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ON THE INTEGERS OF THE FORM p + b

Quan-Hui Yang and Yong-Gao Chen

Abstract. Let B be a subset of positive integers, and P the set of all positive
primes. For a subset A of positive integers, A(x) denotes the number of integers
in A not exceeding x. Let S denote the set of integers of the form p + b with
p ∈ P and b ∈ B. In this paper, we prove that if B(x) � log x/ log logx and
B(cx) � B(x) for some positive constant c < 1, then S(x) � x/ log logx. This
result is best possible in a sense: For any positive integer m, we construct an
explicit subset B of positive integers with B(x) � (log x)m and B(cx) � B(x)
for any positive constant c < 1 such that S(x) � x/ log log x. We also give an
application to the integers of the form p + 2a2

+ 2b2
, where p ∈ P and a, b are

integers. Two open problems are posed for further research.

1. INTRODUCTION

Let N denote the set of all nonnegative integers and P denote the set of all positive
primes. In 1849, Polignac [18] conjectured that every odd number greater than 3 can be
represented as the sum of an odd prime and a power of 2. He found a counterexample
soon. In 1934, Romanoff [19] proved that the set

{p + 2a : p ∈ P , a ∈ N}

has a positive lower density. In 1950, van der Corput [7] proved that there are a positive
proportion of positive odd integers not of the form p + 2a with p ∈ P and a ∈ N.
In the same year, using covering congruences, Erd"os [10] constructed an arithmetic
progression consisting only of odd numbers, no term of which is of the form p + 2a.
In recent years, developing the idea of Erd"os, many authors study on this subject. One
can refer to [1-6, 9, 11, 14, 20-26].
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In [8], Crocker proved that there exist infinitely many odd positive integers x not
of the form p + 2a + 2b. In 2011, Pan [16] proved that

�{n ∈ [1, x] : n is odd and not of the form pα + 2a + 2b} �ε x1−ε

for any ε > 0, where �ε means the implied constant only depends on ε.

Recently, Pan and Zhang [17] proved the sets {p2 + b2 + 2n : p ∈ P , b, n ∈ N}
and {b2

1 + b2
2 +2n2

: b1, b2, n ∈ N} have positive lower densities. Conversely, they also
proved that there exists a residue class with an odd modulus that contains no integer
of each form.

Throughout this paper, Vinogradov’s notation f(x) � g(x) (or g(x) � f(x))
means f(x) = O(g(x)). For a subset A of N, A(x) denotes the number of integers in
A not exceeding x. Let π(x) = P(x).

A subset B of N is said to satisfy c-condition if B(cx) � B(x) for some positive
constant c < 1.

In this paper, we shall study the sumset

S = {p + b : p ∈ P , b ∈ B},

where B is a subset of N with c-condition.
The following theorems are proved.

Theorem 1. For any subset B of positive integers with c-condition, we have

x

logx
min

{
B(x),

logx

log logx

}
� S(x) � x

logx
min{B(x), logx}.

From Theorem 1, we have the following corollaries immediately.

Corollary 1. If B(x) � log x/ log logx and B satisfies c-condition, then

x

log x
B(x) � S(x) � x

log x
B(x).

Corollary 2. Let Q = {n : n = p + 2q, p, q ∈ P}. Then

x

log logx
� Q(x) � x

log logx
.

Remark 1. Theorem 1.13 in [5] is a quantitative version of Corollary 2.

Corollary 3. If B(x) � log x/ log logx and B satisfies c-condition, then

S(x) � x

log logx
.
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Let W = {2a2
+ 2b2 : a, b ∈ N}. Since

W (x/2) ≥ 1
2
|{2a2 ≤ x/4 : a ∈ N}|2 � log x � |{2a2 ≤ x : a ∈ N}|2 ≥ W (x),

it follows that W satisfies c-condition and logx � W (x) � logx. By Corollary 3 we
have the following corollary.

Corollary 4. Let V = {n : n = p + 2a2
+ 2b2, p ∈ P , a, b ∈ N}. Then

V (x) � x

log logx
.

The next theorem shows that the lower bounds in Theorem 1 and Corollary 3 are
best possible in a sense.

Theorem 2. For any positive integers m, there exists a subset B of N such that

(1) B(x) =
1 + o(1)
m + 1

(
logx

log logx

)m+1

and
x

log log x
� S(x) � x

log logx
.

