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A MATHEMATICAL MODEL WITH OPTIMAL CONTROLS FOR
CELLULAR IMMUNOLOGY OF TUBERCULOSIS

Ruiqing Shi*, Yang Li and Sanyi Tang

Abstract. In this paper we propose a system of ordinary differential equations
to model the interaction among non-infected macrophages, infected macrophages,
T cells and Mtb bacilli. Model analysis reveals the existence of infection-free
equilibrium and the endemically infected equilibrium. And we analyze the dy-
namics of this model, characterize the optimal controls related to drug therapy,
and discuss a quadratic control and a linear control. The quadratic control allows
for a weaker treatment that more effectively than the linear control.

1. INTRODUCTION

Tuberculosis (TB) is an infectious disease whose etiological agent is Mycobacterium
tuberculosis (Mtb). The World Health Organization (WHO) reports 9.2 million new
cases and 1.7 million death each year [1, 2]. However, only 10% of infected individuals
with Mtb develop the disease in their lifetime [3]. This indicates that in most cases
the host immune system is able to control replication of the pathogen.

The Mtb bacteria may affect different tissues, but usually develop pulmonary TB.
After the entrance of the bacilli into the lung, phagocytosis of the bacteria by alveolar
macrophages takes place. Cell mediated immune response develops within 2 to 6
weeks, this leads to the activation and recruitment of other immune cell populations,
such as CD4+T or CD8+T lymphocytes. These cells secrete cytokines that help to kill
the infected macrophages [4].

The specific immune response to Mtb results in the formation of granulomas at
the site of bacteria implantation. A granuloma is an spherical structure composed of
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bacteria, macrophages, and other immune cells. One of its characteristic is the formation
of a caseous (cheese-like appearance) center containing necrotic tissue, cellular detritus
and dead Mtb. The vital dynamics of bacteria takes place inside the granuloma, which
can support a population of bacteria that frequently exceeds 109. Bacilli are then
contained in the granuloma, where they can remain forever or be reactivated later after
increasing to a limit in which the macrophages burst, releasing more bacteria [5]. In
most cases the initial infection progresses to a latent form which can be maintained
for the lifetime of the host with no clinical symptoms. The reactivation of the latent
infection can be due to aging, malnutrition, infection with HIV, and other factors [6].

The difference between latent and active infection is diagnosed in terms of the
clinical manifestations of TB. A person with latent TB usually has a skin or blood
test result indicating Mtb infection; normal chest x-ray and negative sputum test; Mtb
bacteria in the body are alive but inactive; he or she does not feel sick and can not
spread Mtb bacteria to others. On the other hand, active disease has the following
symptoms: a skin test or blood test result indicating TB; may have an abnormal chest
x-ray, or positive sputum smear or culture; has active Mtb bacteria in his/her body; the
person usually feels sick and may have symptoms such as coughing, fever and weight
loss; may spread Mtb bacteria to others [7].

Although the definitions above are not given in terms of bacilli’s number, it is
reasonable to think that if this number is very large, the bacteria can be found in
the sputum, skin, peripheral lymph nodes, kidneys, brain, or bones implying that TB
infection is active. It worth to mention that in any case the bacteria will primarily be
inside the granulomas [6].

It is believed that granulomas are advantageous to the host since they contain
and restrict mycobacteria [5]. However, recent studies in zebrafish infected with My-
cobacterium marinum suggest that granulomas contribute to early bacterial growth, and
protect Mtb bacteria from the immune system [8].

The immune response following the first exposure to Mtb is multifaceted and com-
plex. Animal models have been extensively used to explain the mechanisms involved
in this response, however, these models have limitations, since cellular response may
vary between species [9].

Mathematical models have been applied to understand the dynamics of TB. At this
respect, in [10], Kirschner and collaborators use a model to predict cell mediated re-
sponse against TB. Marino and Kischner [11] extended the model a two-compartmental
model, which captures the interaction of the immune cells and Mtb in the lungs and
lymphs. In [12], the same authors explore the role of CD8+T cells. They describe
the dynamics of cytokines, which are secreted as a result of antigen recognition by
infected macrophages, as well as those secreted by activated macrophages, CD4+T and
CD8+T cells. They use numerical simulations and sensitivity analysis to predict and
explain possible disease outcomes due to the dynamics of the cytokines. On the other
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hand, Magombedze et al. [13] develop a model for human TB at the site of infection
in the lungs. As in [12], the authors examine the effects of cytotoxic lymphocytes
and other immune mechanisms to determine when an individual infected with TB will
develop active or latent TB, but they do not consider cytokines as dynamical variables.
The model proposed consists of the interaction among two bacterial populations, three
macrophage populations, helper T cells, and cytotoxic T cells.

We observe that in the works of Kirschner and Magombedze [12, 13], the total
bacteria population is divided in two classes: (a) intracellular bacteria which are found
inside the macrophages, and (b) extracellular bacteria. Latency and active TB are
characterized by the number of intracellular and extracellular bacteria, respectively.

In this work, we firstly formulate a mathematical model for the dynamics of Mtb.
We consider the minimum number of variables describing the principal features of
the cellular immunology against TB. The objective of our work is to obtain threshold
conditions depending on the parameters that characterize infection progression. We give
a global analysis of the dynamics of Mtb, macrophages and T cells with chemotherapy.

On the other hand, recent studies have illustrated the effective use of the General-
ized Legendre Clebsch condition in a general class of mathematical models of cancer
chemotherapy [14]. In [14], three control strategies are analyzed. One is a killing
agent which is active during cell division, another is a blocking agent which slows
down cell growth, and a third is the recruitment of dormant tumor cells to enhance
their efficient treatment by a cytotoxic drug. Within this study, the authors have found
the singular controls are not optimal. In [15], the authors have introduced a model
that involves a cytotoxic chemotherapeutic control that can directly or indirectly kill
tumor cells and have found regions in which the singular controls may be optimal.
Ledzewicz et al. [16] provides insight into the use of quadratic and linear controls for
a bilinear optimal control problem related to cancer chemotherapy. The form of the
equations in [16] make the analytic computation of the Generalized Legendre Clebsch
condition tractable. Within our work, we make use of the aforementioned strategy to
study optimal control problems of the interaction with the immune and Mtb cells with
chemotherapy.

