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ONE PARAMETER FAMILY OF UNIVALENT BIHARMONIC MAPPINGS

Y. Abu Muhanna, S. V. Bharanedhar and S. Ponnusamy*

Abstract. In this paper, we provide sufficient conditions to construct sense-
preserving and univalent biharmonic mappings that arises from analytic functions
which are not necessarily univalent in the unit disk |z| < 1. Also we state and
prove several theorems under different weaker hypothesis in each case, leading to
an affirmative answer to the radius problem posed by Y. Abu Muhanna in 2008.

1. INTRODUCTION

A complex-valued function F = u + iv which is four times continuously differ-
entiable in a simply connected domain D ⊆ C is biharmonic if �F, the Laplacian of
F , is harmonic in D (see [5, 8]). Note that �F is harmonic in D, if F satisfies the
biharmonic equation �(�F ) = 0, where

� = 4
∂2

∂z∂z
.

Biharmonic mappings are widely used in engineering fields and applied mathematics
(cf. [11, 13]). Throughout we consider harmonic and biharmonic functions defined on
the unit disk D = {z : |z| < 1}. Every biharmonic function F on D has the form

(1) F (z) = |z|2G(z) +H(z)

where G and H are harmonic in D, see [1, 2, 3]. A biharmonic function F on D is
said to be sense-preserving if the Jacobian JF (z) of F is positive in the punctured disk
D \ {0}, where

JF (z) = |Fz(z)|2 − |Fz(z)|2.
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A continuously differentiable function f : D → C which fixes the origin is called
starlike in D if it is univalent in D and the range f(D) is a starlike (with respect to the
origin) domain.

In the case of analytic functions, f(|z| = r) is a starlike curve for each r ∈ (0, 1) if
f is starlike in D. This property is not true in general in the case of harmonic starlike
mappings (see [4, 12]).

Definition 1. A continuously differentiable function F on D is said to be fully
starlike (see [16]) in D if it is sense-preserving, F (0) = 0, F (z) �= 0 in D\{0} and
the curve F (reit) is starlike (with respect to the origin) for each r ∈ (0, 1). The last
condition is same as saying that

∂

∂t

(
argF (reit)

)
= Re

(
zFz(z) − zFz(z)

F (z)

)
> 0

for z = reit ∈ D\{0} (see also [4, 12] in order to distinguish the starlikeness property
of harmonic mappings from conformal mappings).

Let A denote the class of normalized functions G of the form

(2) G(z) = z +
∞∑

n=2

anz
n,

which are analytic in D. Set S = {f ∈ A : f is univalent in D} (see [7, 10]). It
has been proved by the first author that, if G ∈ S , then F = |z|2G is not necessarily
univalent in D (see [2, Example 2.2] and [3, Example 1]). In fact, F is not even
sense-preserving in D if G ∈ S . On the other hand, it is easy to see that, F = |z|2G
is univalent in D whenever G is harmonic and starlike in D, see [1] and [15, Theorem
1.3]. Therefore, it is natural to determine the radius of univalence of |z|2G when
G ∈ S . This problem has been solved by Muhanna [3, Theorem 2].

For a given analytic function G consider the one parameter family of biharmonic
functions Wα(z) defined by

(3) Wα(z) = |z|2G(z) +
[
−G(z) + α

∫ z

0

G(ζ)
ζ

dζ

]
.

In [3] Muhanna proved two theorems concerning the sense-preserving property and
univalency of biharmonic functions W2(z), i.e. α = 2 in (3). Indeed for G ∈ S , the
sharp inequality (1−|z|2)

∣∣∣zG′(z)
G(z)

∣∣∣ ≤ 4 holds for z ∈ D. The number 4 in this inequality
cannot be replaced by a smaller number. As pointed out in [17] a closer examination
of the proof of [3, Theorem 3 and Proposition 3] shows that these results are valid for
W4(z) rather than for W2(z). Correct formulation of these results follows.
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Theorem A. If G ∈ S , then W4(z) defined by (3) has Jacobian JW4(z) > 0
except at z = 0. Moreover, if G is starlike, then the biharmonic function W4(z) is
univalent in D.

It is natural to ask whether Theorem A continues to hold when G is not necessarily
univalent in D. In Section 2 we identify a family F which contains also non-univalent
functions G ∈ F such that W4(z) is sense-preserving and univalent in D. In fact we
prove something more than this. However, in the same paper, Muhanna [3, Problem
1] posed the following question.

Problem 1. What is the radius of univalence of W (= W4(z)) if G ∈ S?

In [17] Ponnusamy and Qiao discussed this problem and obtained for example the
following results.