Remark 2. By (1) we know that the set B in Theorem 2 satisfies c-condition.

Now we pose two problems for further research.

Problem 1. Does there exist a real number α > 0 and a subset B of N with
c-condition such that B(x) � xα and S(x) � x/ log logx?

Problem 2. Does there exist a positive integer k such that the set of positive
integers which can be represented as p +

∑k
i=1 2a2

i with p ∈ P and ai ∈ N has the
positive lower density? If such k exists, what is the minimal value of such k?

2. PROOFS

In this section, p always denotes a prime.

Lemma 1. (see [15, Theorem 7.3].) Let N be a positive even integer, and let
πN(x) denote the number of primes p up to x such that p + N is also prime. Then

πN (x) � x

(logx)2
∏
p|N

(
1 +

1
p

)
.

Remark 3. If N is a positive odd integer, then πN (x) ≤ 1.
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Lemma 2. Let Φ(x, y) denote the number of positive integers n < x that are not
divisible by any prime p < y. Then

Φ(x, y) ≤ x
∏
p<y

(
1− 1

p

)
+ 2y � x

log y
+ 2y.

Lemma 2 follows from (5.4), (5.5) and (5.7) in [12, Chapter 1].

Proof of Theorem 1. The number of pairs (p, b) with p ≤ x, p ∈ P and b ≤ x, b ∈
B is π(x)B(x). So the upper bound is clear.

Now we shall prove

S(x) � x

logx
min

{
B(x),

logx

log logx

}
.

Let r(N ) denote the number of solutions of the equation N = p + b, where p ∈ P
and b ∈ B.

First we estimate the upper bound of
∑

N≤x r(N )2.
Since r(N )2 is the number of quadruples (p1, b1, p2, b2) such that

p1 + b1 = p2 + b2 = N, p1, p2 ∈ P , b1, b2 ∈ B,

it follows that∑
N≤x

r(N )2 = �{(p1, b1, p2, b2) : p1 + b1 = p2 + b2 ≤ x, p1, p2 ∈ P , b1, b2 ∈ B}.

This value does not exceed the number of solutions of the equation

p2 − p1 = b1 − b2, p1, p2 ∈ P , b1, b2 ∈ B(2)

with p1, p2, b1, b2 ≤ x.
If b1 = b2, then p1 = p2. Hence, the number of solutions of (2) in this case is at

most
π(x)B(x) � x

log x
B(x).

Now, fix b1 and b2 such that b1 − b2 �= 0. By Lemma 1 and Remark 3, we have

�{(p1, p2) ∈ P ×P : p2 − p1 = b1 − b2, p1, p2 ≤ x} � x

(logx)2
∏

p|b1−b2

(
1 +

1
p

)
.

For any positive integer h, by φ(n) � n/ log logn (see [13, Theorem 328]), we have

∏
p|h

(
1 +

1
p

)
≤

∏
p|h

(
1 − 1

p

)−1

=
h

φ(h)
� log logh.
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Hence ∑
N≤x

r(N )2

� x

log x
B(x) +

x

(logx)2
∑

b2<b1≤x
b1,b2∈B

∏
p|b1−b2

(
1 +

1
p

)

� x

log x
B(x) +

x

(logx)2
B(x)2 log log x

� x log log x

(logx)2
B(x) · max

{
logx

log logx
, B(x)

}
.

Next we estimate the lower bound of
∑

N≤x r(N ).
Since B satisfies c-condition, it follows that∑

N≤x

r(N ) = �{(p, b) : p + b ≤ x, p ∈ P , b ∈ B}

≥ �{p ∈ P : p ≤ (1 − c)x} · �{b ∈ B : b ≤ cx}
� x

logx
B(x).

Therefore, by the Cauchy-Schwarz inequality, we have

x2

(logx)2
B(x)2 �

⎛
⎝∑

N≤x

r(N )

⎞
⎠

2

≤ S(x)
∑
N≤x

r(N )2

≤ S(x)
x log log x

(logx)2
B(x) max

{
logx

log logx
, B(x)

}
.

Hence
S(x) � x

logx
min

{
B(x),

logx

log logx

}
.

This completes the proof of Theorem 1.