2. MODEL FORMULATION

Cell mediated response plays a fundamental role in the outcome of Mtb infection.
A granuloma is formed at the site of the bacteria implantation, and its structure is
mediated by a specific immune response induced by macrophages, T cells, and cytokines
produced by them.

We formulate a mathematical model for cell mediated response against TB consid-
ering the population of uninfected macrophages, infected macrophages, Mtb bacteria,
T cells, and chemotherapy drug concentration, denoted by M̄U , M̄I , B, T̄ , and C, re-
spectively. Due to the fact that clinical and epidemiological tests for TB do not divided
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bacteria in internal and external, we will consider only one population of bacteria as
in [6].

We assume that uninfected macrophages reproduce at constant rate ΛU , and die
at a per capita constant rate μU . Uninfected macrophages become infected at a rate
proportional to the product of M̄U and B, with constant of proportionality β, and
once infected die at per capita constant rate μI , where μI ≥ μU . T cells eliminate
infected macrophages at a rate proportional to the product M̄I and T̄ , with constant of
proportionality ᾱT .

Mtb bacteria multiply inside an infected macrophage up to a limit at which the
macrophage bursts, and releases bacteria. For this reason, we assume that the growth
rate of Mtb bacteria is r̄μIM̄I , where r̄ is the average number of bacteria produced
inside an infected macrophage. The releasing bacteria become temporarily extracellular,
and then they infect macrophages, or are ingested and killed by uninfected macrophages
at a rate proportional to the product of M̄U and B with constant proportionality γ̄U .
Mtb die at per capita rate μB.

In the presence of bacteria and infected macrophages, the supply of specific T-cells
is given by

kI(1 − T̄ /Tmax)M̄I ,

where kI is the growth rate of T cells, and Tmax is the maximum T cell population
level. Finally, the T-cells die at per capita rate μT .

The chemotherapy concentration C has an outside source term, CM (t), which rep-
resents treatment, and decays out of the system proportionally to the concentration
through the term −ηC. Chemotherapy affects all four cell populations through a mass-
action dynamic of the form K1M̄U , K2M̄I , K3B, K4T̄ , with the differential effect of
the medication on each cell type achieved through different values of the Ki(i=1, 2, 3,
4) parameters.

Here, we will consider two cases: (a)the input rate of chemotherapy drug is constant,
CM , (b)the input rate of chemotherapy drug is changeable, CM (t).

According to the assumptions above, we construct the following two systems

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM̄U

dt
= ΛU − μUM̄U − βBM̄U − K1CM̄U ,

dM̄I

dt
= βBM̄U − ᾱT M̄I T̄ − μIM̄I − K2CM̄I ,

dB

dt
= r̄μIM̄I − γ̄UM̄UB − μBB − K3CB,

dT̄

dt
= (1 − T̄

Tmax
)k̄IM̄I − μT T̄ − K4CT̄ ,

dC

dt
= −ηC + CM ,

and
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(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM̄U

dt
= ΛU − μUM̄U − βBM̄U − K1CM̄U ,

dM̄I

dt
= βBM̄U − ᾱT M̄I T̄ − μIM̄I − K2CM̄I ,

dB

dt
= r̄μIM̄I − γ̄UM̄UB − μBB − K3CB,

dT̄

dt
= (1 − T̄

Tmax
)k̄IM̄I − μT T̄ − K4CT̄ ,

dC

dt
= −ηC + CM (t).

In next section, we will analyze system (1). And system (2) with different control
strategies will be considered in Section 4.

3. EXISTENCE AND STABILITY OF EQUILIBRIA OF SYSTEM (1)

In order to reduce the number of parameters we introduce the following change of
variables

MU =
M̄U

ΛU/μU
, MI =

M̄I

ΛU/μU
, T =

T̄

Tmax
.

Then system (1) is equivalent to

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMU

dt
= μU − μUMU − βBMU − K1CMU ,

dMI

dt
= βBMU − αT MIT − μIMI − K2CMI ,

dB

dt
= rMI − γUMUB − μBB − K3CB,

dT

dt
= (1 − T )kIMI − μT T − K4CT,

dC

dt
= −ηC + CM ,

where,

αT = ᾱT Tmax, γU =
γ̄UΛU

μU
, kI =

k̄IΛU

TmaxμU
, r =

r̄μIΛU

μU
.

Obviously, the set of biological interest is given by

(4) Ω={(MU , MI, B, T, C)∈R
5
+ : MU +MI ≤1, B≤Bmax, T ≤Tmax, C≤Cmax},

where Bmax = r
μB

, Tmax = kI
μT +kI

, and Cmax = CM
η . The following lemma ensures

that system (3) has biological sense, that is, all solutions starting in Ω remain there for
all t ≥ 0.
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Lemma 3.1. The set Ω defined in (4) is positively invariant for the solutions of
the system (3).

Proof. Add the first two equations of system (3), and using the fact that μI ≥ μU ,
we obtain

(5)
d

dt
(MU + MI) + μU (MU + MI) ≤ μU −CK1MU −CK2MI −αTMIT ≤ μU .

The solution of inequality (5) is given by MU + MI ≤ 1 + (−1 + M0
U + M0

I )e−μU t,
where the initial conditions satisfy M0

U + M0
I ≤ 1, therefore MU + MI ≤ 1 for all

t ≥ 0. Similarly, we prove that B ≤ Bmax, T ≤ Tmax, and C ≤ Cmax. Therefore the
solutions starting in Ω remain there for all t ≥ 0.

In the rest of this section, we will consider the existence and stability of the equi-
libria of system (3) within region Ω. Before infection, the system is at the equilibrium
MU = 1, MI = 0, B = 0, T = 0, and C = Cmax. Suppose that bacteria enter to the
organism. The infection progression will depend on a condition very similar to the one
used in epidemiology for the spread of an infectious disease in a population of host
individuals. The crucial quantity is the basic reproductive number, R0, defined as

(6) R0 =
rβ

(μI + K2Cmax)(γU + μB + K3Cmax)
.