Theorem B. Let G(z) = z +
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ k

for k ≥ 2. Then the biharmonic function W = W4(z) defined by (3) has Jacobian
JW (z) > 0 except at z = 0 and univalent in {z : |z| < r1}, where r1 ≈ 0.34195 is
the root of the equation

6r5 − 10r4 − 5r3 + 15r2 − 13r+ 3 = 0

in the interval (0, 1). Moreover, W is fully starlike for |z| < r1 and also by all its
sections

(4) Kn(z) = |z|2Gn(z) +
[
−Gn(z) + 4

∫ z

0

Gn(ζ)
ζ

dζ

]
,

where Gn(z) = z +
∑n

k=2 akz
k denotes the section of G(z).

We remark that if G ∈ S then, by de Branges theorem, |ak| ≤ k for all k ≥ 2 and
therefore, the radius univalence rS of W4(z) is bigger than or equal to r1 ≈ 0.34195.
This answers Problem 1 affirmatively.

It is interesting to solve Problem 1 for many other geometric subclasses of univalent
functions that are not necessarily starlike in D. This is done in Section 3. These
theorems may be obtained using some well-known sufficient conditions for univalence,
namely, that G is close-to-convex in D. Here G ∈ A is said to be close-to-convex in
D, denoted by G ∈ K, if there exists a function φ which is analytic, univalent and
starlike in D for which

Re
(
zG′(z)
φ(z)

)
> 0, z ∈ D.

Interesting particular considerations are the classes corresponding to the functions

φ1(z)=z, φ2(z)=
z

1 − z
, φ3(z)=

z

1 − z2
, φ4(z)=

z

(1− z)2
and φ5(z)=

z

1 − z + z2
.
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Corresponding to the above choices, the family K of close-to-convex functions is
denoted respectively by Kj (j = 1, 2, 3, 4, 5). If G is given by (2), then one has the
following. For example, the following implications are well-known (see [7, 10]):

(i) G ∈ K1, i.e. Re (G′(z)) > 0 in D, implies that |an| ≤ 2/n for n ≥ 2

(ii) G ∈ K4, i.e. Re ((1− z)2G′(z)) > 0 in D, implies that |an| ≤ 2 − 1/n.

We recall that each function in K4 maps the unit disk D onto a domain that is convex in
the direction of real axis. It is easy to see that there are non-starlike and non-univalent
analytic functions G satisfying each of these necessary coefficient conditions stated
above.

In this paper, we show that Theorem A continues to hold withoutG being univalent
in D. This is done in Section 2, by identifying the family F containing non-univalent
functions for which Theorem A holds with G ∈ F . In Section 3, we state and prove
a number of theorems which give affirmative answers to Problem 1 under different
geometric conditions.

2. MAIN THEOREMS

Now, we introduce the following notations. For λ > 0, we consider the family

R(λ) = {G ∈ A : |G′(z)− 1| < λ, z ∈ D}.

Set R(1) = R. Functions in R are known to be univalent in D, but functions in
R(λ) are not necessarily univalent in D if λ > 1. Also, it is important to remark that
functions in the class R are not necessarily starlike in D. However, functions in R(λ)
are known to be starlike in D provided 0 < λ ≤ 2/

√
5 (see [14, 18]) and 2/

√
5 cannot

be replaced by a larger one (see [9]). On the converse part, even a normalized convex
function f is not necessarily satisfying the condition Re (f ′(z)) > 0 in D and hence
need not belong to R. Since functions in R(λ) are not necessarily univalent in D if
λ > 1, the final case of the following theorem (see Table 1) clearly improves Theorem
A in the case of α = 4. Moreover, we prove a general result.

Theorem 1. Let G ∈ R(λ) for some 2/
√

5 < λ ≤ 2 and consider the biharmonic
function Wα defined by (3) for α ∈ C.

(i) If G ∈ R(1) and Reα > 3/2, then JWα(z) > 0 in D \ {0}.
(ii) If G ∈ R(2) and Reα > 6, then JWα(z) > 0 in D \ {0}.
(iii) For other values of λ, the range of Re α for which JWα(z) > 0 holds in D\{0}

is given in Table 1.

Proof. Let W (z) = Wα(z), where Wα(z) is defined by (3). We have, Wz(z) =
zG(z) and



Univalent Biharmonic Mappings 1155

Wz(z) = zG(z) + r2G′(z) −G′(z) + α
G(z)
z

.

If a is the dilatation of W then for z �= 0,

a(z) =
Wz(z)
Wz(z)

=
z

z

⎡
⎣ 1

1 + zG′(z)
G(z) − G′(z)

zG(z) + α
|z|2

⎤
⎦

=
z

z

⎡
⎣ 1

1 + 1
|z|2
[
α− (1− |z|2) zG′(z)

G(z)

]
⎤
⎦ .

In order to prove that |a(z)| < 1 in D \ {0}, it suffices to show that

Re
(
α− (1− |z|2)zG

′(z)
G(z)

)
> 0 for z ∈ D.

