−C \ {0}) �= ∅,
a contradiction.

Now, assume that x̄ is not an efficient solution of (VOP). Since F satisfies (p, ε)-
condition of Takahashi, by (3.26), there exists x́ ∈ X , x́ �= x̄ such that

F (x̄) ⊆ F (x́) + p(x̄, x́)D + C

a contradiction of (b).

For a nonempty subset A of X and x ∈ X , we set

p(x, A) := inf{p(x, a) : a ∈ A}.
In the sequel, we assume that E(F ) and Eff(F (X) are nonempty. In the next

result, we give a relation between ε-approximate solutions and the set of solutions of
problem (VOP) under (p, ε)-condition of Takahashi. This theorem extends Theorem
4.2 in [34] to set-valued maps.

Theorem 3.4. Let F satisfy all the conditions of Theorem 3.3 and {xn} be a
sequence in X such that

lim sup
n→∞

{p(xn, xm) : m > n} = 0.

Suppose that 0 < εn ≤ ε for all n ∈ N and εn → 0. Further, assume that xn is
an εn-approximate solution with respect to D of (VOP) which is not a solution of
(VOP). Then, there exists a sequence {x̄n} in X such that x̄n is a solution of (VOP),
p(xn, x̄n) < εn and p(xn, E(F )) ≤ p(xn, x̄n) ≤ εn for all n ∈ N.
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Proof. Since xn is an εn-approximate solution with respect to D of (VOP) and
0 < εn ≤ ε, then there exists yn ∈ F (xn) such that

(3.27) (F (x)− yn + εnD) ∩ (−C \ {0}) = ∅, for all x ∈ X.

Since F satisfies the (p, ε)-condition of Takahashi, by Theorem 3.3, for all n ∈ N,
there exists a solution x̄n ∈ X of (VOP) such that

F (xn) ⊆ F (x̄n) + p(xn, x̄n)D +C.

Therefore, there exist ȳn ∈ F (x̄n) and dn ∈ D such that

yn ∈ ȳn + p(xn, x̄n)dn +C.

By Lemma 3.1, we have

(3.28) p(xn, x̄n) ≤ −ξdn(ȳn − yn).

But by (3.27), we get

(3.29) ȳn − yn + εndn /∈ (−C \ {0}).
Hence,

(3.30) ξdn(ȳn − yn) + εn > 0.

From (3.28) and (3.30), we get

p(xn, x̄n) < εn.

Since x̄n is a solution of (VOP), we have

p(xn, E(F )) ≤ p(xn, x̄n) ≤ εn.

The theory of numerical techniques to obtain the approximate solutions of optimiza-
tion problems is one of the most important subject within optimization. One of the
subjects which is important in the studies of convergence of the numerical methods is
the well-posedness. It is closely related to the study of the stability of an optimization
problem. Many authors studied the well-posedness of scalar optimization and vector
optimization problems; see, for example, [5, 10, 21, 24, 28] and references therein.
Motivated by the notion of well-posedness for vector optimization [24], we extend this
concept to set-valued optimization.

Definition 3.4. [24]. Let Y be a Banach space. The problem (VOP) is said to be
well-posed if and only if for any sequence {xn} ⊆ X, H(F (xn), Eff(F (X)) → 0
implies p(xn, E(F )) → 0, where H is the Hausdorff metric.
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The following result provides the well-posedness of (VOP).

Theorem 3.5. Let (Y, ‖ · ‖) be a normed space, intC �= ∅, r = inf
t∈D

d(t, ∂C) > 0

and p(x, x) = 0 for all x ∈ X . Suppose that all the conditions of Theorem 3.3 hold
and ε > 0. If H(F (x), E(F (X)))< rε, then p(x, E(F ))< ε and the problem (VOP)
is well-posed.

Proof. Assume that x ∈ X . If F (x) ⊆ Eff(F (X)), then x ∈ E(F ), and so,
p(x, E(F )) = 0. Assume that F (x) � Eff(F (X)). Then, there exists y ∈ F (x)
such that

(F (X)− y) ∩ (−C \ {0}) �= ∅.
If H(F (x), Eff(F (X))) < rε, then d(y, Eff(F (X))) < rε. Hence, there exists
ȳ ∈ Eff(F (X)) such that ‖y − ȳ‖ < rε. Therefore, y ∈ ȳ + rεBY .

We claim that

(3.31) (F (X)− y + εD) ∩ (−C) = ∅.

Assume to the contrary that there exist x′ ∈ X , y′ ∈ F (x′) and t ∈ D such that

y′ − y + εt ∈ −C.

Since r = inf
t∈D

d(t, ∂C) > 0, we have (t− rBY ) ∩ ∂C = ∅, for all t ∈ D.
On the other hand t ∈ D ⊆ C, 0 ∈ ∂C, therefore

(3.32) t− rBY ⊆ intC ⊆ C \ {0}.

Hence,

y′ ∈ y − εt− C

⊆ ȳ − ε(t− rBY ) −C

⊆ ȳ − εC \ {0} −C

⊆ ȳ − C \ {0},

which contradicts with ȳ ∈ Eff(F (X)). So, (3.31) holds. By Theorem 3.3, we
conclude that there exists x̃ ∈ E(F ) such that

F (x) ⊆ F (x̃) + p(x, x̃)D +C,

that is, there exist ỹ ∈ F (x̃) and t̃ ∈ D such that

ỹ − y + p(x, x̃)t̃ ∈ −C.
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Therefore, by part (a) of Lemma 3.1 we have

ξt̃(ỹ − y) + p(x, x̃) ≤ 0.

From (3.31), we obtain
ỹ − y + εt̃ /∈ −C \ {0}.

Thus, by part (b) of Lemma 3.1 we have

ξt̃(ỹ − y) + ε ≥ 0,

which leads to
p(x, x̃) ≤ −ξt̃(ỹ − y) ≤ ε.

Therefore,
p(x, E(F )) ≤ ε.

If {xn} ⊆ X and H(F (xn), Eff(F (X)) → 0, then

for all ε > 0, ∃n0 ∈ N : n > n0 H(F (xn), Eff(F (X)))< rε.

Hence,
p(xn, E(F )) < ε.

Thus,

p(xn, E(F )) → 0.

Remark 3.2. In the above theorem the assumption r = inf
t∈D

d(t, ∂C) > 0 implies

that D ⊆ intC. Furthermore, if D is compact and D ⊆ intC, then inf
t∈D

d(t, ∂C) > 0.
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