The threshold R0 can be interpreted biologically as follows: one infected cell gives
rise to rβ/(γU + μB + K3Cmax) new infected cells per unit of time when the other
cells are uninfected. Then, 1

μI+K2Cmax
( rβ

γU+μB+K3Cmax
) is the number of secondary

infections that arises from a macrophage during its lifetime if all other macrophages
are uninfected.

We get the following theorems as our main results of this section.

Theorem 3.2. If R0 ≤ 1, then E1 = (1, 0, 0, 0, Cmax) is the only equilibrium
in Ω. If R0 > 1, in addition to E1, there exists an infected equilibrium, E2 =
(M∗

U , M∗
I , B∗, T ∗, C∗).

Proof. Let the right of system (3) equal to zero, then we obtain the following
algebraic equations

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μU − μUM∗
U − βB∗M∗

U − K1C
∗M∗

U = 0,

βB∗M∗
U − αTM∗

I T ∗ − μIM
∗
I − K2C

∗M∗
I = 0,

rM∗
I − γUM∗

UB∗ − μBB∗ − K3C
∗B∗ = 0,

(1− T ∗)kIM
∗
I − μT T ∗ − K4C

∗T ∗ = 0,

−ηC∗ + CM = 0.
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It is easy to see that a trivial solution of (7) is the infection-free equilibrium E1 =
(1, 0, 0, 0, Cmax). Now we are going to determine the existence of nontrivial equilib-
rium.

From the fifth equation of (7), we get C∗ = Cmax.
From the fourth equation of (7), we get

(8) M∗
I =

(μT + K4C
∗)T ∗

(1 − T ∗)kI
.

Since T ∗ ≤ TM , then

(μT + K4C
∗)T ∗

(1− T ∗)kI
≤ (μT + K4C

∗)TM

(1− TM)kI
= 1,

which implies 0 ≤ M∗
I ≤ 1.

From the first equation of (7), we have

(9) B∗ =
μU(1 − M∗

U ) − K1C
∗M∗

U

βM∗
U

.

From the second and third equations of (7), we obtain the following relations

(10)
B∗

M∗
I

=
αTT ∗ + μI + K2C

∗

βM∗
U

,

(11)
B∗

M∗
I

=
r

γUM∗
U + μB + K3C∗ .

By equations (10) and (11), we obtain

(12)
αT T ∗ + μI + K2C

∗

βM∗
U

=
r

γUM∗
U + μB + K3C∗ ,

and from which we get

(13) M∗
U =

(μB + K3C
∗)(αTT ∗ + μI + K2C

∗)
rβ − γU(αT T ∗ + μI + K2C∗)

.

In order to search for a feasible endemic equilibrium, the condition 0 < M∗
U < 1

must hold. It is clear that M∗
U > 0 if and only if rβ − γU(αTT ∗ + μI + K2C

∗) > 0.
It can be seen that the last inequality implies

(14) T ∗ < T ∗
M ,

where

(15) T ∗
M =

(μI + K2C
∗)(μB + K3C

∗)R0 + (μI + K2C
∗)γU(R0 − 1)

γUαT
.
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On the other hand, M∗
U ≤ 1 if and only if T ∗ ≤ (μI+K2C∗)(R0−1)

αT
. Therefore,

there is at least one solution T ∗ > 0 if and only if R0 > 1. We are going to use the
equations (8)-(13) to determine the uniqueness of T ∗. Substituting the equations (8)
and (9) into (10), we have

(16) μU (1 − M∗
U )− K1C

∗M∗
U =

(μT + K4C
∗)T ∗

(1− T ∗)kI
(αTT ∗ + μI + K2C

∗).

Substituting M∗
U defined by (13) into (16), we obtain

(17)

[rβ − γU(αT T ∗ + μI + K2C
∗)][μUkI(1 − T ∗)

−T ∗(μT + K4C
∗)(αTT ∗ + μI + K2C

∗)]

−μU kI(μB + K3C
∗)(K1C

∗ + 1)(1− T ∗)(αTT ∗ + μI + K2C
∗) = 0.

From equation (17), we conclude that T ∗ is a zero of the function f defined by

(18)

f(T ) = −αT (μT + K4C
∗)[rβ − γU(αTT + μI + K2C

∗)]×

[T 2 +
μUkI + (μT + K4C

∗)(μI + K2C
∗)

αT (μT + K4C∗)
T +

μUkI

αT (μT + K4C∗)
]

−μUkI(μB + K3C
∗)(K1C

∗ + 1)(1− T )(αTT + μI + K2C
∗).

Observe that

(19) T 2 +
μUkI +(μT +K4C

∗)(μI +K2C
∗)

αT (μT +K4C∗)
T +

μUkI

αT (μT +K4C∗)
=(T−m)(T−n)

here we denote

B =
μUkI + (μT + K4C

∗)(μI + K2C
∗)

αT (μT + K4C∗)
, C =

μUkI

αT (μT + K4C∗)
,

where

m =
−B +

√
B2 + 4C

2
,

n =
−B −√

B2 + 4C

2
.

It is clear that n < 0. Furthermore, from inequality μI ≥ μU we have m ≤ TM . Now,
substituting equation (19) into equation (18), we can rewrite f as

(20)
f(T ) = −αT (μT +K4C

∗)[rβ−γU(αT T +μI +K2C
∗)](T−m)(T−n)

−μUkI(μB + K3C
∗)(K1C

∗ + 1)(1− T )(αTT + μI + K2C
∗).
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Table 1: Signs of the coefficients of equation (21).

b3 b2 b1 b0

+ + - +
+ - - +

Observe that

f(m) = −μU kI(μB + K3C
∗)(K1C

∗ + 1)(1− m)(αTm + μI + K2C
∗).