Now we let G ∈ R(λ) for some 2/
√

5 < λ ≤ 2. Then, there exists a function
ω(z) analytic in D, ω(0) = 0 and |ω(z)| < 1 in D such that

(5) G′(z) = 1 + λω(z).

Thus, by integration we find that

G(z) = z + λz

∫ 1

0
ω(tz) dt,

that is,

(6)
G(z)
z

= 1 + λ

∫ 1

0

ω(tz) dt.

By the Schwarz lemma, we obtain |ω(z)| ≤ |z| in D. Using this, we obtain that∣∣∣∣G(z)
z

− 1
∣∣∣∣ = λ

∣∣∣∣
∫ 1

0
ω(tz) dt

∣∣∣∣ ≤ λ

∫ 1

0
t|z| dt = λ

|z|
2
<
λ

2
,

showing that |G(z)/z − 1| < 1 whenever 0 < λ ≤ 2. In particular, Re (G(z)/z) > 0
in D for 0 < λ ≤ 2 and hence, G(z)/z �= 0 in D in this case. Also,

zG′(z)
G(z)

=
1 + λω(z)

1 + λ
∫ 1
0 ω(tz) dt

and, since |ω(z)| ≤ |z|, we see that

(7) (1− |z|2)
∣∣∣∣zG′(z)
G(z)

∣∣∣∣ ≤ (1 − |z|2) 1 + λ|z|
1 − λ

2 |z|
= fλ(|z|),
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where
fλ(x) =

2(1 + λx)
2 − λx

(1 − x2), x ∈ (0, 1).

We need to determine the extrema of fλ(x) on (0, 1). Computationally, it looks like
an uneasy situation for all the values of λ ∈ (2/

√
5, 2] other than λ = 1 and λ = 2.

Let λ = 1. Then we have

f1(x) =
2(1 + x)(1− x2)

(2 − x)
=

2(1 + x− x2 − x3)
(2− x)

.

In order to determine max
0<x<1

f1(x), a calculation shows that

f ′1(x) =
2(x+ 1)(2x− 1)(x− 3)

(2 − x)2

from which we find that

max
x∈(0,1)

f1(x) = f1

(
1
2

)
=

3
2
.

Similarly, for λ = 2, we find that

f2(x) = (1 + 2x)(1 + x)

and therefore, max
x∈(0,1)

f2(x) = f2(1) = 6.

Thus, by (7) in the case of λ = 1,

sup
z∈D

(1 − |z|2)
∣∣∣∣zG′(z)
G(z)

∣∣∣∣ ≤ 3
2

and for λ = 2, we see that

sup
z∈D

(1− |z|2)
∣∣∣∣zG′(z)
G(z)

∣∣∣∣ ≤ 6.

These observations show that

Re
[
α − (1 − |z|2)zG

′(z)
G(z)

]
≥
{

Reα − 3
2 if λ = 1,

Reα − 6 if λ = 2.

Finally, we see that the dilatation a(z) satisfies the condition |a(z)| < 1 in 0 < |z| < 1
if either λ = 1 and Re α > 3

2 , or λ = 2 and Reα > 6. The proof of the theorem is
complete.

Remark 1. In Theorem 1, we restrict λ such that 2/
√

5 < λ ≤ 2. But the result
can be stated for 0 < λ ≤ 2/

√
5, but in this case functions in R(λ) are starlike.

However, one can prepare a table of values covering the case 0 < λ ≤ 2/
√

5.
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Table 1: Range for Reα for certain values of λ > 1
S.No Value of Local maximum of Lower bound

λ fλ(x) occurs at for Reα
1 1.25 0.57224 1.79592
2 1.4 0.615521 2.03182
3 1.5 0.645909 2.22562
4 1.6 0.678804 2.46166
5 1.75 0.737174 2.94552

Theorem 2. Suppose that G is an analytic function satisfying |G′(z)− 1| < 1, for
z ∈ D. Then the biharmonic function W = Wα defined by (3) is univalent in D for
α > 3/2.

Proof. Fix 0 < ρ < 1. Consider the function

V (ϕ) = ρ2G(ρϕ) +
[
−G(ρϕ) + α

∫ ρϕ

0

G(ζ)
ζ

dζ

]
,

where |ϕ| ≤ 1. Then a computation gives

V
′
(ϕ) = ρX(ρϕ)

where
X(ρϕ) = −(1 − ρ2)G′(ρϕ) + α

G(ρϕ)
ρϕ

.

By assumption, |G′(z)−1| < 1 in D. Using the representations (5) and (6), X(ρϕ)
can be written in terms of the Schwarz function as

X(ρϕ) = α− (1 − ρ2)− (1− ρ2)ω(ρϕ) + α

∫ 1

0
ω(tρϕ) dt,

where ω is analytic in D, ω(0) = 0 and |ω(z)| < 1 in D. By the Schwarz lemma,
|ω(z)| ≤ |z| in D and using this, we have

Re (X(ρϕ)) = Re
(
α− (1− ρ2) − (1 − ρ2)ω(ρϕ) + α

∫ 1

0
ω(tρϕ) dt

)

≥ α − (1− ρ2) − (1 − ρ2)ρ|ϕ| − α
ρ|ϕ|
2

≥ α − (1− ρ2) −
[
(1− ρ2)ρ+

αρ

2

]
.