Proof of Theorem 2. Let

B =
∞⋃

j=1

{kp1p2 · · ·pj : 1 ≤ k ≤ jm, pj+1 � k},

where pj is the jth prime.
For any real number x ≥ p1p2 · · ·pm+1, there exists a positive integer t ≥ m + 1

such that

(3) p1p2 · · ·pt ≤ x < p1p2 · · ·pt+1.
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For i = 1, 2, . . . , t − m, we have

im · p1p2 · · ·pi ≤ (t − m)m · p1p2 · · ·pt−m ≤ p1p2 · · ·pt ≤ x.

Hence,

C :=
t−m⋃
j=1

{kp1p2 · · ·pj : 1 ≤ k ≤ jm, pj+1 � k} ⊆ B ∩ [1, x].

Clearly, we have∣∣(B ∩ [1, x]
) \ C

∣∣ ≤ (t − m + 1)m + (t − m + 2)m + · · ·+ tm � tm.

Now we estimate the cardinality of C. Noting that the set C is the union of disjoint
sets, we have

|C| =
t−m∑
j=1

(
jm −

⌊
jm

pj+1

⌋)
.

Since pj+1 ≥ j and

(t − m)m+1

m + 1
=

∫ t−m

0
xmdx ≤

t−m∑
j=1

jm ≤
∫ t−m+1

1
xmdx <

(t − m + 1)m+1

m + 1
,

we have

|C| =
t−m∑
j=1

jm + O(
t−m∑
j=1

jm−1) =
1 + o(1)
m + 1

(t − m)m+1 =
1 + o(1)
m + 1

tm+1.

Thus
B(x) =

∣∣(B ∩ [1, x]
) \ C

∣∣ + |C| =
1 + o(1)
m + 1

tm+1.

By [13, Theorems 6 and 420] and [13, Theorem 8], we have

(4)
∑
p≤x

log p = (1 + o(1))x, pn = (1 + o(1))n logn.

Hence, by (3) and (4), we have

logx ≥
∑
p≤pt

log p = (1 + o(1))pt = (1 + o(1))t log t

and
logx <

∑
p≤pt+1

log p = (1 + o(1))pt+1 = (1 + o(1))t log t.

It follows that
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t =
(1 + o(1)) logx

log logx
.

Hence, we have
B(x) =

1 + o(1)
m + 1

(
logx

log logx

)m+1

.

It is clear that B satisfies c-condition. By Theorem 1, we have S(x) � x/ log log x.
Next we prove that

S(x) � x

log logx
.

For any integer h with 1 ≤ h ≤ t, let

Bh =
h⋃

j=1

{kp1p2 · · ·pj : 1 ≤ k ≤ jm, pj+1 � k},

S1(x) = �{n ≤ x : n = p + b, p ∈ P , b ∈ Bh}
and

S2(x) = �{n ≤ x : n = p + b, p ∈ P , b ∈ B \ Bh}.
Clearly, we have S(x) ≤ S1(x) + S2(x) and

S1(x) ≤ π(x)|Bh| ≤ π(x) ·
h∑

j=1

jm � x

logx
hm+1.

Suppose that n = p + b with p ∈ P and b ∈ B \ Bh. If (n, p1p2 · · ·ph) > 1, then, by
n = p + b and p1p2 · · ·ph | b for any b ∈ B \ Bh, we have p = pi for some i with
1 ≤ i ≤ h. By Lemma 2, we have

S2(x) ≤ �{n ≤ x : n = p + b, (n, p1p2 · · ·ph) > 1, p ∈ P , b ∈ B \ Bh}
+�{n ≤ x : n = p + b, (n, p1p2 · · ·ph) = 1, p ∈ P , b ∈ B \ Bh}

≤ �{n ≤ x : n = p + b, p ∈ {p1, p2, . . . , ph}, b ∈ B, b ≤ x}
+�{n ≤ x : (n, p1p2 · · ·ph) = 1}

≤ hB(x) +
x

log ph+1
+ 2ph+1

� h(logx)m+1 +
x

log h
+ 2ph+1 .

Thus,
S(x) ≤ S1(x) + S2(x) � x

logx
hm+1 +

x

log h
+ 2ph+1.

Taking

h =
(

logx

log log x

) 1
m+1

,
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we obtain
S(x) � x

log logx
.

This completes the proof of Theorem 2.
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