On the other hand, expanding f we obtain

(21) f(T ) = b3T
3 + b2T

2 + b1T + b0,

where
b3 = (μT + K4C

∗)α2
T γU ,

b2 = μUkIαT [(μB + K3C
∗)(K1C

∗ + 1) + γU ]

b2 = −(μT + K4C
∗)αT [rβ − 2γU(μI + K2C

∗)],

b1 = −μU kIαT [(μB + K3C
∗)(K1C

∗ + 1) + γU ]

−(μI + K2C
∗)(μT + K4C

∗)[rβ − γU(μI + K2C
∗)]

−μU kIγU(μI + K2C
∗)(R0 − 1)

b2 = −μU kI(μI + K2C
∗)(μB + K3C

∗)(R0 − 1 − K1C
∗),

b0 = μUkIγU(μI + K2C
∗)(R0 − 1)

b2 = +μU kI(μI + K2C
∗)(μB + K3C

∗)(R0 − 1 − K1C
∗).

Since f(m) < 0, and f(0) = b0 > 0 for R0 > 1, there exists at least one root T ∗

of f in the interval (0, m). To determine the location of the other roots, we will use
Descartes’ Rule of Signs. Note that b0 and b3 are positive, b1 is always negative, while
b2 can be positive or negative. The change of coefficient signs can be determined from
the Table 1. Since there are two changes of sign in both cases, the Descartes rule
implies the existence of only one negative root and zero or two positive roots. We
already know the existence of one positive root T ∗ < TM , therefore f(T ) has one
negative root and two positive roots. Since the roots of f(T ) have to be less than TM ,
and T ∗

M , then they have to be less than T̃ = min{TM , T ∗
M}. In order to prove that

f(T ) has only one root between zero and T̃ , it is enough to prove that f(T̃ ) < 0. If
T̃ = TM , then TM < T ∗

M , and therefore

rβ − γU(αTTM + μI + K2C
∗) > rβ − γU(αT T ∗ + μI + K2C

∗) = 0,



584 Ruiqing Shi, Yang Li and Sanyi Tang

which implies

(22)

f(T̃ ) = f(TM)

= −αT (μT +K4C
∗)[rβ−γU(αTTM +μI +K2C

∗)](TM−m)(TM−n)

−μUkI(μB+K3C
∗)(K1C

∗+1)(1−TM)(αTTM +μI +K2C
∗)

< 0.

If T̃ = T ∗
M , then T ∗

M < TM < 1, therefore we have

f(T̃ ) = f(T ∗
M) = −μUkI(μB+K3C

∗)(K1C
∗+1)(1−T ∗

M)(αTT ∗
M +μI +K2C

∗) < 0.

Since f(0) > 0, there is a unique root of f(T ) = 0 in [0, T̃ ].

Theorem 3.3. For R0 < 1, E1 is locally asymptotically stable, and for R0 > 1,
E1 is unstable.

Proof. The Jacobian of system (3) evaluated at E1 is

J(E1) =⎛⎜⎜⎜⎜⎝
−μU − K1Cmax 0 −β 0 −K1

0 −μI − K2Cmax β 0 0
0 r −(γU + μB + K3Cmax) 0 0
0 kI 0 −μT − K4Cmax 0
0 0 0 0 −η

⎞⎟⎟⎟⎟⎠ .

The characteristic polynomial of J(E1) is

(23)

p(λ) = (λ + μU + K1Cmax)(λ + η)(λ + μT + K4Cmax)

×[λ2 + (μI + K2Cmax + γU + μB + K3Cmax)λ

+(μI + K2Cmax)(γU + μB + K3Cmax) − rβ].

It is easy to see that three of the roots of (23) are λ1 = −μU − K1Cmax < 0,
λ2 = −η < 0, λ3 = −μT − K4Cmax < 0. In addition, the other two roots are
determined by the following quadratic equation

(24)
λ2 + (μI + K2Cmax + γU + μB + K3Cmax)λ

+(μI + K2Cmax)(γU + μB + K3Cmax)(1 − R0) = 0.

If R0 < 1, then both roots of equation (24) have negative real part; and if R0 > 1,
then one of the roots of equation (24) has positive real part.

Therefore, E1 is locally asymptotically stable for R0 < 1, and E1 is unstable for
R0 > 1.

In fact, we can prove the global stability of E1 when R0 ≤ 1.
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Theorem 3.4. If R0 ≤ 1, then E1 is globally asymptotically stable.

Proof. The Lyapunov function V can be defined as

(25) V = rMI + (μI + K2C)B,

which satisfies V (x) ≥ 0 for all x ∈ Ω. Taking the derivative of V along the solution
of system (3), we can obtain

dV

dt
|(3) = BMU [rβ − γU(μI + K2C)] − B(μI + K2C)(μB + K3C) − rαTMIT

≤ B(μI + K2C)(R0 − 1)(μB + K3C + MU )− rαTMIT

≤ 0,

for all x ∈ Ω, and the last inequality is obtained by the fact that R0 ≤ 1. From
inspection of system (3) we can see that the maximum invariant set contained in the
set {dV

dt |(3)= 0} is the plane B = 0, MI = 0. In this set, system (3) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMU

dt
= μU − μUMU − K1CMU ,

dMI

dt
= 0,

dB

dt
= 0,

dT

dt
= −μT T − K4CT,

dC

dt
= −ηC + CM .

Which implies that the solutions starting there tend to the equilibrium E1 as t goes to
infinity. Therefore, by applying the LaSalle-Lyapunov Theorem (see [17]), we have
that E1 is globally asymptotically stable.

In the following we will prove that Ω − {(MU , 0, 0, T, C)|0 ≤ MU ≤ 1, 0 ≤ T ≤
TM , 0 ≤ C ≤ CM

η } is an asymptotic stability region for the endemic equilibrium E2

when R0 > 1 and γU ≤ μB. For this purpose, we use the following Lyapunov function

V = (a1 + a2)
[
MU − M∗

U − M∗
U ln

MU

M∗
U

]
+(a3 + a4)

[
MI − M∗

I − M∗
I ln

MI

M∗
I

]
+ a5

[
B − B∗ − B∗ ln

B

B∗

]
+a6

[
T − T ∗ − T ∗ ln

T

T ∗

]
+ a7

[
C − C∗ − C∗ ln

C

C∗

]
,
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where a1 is a positive constant and

(26)
a2 =

(
μU

βB∗M∗
U

μB

γU
− 1
)

a1, a3 =
μU

βB∗M∗
U

μB

γU
a1, a4 =

μU

βB∗ a1

a5 =
μU

γUB∗ a1, a6 =
αT T ∗M∗

I

kIM∗
I (1−T ∗)

μU

βB∗

(
μB

γUM∗
U

+1
)

a1, a7=a1.