It follows that Re (X(ρϕ))> 0 if and only if α > K(ρ), where

K(ρ) =
2(1 + ρ)2(1 − ρ)

(2− ρ)
.
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We see thatK(ρ) attains its maximum at ρ = 1/2 and the maximum value is K(1/2) =
3/2. Hence if α > 3/2, then Re (X(ρϕ))> 0.

Thus, it follows that V (ϕ) is close-to-convex and in particular, univalent in D.
This implies, as V (ϕ) = W (ρϕ) for |ϕ| = 1, W (z) is univalent on |z| = ρ.

Since, the Jacobian, JW (z) > 0 except at z = 0, by Theorem 1 and the degree
principle [6] implies that W (z) is univalent on |z| ≤ ρ.

As ρ is arbitrary, it follows that W (z) is univalent in D.

Theorem 3. If G ∈ R(2), then the biharmonic function W = Wα defined by (3)
is univalent in D for α > 6.

Proof. Follows as in Theorem 2, if we use Theorem 1(ii). So we omit its
details.

3. AFFIRMATIVE SOLUTIONS TO PROBLEM 1

A version of the following lemma is proved in [17]. Here we present a slightly
different proof and we make its proof a self-contained one.

Lemma 1. Let F (z) = |z|2G(z) + H(z) be a biharmonic mapping in D, where
H(z) = z +

∑∞
k=2 akz

k and G(z) =
∑∞

k=1 bkz
k are analytic in D, and satisfy the

condition

(8)
∞∑

k=1

(k + 2)|bk|rk+1 +
∞∑

k=2

k|ak|rk−1 ≤ 1 (0 < r ≤ 1).

Then F is sense-preserving, univalent and fully starlike in Dr := {z : |z| < r}.

Proof. Consider F (z) = |z|2∑∞
k=1 bkz

k + z +
∑∞

k=2 akz
k. Then it is easily seen

that

Fz(z) = |z|2
∞∑

k=1

(k+ 1)bkzk−1 + 1 +
∞∑

k=2

kakz
k−1 and Fz(z) =

∞∑
k=1

bkz
k+1

and therefore, JF (0) = |Fz(0)|2 − |Fz(0)|2 = 1. Next, we fix r0 ∈ (0, 1] and assume
that (8) is satisfied for r = r0. For z �= 0,

JF (z) =
(
|Fz(z)| + |Fz(z)|

)(
|Fz(z)| − |Fz(z)|

)
> 0

because for 0 < |z| < r0, the triangle inequality and (8) give

|Fz(z)| − |Fz(z)| =

∣∣∣∣∣|z|2
∞∑

k=1

(k + 1)bkzk−1 + 1 +
∞∑

k=2

kakz
k−1

∣∣∣∣∣ −
∣∣∣∣∣
∞∑

k=1

bkz
k+1

∣∣∣∣∣
> 1−

∞∑
k=1

(k+ 2)|bk|rk+1
0 −

∞∑
k=2

k|ak|rk−1
0 ≥ 0.



Univalent Biharmonic Mappings 1159

Thus, F is sense-preserving in Dr0 . Finally, fix an r0 ∈ (0, r] and consider the circle
Cr0 = {z : |z| = r0}. For z ∈ Cr0 , we have

zFz(z)− zFz(z)− F (z) = |z|2
∞∑

k=1

(k + 1)bkzk +
∞∑

k=2

(k − 1)akz
k.

|zFz(z) − zFz(z) − F (z)| ≤
∞∑

k=1

(k + 2 − 1)|bk| |z|k+2 +
∞∑

k=2

(k − 1)|ak| |z|k

≤ |z|
( ∞∑

k=1

(k + 2)|bk| |z|k+1 +
∞∑

k=2

k|ak| |z|k−1

)

−
∞∑

k=2

|ak| |z|k − |z|2
∞∑

k=1

|bk| |z|k

≤ |z| −
∞∑

k=2

|ak| |z|k − |z|2
∞∑

k=1

|bk| |z|k

≤ |H(z)| − |z|2|G(z)|
≤ |F (z)|

which shows that for |z| = r0∣∣∣∣zFz(z)− zFz(z)
F (z)

− 1
∣∣∣∣ < 1

and hence, F is univalent on Cr0 and it maps Cr0 onto a starlike curve. By the sense-
preserving property and the degree principle, it follows from [12, Lemma 2.1] that F
is univalent and fully starlike in Dr, since r0 ∈ (0, r] is arbitrary. The proof of the
theorem is complete.

Theorem 4. Let G(z) = z+
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ (k+1)/2

for k ≥ 2. Then the biharmonic functionW = W4 defined by (3) has positive Jacobian
in DrS

\ {0} except at z = 0 and univalent in DrS
. Here rS ≈ 0.38853 is the root of

the equation φ(r) = 0, where

(9) φ(r) = 8r5 − 14r4 − 6r3 + 26r2 − 24r+ 6

in the interval (0, 1). Moreover, W is fully starlike for |z| < rS and also by all its
sections defined by (4).

Proof. Consider the function W (z) defined by

W (z) = |z|2G(z) +
[
−G(z) + 4

∫ z

0

G(ζ)
ζ

dζ

]
.
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Let Wr(z) = 1
rW (rz) for 0 < r < 1, and G(z) =

∑∞
k=1 akz

k (with a1 = 1) such
that |ak| ≤ (k + 1)/2 for all k ≥ 2. Then a computation gives that

Wr(z) = |z|2
∞∑

k=1

rk+1akz
k +

∞∑
k=1

(
4
k
− 1
)
rk−1akz

k.

In order to apply Lemma 1, we consider

Wr(z)
3

= |z|2
∞∑

k=1

Bkz
k + z +

∞∑
k=2

Akz
k

where
Bk =

1
3
rk+1ak and Ak =

4− k

3k
rk−1ak.

Note that W (z) is univalent and fully starlike in |z| < r if and only if Wr(z) is
univalent and fully starlike in the unit disk |z| < 1. Thus, by Lemma 1, it suffices to
show that

S(r) =
∞∑

k=1

(k + 2)|Bk| +
∞∑

k=2

k|Ak| ≤ 1

for 0 < r ≤ rS . Now, since |ak| ≤ (k + 1)/2 by assumption, it follows that S(r) ≤
1
6T (r), where

T (r) =
∞∑

k=1

(k + 1)(k+ 2)rk+1 +
∞∑

k=2

(k + 1)|k− 4|rk−1.

Clearly, S(r) ≤ 1 holds if T (r) ≤ 6. In order to prove the later inequality, we use the
following equalities

r

(1 − r)2
=

∞∑
k=1

krk and
r(1 + r)
(1− r)3

=
∞∑

k=1

k2rk.

Now, by adjusting the second sum in T (r) conveniently, it follows that

T (r) =
∞∑

k=1

(k2 + 3k + 2)rk+1 + 6r+ 4r2 +
∞∑

k=4

(k + 1)(k − 4)rk−1

=
∞∑

k=1

k2rk+1 + 3
∞∑

k=1

krk+1 + 2
∞∑

k=1

rk+1 +
∞∑

k=1

k2rk−1 − 3
∞∑

k=1

krk−1

−4
∞∑

k=1

rk−1 + 6 + 4r2 + 6 + 6r + 4r2

=
(r2 + 1)(1 + r)

(1 − r)3
+

3(r2 − 1)
(1− r)2

+
2(r2 − 2)

1 − r
+ 6 + 12r + 8r2.
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A simple calculation gives that T (r) ≤ 6 is equivalent to the inequality φ(r) ≥ 0,
where φ(r) is given by (9). The inequality φ(r) ≥ 0 holds if 0 < r ≤ rS , where
rS ≈ 0.38853 is the root of the equation φ(r) = 0 in the interval (0, 1). Thus,
S(r) ≤ 1 for 0 < r ≤ rS and so, by Lemma 1, Wr(z) is univalent sense-preserving
and fully starlike in D with 0 < r ≤ rS . The proof of the theorem is complete.

Remark 2. For λ ∈ C, we consider fλ(z) = z + λz2. Then we see that fλ(z) is
not univalent in D if |λ| > 1/2. Thus, there are non-univalent functions satisfying the
coefficient condition |ak| ≤ (k + 1)/2.

Let S1 denote the set of all analytic functions h(z) = z+
∑∞

k=2 akz
k in D satisfying

the inequality

Re
(

1 + z
h′′(z)
h′(z)

)
> −1

2
, z ∈ D.

It is well-known that S1 ⊂ S , but functions in S1 are not necessarily starlike in D. In
fact if we let

h0(z) =
1
2

[
z

(1 − z)2
+

z

1 − z

]
=
z − z2/2
(1 − z)2

then
Re
(

zh′0(z)
z/(1− z)2

)
= Re

(
1

1 − z

)
> 0

showing that h0 is close-to-convex in D. The fact that h0 is not starlike in D can be
easily seen by looking at h0(D). A calculation reveals that the boundary of h0(D) is
the parabola u + 2v2 + 3/8 = 0, see Figure 1. Moreover, if h ∈ S1 then, the Taylor
coefficients of h are known to satisfy the inequality |ak| ≤ (k + 1)/2 for each k ≥ 2.
Clearly, equality holds for the function h0(z).