We get some results as shown in the following theorems.

Theorem 3.5. The derivative of V along the solutions of system (3) equals to
dV
dt |(3)= −f , where f is given by

(27)

f(x, y, z, u, v)

= (a1 + a2)
[
μUM∗

U

(
x +

1
x
− 2
)

+ βB∗M∗
U

(
xz +

1
x
− z − 1

)]
+(a1+a2)

[
K1C

∗M∗
U

(
1
x
−1
)

+K1C
∗M∗

UMU

(
1
x
−1
)
+K1CM∗

U (x−1)
]

+(a3+a4)
[
βB∗M∗

U

(
xz

y
+y−xz−1

)
+ αT T ∗M∗

I (yu + 1 − y − u)
]

+(a3 + a4)
[
K2C

∗MI

(
1
y
− 1
)

+ K2CM∗
I (y − 1)

]
+a5rM

∗
I

(y

z
+ z − y − 1

)
+ a5γUB∗M∗

U (xz + 1 − x − z)

+a5K3C
∗B∗ (z − 1) + a5K3CB

(
1
z
− 1
)

+a6kIM
∗
I

(y

u
+ u − y − 1

)
+ a6kIM

∗
I T ∗ (uy + 1 − u − y)

+a6K4C
∗T ∗ (u − 1) + a6K4CT

(
1
u
− 1
)

+ a7CM (
1
v

+ v − 2),

and x = MU/M∗
U , y = MI/M

∗
I , z = B/B∗, u = T/T ∗, v = C/C∗.

Proof. Taking the derivative of V along the solutions of system (3), we will obtain

(28)

dV

dt
|(3) = (a1 + a2)

(
1 − M∗

U

MU

)
(μU − μUMU − βBMU − K1CMU )

+(a3+a4)
(

1−M∗
I

MI

)
(βBMU −αTTMI−μIMI − K2CMI )

+a5(1− B∗

B
) (rMI − γUBMU − μBB − K3CB)

+a6(1− T ∗

T
)[kI(1 − T )MI − μT T − K4CT ]

+a7

(
1 − C∗

C

)
(−ηC + CM ) .
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Form equations (7), we can get

μU = μUM∗
U + βB∗M∗

U + K1C
∗M∗

U ,

μI =
βB∗M∗

U

M∗
I

− αT T ∗M∗
I

M∗
I

− K2C
∗M∗

I

M∗
I

,

μB =
rM∗

I

B∗
− γUB∗M∗

U

B∗
− K3C

∗B∗

B∗ ,

μT =
kIM

∗
I

T ∗ − kIM
∗
I T ∗

T ∗ − K4C
∗T ∗

T ∗ ,

η =
CM

C∗ ,

and substituting these values of μU , μI , μB , μT and η into equation (28) we can obtain

(29)

dV

dt
|(3)

= −(a1+a2)
[
μUM∗

U

(
MU

M∗
U

+
M∗

U

MU
−2
)
+βB∗M∗

U

(
BMU

B∗M∗
U

+
M∗

U

MU
− B

B∗
−1
)]

−(a1 + a2)
[
K1C

∗M∗
U (1 + MU )

(
M∗

U

MU
− 1
)

+ K1CM∗
U

(
MU

M∗
U

− 1
)]

−(a3 + a4)βB∗M∗
U

(
BMUM∗

I

B∗M∗
UMI

+
MI

M∗
I

− BMU

B∗M∗
U

− 1
)

−(a3 + a4)αT T ∗M∗
I

(
TMI

T ∗M∗
I

+ 1 − MI

M∗
I

− T

T ∗

)
−(a3 + a4)

[
K2C

∗MI

(
M∗

I

MI
− 1
)

+ K2CM∗
I

(
MI

M∗
I

− 1
)]

−a5rM
∗
I

(
B∗MI

BM∗
I

+
B

B∗ −
MI

M∗
I

−1
)
−a5γUM∗

UB∗
(

MUB

M∗
U B∗ +1− B

B∗ −
MU

M∗
U

)
−a6kIM

∗
I

(
T ∗MI

TM∗
I

+
T

T ∗ −
MI

M∗
I

−1
)
−a6kIM

∗
I T ∗

(
TMI

T ∗M∗
I

+1− T

T ∗ −
MI

M∗
I

)
−a5K3C

∗B∗
(

B

B∗ − 1
)
− a5K3CB

(
B∗

B
− 1
)

−a6K4C
∗T ∗

(
T

T ∗ − 1
)
− a6K4CT

(
T ∗

T
− 1
)
− a7CM

(
C

C∗ +
C∗

C
− 2
)

.

If we denote

x = MU/M∗
U , y = MI/M

∗
I , z = B/B∗, u = T/T ∗, v = C/C∗,

then we get the result of this theorem.

Theorem 3.6. If γU ≤ μB and R0 > 1, then the function f is nonnegative.
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Proof. In fact, we can obtain the constants defined in equation (26) by the
following equalities

(a1 + a2)βB∗M∗
U = a3βB∗M∗

U = a5μBB∗,

a1μUM∗
U = a4βB∗M∗

U = a5γUB∗M∗
U ,

a6kIM
∗
I = (a3 + a4)αT T ∗M∗

I + a6kIM
∗
I T ∗.