Corollary 1. Let G ∈ S1. Then the biharmonic function W = W4 defined by (3)
has Jacobian JW (z) > 0 in DrS

\ {0}. Moreover, W (and each of its polynomial
section) is univalent and fully starlike in {z : |z| < rS}, where rS ≈ 0.38853.

At this juncture, we would like to remark that analogue of Theorem 4 can be
proved even for other values of α including α ∈ C. So it may be appropriate to state
the theorem for Wα and outline a proof for the sake of completeness, for the case
α ∈ (1, 4].

Theorem 5. Let G(z) = z+
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ (k+1)/2

for k ≥ 2. Then the biharmonic function W = Wα where α ∈ (1, 4] defined by (3)
has Jacobian JW (z) > 0 in DrS

\ {0} and univalent in {z : |z| < rS}. Here rS is the
smallest root of the equation ψ(r) = 0 on the interval (0, 1), where

(10) ψ(r) = Ar5 +Br4 + Cr3 +Dr2 + Er+ F
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Fig. 1. The graph of the function h0(z) = z−z2/2
(1−z)2 .

with

A = 4|α− 3|+ 4α− 12,
B = 3|α− 2| − 12|α− 3| − 9α+ 28,
C = −2|α− 1| − 9|α− 2| + 12|α− 3|+ 5α− 14,
D = 6|α− 1|+ 9|α− 2| − 4|α− 3| − 6,
E = −6|α− 1| − 3|α− 2| and F = 2|α− 1|.

Moreover, W is fully starlike for |z| < rS and also by all its sections.

Proof. Proceeding exactly as in the proof of Theorem 4, we notice that it suffices
to show that L(r) ≤ 2|α− 1|, where

L(r) =
∞∑

k=1

(k + 1)(k+ 2)rk+1 +
∞∑

k=2

(k + 1)|α− k|rk−1

=
∞∑

k=1

(k + 1)(k+ 2)rk+1 + |α− 2|3r+ |α− 3|4r2 +
∞∑

k=4

(k + 1)(k − α)rk−1.
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After a long computation, it follows that the inequality L(r) ≤ 2|α− 1| is equivalent
to ψ(r) ≥ 0, where ψ(r) is given by (10). We see that the inequality ψ(r) ≥ 0 holds
if 0 < r ≤ rS , where rS is the root of the equation ψ(r) = 0 in the interval (0, 1).
The proof of the theorem is complete.

We remark that if G(z) = z+
∑∞

k=2 akz
k is analytic in D satisfying the condition

Re (f(z)/z) > 1/2 in D, then |ak| ≤ 1 for k ≥ 2 and moreover, f is not necessarily
univalent in D.

Theorem 6. Let G(z) = z +
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ c for

k ≥ 2, and for some c > 0. Then the biharmonic function W = W4 defined by (3)
has Jacobian JW (z) > 0 in DrS

\ {0} and univalent in {z : |z| < rS}. Here rS is the
root of the equation ψ1(r) = 0 on the interval (0, 1) where

(11) ψ1(r) = −2cr4 + 2cr3 + 3r2 − (6 + 2c)r+ 3.

Moreover, W is fully starlike for |z| < rS and also by all its sections defined by (4).

Proof. The proof goes in same lines with that of the proof of Theorem 4. For the
sake of completeness, we indicate main steps. Thus, following the proof of Theorem
4, it is enough to show that T1(r) ≤ 3/c, where

T1(r) =
∞∑

k=1

(k+ 2)rk+1 +
∞∑

k=2

|k − 4|rk−1

=
−2r3 + 3r2 − 3 + 4r

(1 − r)2
+ 2r2 + 4r + 3.

A calculation shows that the inequality, T1(r) ≤ 3/c is equivalent to ψ1(r) ≥ 0, where
ψ1(r) is given by (11). We see that the inequality ψ1(r) ≥ 0 holds if 0 < r ≤ rS ,
where rS is the root of the equation ψ1(r) = 0 in the interval (0, 1). The proof of the
theorem is complete.

Corollary 2. Let G(z) = z +
∑∞

k=2 akz
k be analytic in D and consider the

biharmonic function W = W4 defined by (3). Then
(i) If |ak| ≤ 1 for k ≥ 2, then W has positive Jacobian in Dr1 \ {0} and univalent

in Dr1 , where r1 ≈ 0.472727 is the root of the equation

2r4 − 2r3 − 3r2 + 8r − 3 = 0

in the interval (0, 1).
(ii) If |ak| ≤ 1 for k ≥ 3 and a2 = 0, then W has positive Jacobian in Dr2 \ {0}

and univalent in Dr2 , where r2 ≈ 0.553164 is the root of the equation

4r5 − 10r4 + 8r3 − r2 − 6r + 3 = 0

in the interval (0, 1).
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(iii) If |ak| ≤ 2 for k ≥ 2, then W has positive Jacobian in Dr3 \ {0} and univalent
in Dr3 , where r3 ≈ 0.347051 is the root of the equation

4r4 − 4r3 − 3r2 + 10r− 3 = 0

in the interval (0, 1).