It is clear that a3, · · · , a7, are positive, and we can get a2 > 0, since γU ≤ μB .
Substituting rM∗

I = γUM∗
UB∗ + μBB∗ and the equalities in equation (26) into the

function f , we will get

(30)

f(x, y, z, u, v)

= a2μUM∗
U

(
x +

1
x
− 2
)

+ (a3 + a4)βB∗M∗
U

(
xz

y
+

y

z
+

1
x
− 3
)

+a6kIM
∗
I y

(
1
u

+ u − 2
)

+ a7CM

(
1
v

+ v − 2
)

+(a1 + a2)K1C
∗M∗

U (1 + MU)
(

1
x

+ x − 2
)

+(a3 + a4)K2C
∗MI

(
1
y

+ y − 2
)

+ a5K3C
∗B∗

(
1
z

+ z − 2
)

+a6K4C
∗T ∗

(
1
u

+ u − 2
)

,

Taking d1 = x, d2 = y, d3 = z, d4 = u and d5 = v into the inequality
∑n

i=1 di ≥
n
√∏n

i=1 di, it is easy to see that the expressions inside the parenthesis of equation
(30) are nonnegative, and therefore f is nonnegative.

Theorem 3.7. If γU ≤ μB and R0 > 1, then the nontrivial equilibrium E2 is
globally asymptotically stable.

Proof. It is clear that V (E2)=0 and V (x)≥0 for all x∈ intΩ. Form Theorems
3.5 and 3.6, we have dV

dt |(3)= −f ≤ 0 for all x ∈ intΩ. Further, we know that
dV
dt |(3)= 0 if and only if MU = M∗

U , MI = M∗
I , B = B∗, T = T ∗ and C = C∗,

which implies that all trajectories inside Ω will approach E2 as t goes to infinity. This
completes the proof.

4. QUADRATIC AND LINEAR OPTIMAL CONTROL FOR SYSTEM (2)

In this section, we will consider system (2) with quadratic and linear optimal control.
By similar dimensional variables transformation as shown in section 3, the system (2)
becomes to
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(31)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMU

dt
= μU − μUMU − βBMU − K1CMU ,

dMI

dt
= βBMU − αT MIT − μIMI − K2CMI ,

dB

dt
= rMI − γUMUB − μBB − K3CB,

dT

dt
= (1 − T )kIMI − μT T − K4CT,

dC

dt
= −ηC + CM (t).

In the rest of this section, our target is to decrease the tuberculosis burden while
minimizing the total drug administered. The effects of two different types of control
strategies on system (31) are considered: (a) quadratic control, and (b) linear control.

4.1. Quadratic control strategy

In this subsection, we will consider the quadratic control. We will analyze the
solution, which subjects to system (31) and it will minimize the following objective
function

(32) J(CM (t)) =
∫ tf

0

(
B(t) +

ε

2
C2

M (t)
)

dt.

Firstly, we can prove that there exists an optimal control that minimizes the objective
function.

Theorem 4.1. (Existence of a Quadratic Optimal Control). Given the objective
function defined in (32), where U = {CM(t) piecewise continuous |0 ≤ CM (t) ≤
1, ∀t ∈ [0, tf ]} subject to system (31) with MU (0) = MU0 , MI(0) = MI0 , B(0) =
B0, T (0) = T0, C(0) = C0 then there exists an optimal control C∗

M such that
minCM (t)∈[0,1] J(CM ) = J(C∗

M ) if the following conditions are met:

(1) The class of all initial conditions with a control CM (t) in the admissible control
set along with each state equation being satisfied is not empty.

(2) The admissible control set U is closed and convex.
(3) Each right hand side of the state system is continuous, is bounded above by a

sum of the bounded control and the state, and can be written as a linear function
of CM with coefficients depending on time and the state.

(4) The integrand of J(CM ) is convex on U and is bounded below by −c2 + c1C
2
M

with c1 > 0.

Proof. By the works of Fleming and Rishel [18], once we have proved the
conditions 1 through 4 above, we get the existence of optimal control.
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Since system (31) has bounded coefficients and the solutions are bounded on a
finite time interval, we can use a result from Lukes [19] (Theorem 9.2.1, page 182),
to obtain the existence of the solution of the system (31). Secondly we note that U is
closed and convex by definition. For the third condition, the right hand side of system
(31) must be continuous.

Let �α(t, �X) be the right hand side of system (31) without CM (t) and let

�f(t, �X, CM) = �α(t, �X) +

⎛⎜⎜⎜⎜⎝
0
0
0
0

CM

⎞⎟⎟⎟⎟⎠ , �X =

⎛⎜⎜⎜⎜⎝
MU

MI

B
T

C

⎞⎟⎟⎟⎟⎠ .

By the boundedness of the solutions we get

(33)

∣∣∣ �f (t, �X, CM)
∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

βB
2 0

βMU

2
0 0

0 r 0 0 0
0 kI 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

MU

MI

B

T
C

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎝
μU

0
0
0

CM

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
≤ A1(

∣∣∣ �X∣∣∣+ |CM |),

where A1 depends on the coefficients of system (31).
For the fourth condition, we need to show

(34) J(t, B, (1− p)u + pv) ≤ (1− p)J(t, B, u) + pJ(t, B, v).

By analyzing the difference of J(t, B, (1−p)u+pv) and (1−p)J(t, B, u)+pJ(t, B, v),
we can see that

J(t, B, (1− p)u + pv)− [(1− p)J(t, B, u) + pJ(t, B, v)]

= B(t) +
ε

2
(u2 − 2pu2 + p2u2 + p2v2 − 2p2uv + 2puv)

−
(
B(t) +

ε

2
u2 − ε

2
u2p +

ε

2
pv2
)

=
ε

2
(p2 − p)(u− v)2.

Since p ∈ (0, 1), it is easy to see that (p2 − p) < 0. Together with (u − v)2 >
0, we know that the expression ε

2 (p2 − p)(u − v)2 is negative. This implies that
J(t, B, (1− p)u + pv) ≤ (1 − p)J(t, B, u) + pJ(t, B, v).

Lastly,

(35) B(t) +
ε

2
C2

M (t) ≥ ε

2
C2

M (t) ≥ −c +
ε

2
C2

M (t),
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which gives −c + ε
2C2

M (t) as the lower bound.

With the existence of the quadratic optimal control established, we now characterize
the optimal control using the Pontryagins Maximum Principle [20]. In the next theorem,
we use dλi

dt = λ̇i(t).