In all the three cases, W is fully starlike in the corresponding disk and also by all its
sections defined by (4).

Proof. Cases (i) and (iii) follow from Theorem 6. We omit the proof of Case (ii)
as it follows after some easy computation.

As in the case of Theorem 5, Theorem 6 can be proved for even other values of α
including complex values. For instance, we have

Theorem 7. Let G(z) = z +
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ c for

k ≥ 2. Then the biharmonic function W = Wα where α ∈ (1, 4] defined by (3) has
Jacobian JW (z) > 0 except at z = 0 and univalent in {z : |z| < rS}. Here rS is the
smallest root of the equation ψ2(r) = 0 on the interval (0, 1), where

(12) ψ2(r) = Pr4 +Qr3 + Rr2 + Sr+ T

with

P = −c(α+ |α− 3| − 3),
Q = −c(−α + |α− 2| − 2|α− 3|+ 2),
R = |α− 1| − c(3− 2|α− 2| + |α− 3|),
S = −2|α− 1| − c|α− 2| and T = |α− 1|.

Moreover, W is fully starlike for |z| < rS and also by all its sections.

Proof. According to a closer examination of the proof of Theorem 6, it suffices to
show that M(r) ≤ |α− 1|/c, where

M(r) =
∞∑

k=1

(k + 2)rk+1 +
∞∑

k=2

|α− k|rk−1

=
∞∑

k=1

(k + 2)rk+1 + |α− 2|r+ |α− 3|r2 +
∞∑

k=4

(k − α)rk−1.

A long computation gives that the inequalityM(r) ≤ |α−1|/c is equivalent to ψ2(r) ≥
0 where ψ2(r) is given by (12). It follows that the inequality ψ2(r) ≥ 0 holds if
0 < r ≤ rS , where rS is the root of the equation ψ2(r) = 0 in the interval (0, 1). The
proof of the theorem is complete.



Univalent Biharmonic Mappings 1165

Theorem 8. Let G(z) = z +
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ c/k

for k ≥ 2. Then the biharmonic function W = W4 defined by (3) has Jacobian
JW (z) > 0 except at z = 0 and univalent in {z : |z| < rS}. Here rS is the root of
the equation φ1(r) = 0 on the interval (0, 1), where

(13) φ1(r) =
3
c
− 2r3 + r2 + 3r − 12

3(r − 1)
+

(2r2 − 4)
r

log(1 − r).

Moreover, W is fully starlike for |z| < rS and also by all its sections defined by (4).

Proof. As with the proof of Theorem 6, it suffices to indicate only the main steps.
By Lemma 1, it is enough to show that T2(r) ≤ 3/c, where

T2(r) =
∞∑

k=1

(k + 2)
k

rk+1 +
∞∑

k=2

|k − 4|
k

rk−1

=
r2

1 − r
+

1
1 − r

+
4
r

log(1 − r) − 2r log(1 − r) +
2r2

3
+ 2r+ 3.

A calculation shows that the inequality, T2(r) ≤ 3/c is equivalent to φ1(r) ≥ 0, where
φ1(r) is given by (13). We see that the inequality φ1(r) ≥ 0 holds if 0 < r ≤ rS ,
where rS is the root of the equation φ1(r) = 0 in the interval (0, 1). The proof of the
theorem is complete.

Taking c = 1 in Theorem 8, we have the following.

Corollary 3. Let G(z) = z +
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ 1/k

for k ≥ 2. Then the biharmonic function W = W4 defined by (3) has Jacobian
JW (z) > 0 except at z = 0 and univalent in {z : |z| < rS}, where rS ≈ 0.612948 is
the root of the equation

3 − 2r3 + r2 + 3r − 12
3(r− 1)

+
(2r2 − 4)

r
log(1− r) = 0

in the interval (0, 1). Moreover, W is fully starlike for |z| < rS and also by all its
sections defined by (4).

Taking c = 2 in Theorem 8 gives the following

Corollary 4. Let G ∈ K1, i.e. Re (G′(z)) > 0 in D. Then the biharmonic function
W = W4 defined by (3) has Jacobian JW (z) > 0 except at z = 0 and univalent in
{z : |z| < rS}, where rS ≈ 0.454048 is the root of the equation

3
2
− 2r3 + r2 + 3r − 12

3(r− 1)
+

(2r2 − 4)
r

log(1− r) = 0

in the interval (0, 1). Moreover, W is fully starlike for |z| < rS and also by all its
sections defined by (4).
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For α ∈ (1, 4], we have the following generalization of Theorem 8.