Theorem 4.2. (Characterization of the Optimal Control). Given an optimal con-
trol C∗

M and solutions to the corresponding state system that minimize the function
J(CM ) =

∫ tf
0 (B(t) + ε

2C2
M (t))dt, there exist adjoint variables λi (i = 1, 2, 3, 4, 5)

satisfying:

(36)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1 = λ1(βB + μU + K1C) − λ2βB + λ3γUB,

λ̇2 = λ2(αTT + μI + K2C) − λ3r − λ4kI(1 − T ),

λ̇3 = λ1βMU − λ2βMU + λ3(γUMU + μB + K3C) + 1,

λ̇4 = λ2αT MI + λ4(kIMI + μT + K4T ),

λ̇5 = λ1K1MU + λ2K2MI + λ3K3B + λ4K4T + λ5η,

where λi(tf) = 0 for i = 1, 2, 3, 4, 5. Moreover, C∗
M (t) can be represented by

C∗
M (t) = min

(
1,

(
−λ5

ε

)+
)

,

where the notation is

(37) r+ =
{

r if r ≥ 0,

0 if r < 0.

Proof. For the function J(CM ), the Hamiltonian is given by

(38)

H = B +
1
2
εC2

M + λ1[μU − βBMU − MU (μU + K1C)]

+λ2[βBMU − αT TMI − MI(μI + K2C)]

+λ3[rMI − γUMUB − B(μB + K3C)]

+λ4[kIMI(1 − T ) − T (μT + K4C)] + λ5(−ηC + CM ).

Since the control is bounded, we construct the Lagrangian as follows:

L = H + W1(t)CM (t) − W2(t)(1− CM (t)).

Here H is the Hamiltonian as defined in [21] and Wi(t) ≥ 0 are penalty multipliers
such that W1(t)CM (t) = 0 and W2(t)(1 − CM (t)) = 0 at the optimal C∗

M .
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To characterize C∗
M , we analyze the necessary optimality condition ∂L

∂CM
= 0. Here,

∂L
∂CM

= ∂H
∂CM

+ W1 + W2 = 0 or εCM + λ5 + W1 + W2 = 0.
Using standard optimality arguments, we characterize the optimal control for CM (t)

as

C∗
M (t) = min

(
1,

(
−λ5

ε

)+
)

.

We also note that the second derivative of the Lagrangian with respect to CM is positive,
so a minimum occurs at C∗

M .

4.2. Linear control strategy

For the same model (31), we now minimize an objective functional that is linear
in the control,

(39) J1(CM(t)) =
∫ tf

0

(B(t) + εCM (t)) dt.

This objective functional depicts the situation of minimizing the tuberculosis cells and
the total amount of drug given for a time interval [0, tf ].

The existence of a linear control can be shown by techniques similar to those
presented in Theorem 4.1. Assuming the existence of such a control, we will develop
the characterization.

Theorem 4.3. (Characterization of the Optimal Control). Given an optimal control
C∗

M (t), and solutions to the state equations that minimize the functional J1(CM) =∫ tf
0 (B(t) + εCM (t))dt, there exist adjoint variables satisfying the adjoint Eq. (37)

with λi(tf) = 0 for i = 1, 2, 3, 4, 5. Further, the optimal control is characterized by

CM =

⎧⎪⎨⎪⎩
0, if ε + λ5 > 0,

1, if ε + λ5 < 0,

P
Q , if ε + λ5 = 0,

where

Q = K2
3B + λ1(K2

3βBMU − K2
1μU )

+λ2(2K2K3rMI + K2
1MUγU − K2

2rMI − K2
3rMI − K1K3MUγU),

P = λ̇1ξ1 + λ̇2ξ2 + λ1(ξ̇11 + CĖ) + λ2(ξ̇22 + CḞ ) + Ġ

−K2
3C(rMI − MUγUB − μBB − K3CB) + ηCQ.

and the expression of ξ1, ξ2, ξ11, ξ12, ξ21, ξ22, E , F , G will been given in the proof.

Proof. In this case, the Hamiltonian of the system is given by
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(40)

H = B + εCM + λ1[μU − βBMU − MU(μU + K1C)]

+λ2[βBMU − αT TMI − MI(μI + K2C)]

+λ3[rMI − γUMUB − B(μB + K3C)]

+λ4[kIMI(1 − T ) − T (μT + K4C)] + λ5(−ηC + CM ).

The switching function in this case is φ = ∂H
∂CM

= ε + λ5. Since there is no explicit
dependence on CM in the switching function, the possibility of singular arcs arises.

The optimal control is given by

CM =

⎧⎪⎨⎪⎩
0, if ε + λ5 > 0,

1, if ε + λ5 < 0,

Singular, if ε + λ5 = 0.

In the regions where the switching function is not zero, we have bang–bang control. In
order to address the issue of singular arcs, we suppose the switching function is zero
on an interval (t1, t2). This implies that all the derivatives of λ5 must vanish in that
interval. We can use this fact to determine the optimal control in such regions.

For the explanation to follow, we recall that λ̇2, λ̇4. Since C(t) ≥ 0 and λ2(tf ) = 0,
λ4(tf ) = 0, we can conclude that λ2(t) = 0, λ4(t) = 0 on the entire time interval.
Setting the first three time derivatives of the switching function to zero, and using
λ2 ≡ 0, λ4 ≡ 0, we obtain

φ̇ = 0 = λ1K1MU + λ3K3B − ηε,

φ̈ = 0 = λ1(K1μU + K3βBMU ) + λ3(K1γUMU − K2rMI + K3rMI) + K3B,
...
φ = 0 = λ1ξ1 + λ2ξ2 + K1γUMU − K2rMI

+K3(2rMI − γUMUB − μBB − K3CB),

where
ξ1 = ξ11 + ξ12, ξ2 = ξ21 + ξ22,

ξ11 = K1βBμU + K1βγUM2
U + K1μ

2
U − K2rβMUMI + 2K3rβMUMI

−K3BβγUM2
U − K3BβγUMU + K3BβμU ,

ξ12 = (K2
1μU − K2

3BβMU )C,

ξ21 = K1γ
2
UM2

U + K1γUMUμB + K1γUμU − K1γUMUBβ − K1γUMUμU

+K1BγUμU − K2γUMUrMI − K2μBrMI − K2rBβMU + K2rαTTMI

+K2rMIμI + K3γUMUrMI + K3B
2rβγUMU + K3rμBMI

+K3rBβMU − K3rαT MIT − K3rμIMI ,

ξ22 = (K1K3γUMU − 2K2K3rMI + K2
3rMI − K2

1γUMU + K2
2rMI)C.
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Denote

E = K2
1μU − K2

3BβMU ,

F = K1K3γUMU − 2K2K3rMI + K2
3rMI − K2

1γUMU + K2
2rMI,

G = K1γUMU − K2rMI + K3(2rMI − γUMUB − μBB).