Theorem 9. Let G(z) = z +
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ c/k

for k ≥ 2. Then the biharmonic function W = Wα where α ∈ (1, 4] defined by (3)
has Jacobian JW (z) > 0 except at z = 0 and univalent in {z : |z| < rS}, where rS
is the smallest root of the equation φ2(r) = 0 on the interval (0, 1) and

(14) φ2(r) =
|α− 1|
c

+
A1r

3 + B1r
2 +C1r +D1

6(r − 1)
− (α− 2r2)

r
log(1 − r)

with

A1 = 6 − 2|α− 3| − 2α,
B1 = 6 − 3|α− 2| + 2|α− 3| − α,

C1 = 3|α− 2| − 3|α| and D1 = 6α.

Moreover, W is fully starlike for |z| < rS and also by all its sections.

Proof. It is enough to show that M1(r) ≤ |α− 1|/c, where

M1(r) =
∞∑

k=1

(k + 2)
k

rk+1 +
∞∑

k=2

|α− k|
k

rk−1

=
∞∑

k=1

rk+1 + 2
∞∑

k=1

rk+1

k
+

|α− 2|
2

r +
|α− 3|

3
r2 +

∞∑
k=4

(k− α)
k

rk−1.

A long-winded computation gives that the inequalityM1(r) ≤ |α−1|/c is equivalent to
φ2(r) ≥ 0, where φ2(r) is as defined in (14). It follows that the inequality φ2(r) ≥ 0
holds if 0 < r ≤ rS , where rS is the root of the equation φ2(r) = 0 in the interval
(0, 1). The proof of the theorem is complete.

Theorem 10. Let G(z) = z+
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ 2−1/k

for k ≥ 2 (which holds, for example if G ∈ K4). Then the biharmonic function
W = W4 defined by (3) has Jacobian JW (z) > 0 except at z = 0 and univalent in
{z : |z| < rS}, where rS ≈ 0.407285 is the root of the equation φ3(r) = 0 in the
interval (0, 1) and

(15) φ3(r) =
−10r4 + 11r3 + 11r2 − 45r + 21

3(r− 1)2
+

4 − 2r2

r
log(1− r).

Moreover, W is fully starlike for |z| < rS and also by all its sections defined by (4).
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Proof. We include the important steps. By the method of proof of Lemma 1, it is
enough to show that S1(r) ≤ 1, where

S1(r) =
∞∑

k=1

(k + 2)(2k− 1)
3k

rk+1 +
∞∑

k=2

|4− k|(2k− 1)
3k

rk−1

=
2r2

3(1 − r)2
+

2
3(1− r)2

+
r2

(1 − r)
− 3

(1 − r)
+

2r
3

log(1− r)

− 4
3r

log(1− r) +
10r2

9
+ 2r + 1.

A calculation shows that the inequality S1(r) ≤ 1 is equivalent to φ3(r) ≥ 0, where
φ3(r) is given by (15). The inequality φ3(r) ≥ 0 holds if 0 < r ≤ rS , where rS is
the root of the equation φ3(r) = 0 in the interval (0, 1). The proof of the theorem is
complete.

Again a generalization of Theorem 10 may be now stated.

Theorem 11. Let G(z) = z+
∑∞

k=2 akz
k be analytic in D such that |ak| ≤ 2−1/k

for k ≥ 2. Then the biharmonic function W = Wα, where α ∈ (1, 4] defined by (3),
has Jacobian JW (z) > 0 except at z = 0 and univalent in {z : |z| < rS}. Here rS is
the smallest root of the equation φ4(r) = 0 in the interval (0, 1) and

(16) φ4(r) = |α− 1| − P1r
4 +Q1r

3 +R1r
2 + S1r + T1

6(1− r)2
+
α− 2r2

r
log(1 − r)

with

P1 = 10|α− 3| + 10α− 30,
Q1 = 9|α− 2| − 20|α− 3| − 11α+ 24,
R1 = −18|α− 2| + 10|α− 3| − 2α+ 30,
S1 = 9|α− 2| + 9α and T1 = −6α.

Moreover, W is fully starlike for |z| < rS and also by all its sections.

Proof. It suffices to prove that S2(r) ≤ |α− 1|, where

S2(r) =
∞∑

k=1

(k + 2)(2k− 1)
k

rk+1 +
∞∑

k=2

|α− k|(2k− 1)
k

rk−1

=
2r2

(1 − r)2
+

3r2

(1− r)
+ 2r log(1− r) + |α− 2|3

2
r

+|α − 3|5
3
r2 +

∞∑
k=4

(
α

k
+ 2k − 2α− 1)rk−1.
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A computation reveals that the inequality S2(r) ≤ |α− 1| is equivalent to φ4(r) ≥ 0,
where φ4(r) is given by (16). The inequality φ4(r) ≥ 0 holds if 0 < r ≤ rS , where rS
is the root of the equation φ4(r) = 0 in the interval (0, 1). The proof of the theorem
is complete.
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