From φ̇ = 0 and φ̈ = 0, we can get

λ1 = ηε
K1MU

− K3B[ηε(K1μU +K3BβMU)+K3BK1MU ]
K1MU [K3BK1μU +K2

3B2βMU−K2
1γU M2

U+K1K2rMUMI−K1K3rMIMU ]
,

λ3 = ηε(K1μU +K3BβMU )+K3BK1MU

K3BK1μU +K2
3B2βMU−K2

1γU M2
U +K1K2rMU MI−K1K3rMIMU

.

Now, we know all the five adjoint variables in terms of the state in a singular region. To
determine the control, we need to find the fourth derivative of the switching function.

We see that
....
φ = 0 = P − QCM or CM = P

Q , where

Q = K2
3B + λ1(K2

3βBMU − K2
1μU )

+λ2(2K2K3rMI + K2
1MUγU − K2

2rMI − K2
3rMI − K1K3MUγU),

P = λ̇1ξ1 + λ̇2ξ2 + λ1(ξ̇11 + CĖ) + λ2(ξ̇22 + CḞ ) + Ġ

−K2
3C(rMI − MUγUB − μBB − K3CB) + ηCQ.

For the singular control to be minimizing, the Generalized Legendre Clebsch condition
needs to be satisfied, that is Q would have to be non-negative on this interval. Note
that Q is only negative in a very specific region. In this region, we can guarantee that
there are no singular minimizing arcs, so the control is bang–bang. In other regions,
the potential for singular arcs has not been ruled out. In fact, it will arise in most
practical situations, since most of the T − N plane meets the criterion Q ≥ 0.

5. CONCLUSION

In this paper we formulated a mathematical model on the immune response to Mtb
in order to evaluate the effectiveness of macrophages and T cells in controlling TB
with chemotherapy. In terms of drug delivery, we considered two cases: (a)in system
(1), the input rate of chemotherapy drug is constant, CM , and (b) in system (31), the
input rate of chemotherapy drug is changeable CM(t).

In section 3, we analyze the existence and stability of equilibria of system (1). We
get the basic reproduction number R0 in equation (6). From Theorem 3.2, we know
that if R0 ≤ 1, then equilibrium E1 is the only equilibrium in Ω; if R0 > 1, besides E1,
there exists an endemic equilibrium E2. By Theorem 3.4, we get that E1 is globally
asymptotically stable provided that R0 ≤ 1, which means that the infected macrophage
and Mtb bacteria cells will be ultimately eradicated. However, by Theorem 3.7, we
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know that the nontrivial equilibrium E2 is globally asymptotically stable provided that
γU ≤ μB and R0 > 1, which means that infected macrophage and Mtb bacteria cells
will be persist for all the time. In this case, we can control the Mtbs by choose a
suitable CM , such that the equilibrium value less then the threshold.

In section 4, two kinds of optimal control strategies are considered. In the quadratic
control case, we established the existence and characterization of quadratic optimal
control by Theorems 4.1 and 4.2. In the linear optimal control case, by assumption of
existence, we established the characterization of the linear control in Theorem 4.3. In
this case, our theoretical results show that singular control is possible.

Although our model is quite simple compared to the complexity of the immune
response to Mtb, it predicts in terms of the basic reproductive number R0, when the
bacteria is cleared or infection progresses to disease. R0 represents the number of in-
fected macrophages resulting from one infected macrophage if all other macrophages are
uninfected. If R0 ≤ 1, bacteria and infected macrophages will decrease and ultimately
will be eliminated. This scenario occurs when Mtb is not able to infect macrophages
in sufficient numbers, or the growth of bacteria is very low, or the immune response
is able to control infection. When R0 > 1, there is an endemically infected steady
state, E2, where bacteria and infected macrophages are present. This steady state could
represent latent or active TB, depending on the amount of bacteria.

This paper also involve the use of two immune cell populations included in the
dynamics to reduce the TB burden, the qualitative results for quadratic and linear
optimal control scenarios. The quadratic and linear controls have similar behavior in
the administration of the chemotherapy drug. They are both turned on at full power for
a short period of time, then they are essentially turned off. In the linear control it is
completely turned off. However in the quadratic case, the control quickly moves to a
small value, then gradually decreases. Since the amount of drug being delivered to the
patient is small, the quadratic control treatment is comparable to the linear bang–bang
control case in that the Mtb is reduced by the same magnitude over the same time
frame. However, the quadratic control has the added benefit of keeping the Mtb in
check when it is small. When the Mtb is small, the strongest treatment of the Mtb is
unnecessary. The quadratic control allows for a weaker treatment that minimizes the
harmful side effects while allowing the system to maintain a low Mtb size.

Using a murine model, Sköld et al [22] demonstrated that circulating monocytes
also have the ability to give rise to dendritic cells, macrophages as well as to control
the bacterial population. Several authors [23, 24] have proposed that dendritic cells
phagocytize Mtb and activate T cells more efficiently than macrophages. According
to these reports, dendritic cells and neutrophils may be important in controlling the
bacteria. In future work, mathematical models that include the role of these cells in
the immune response should be considered. Investigations into more complex models
will address the ability of combined immunotherapy and chemotherapy to control the
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TB burden and hopefully to eradicate the bacteria.
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