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HYBRID STEEPEST-DESCENT METHODS FOR TRIPLE HIERARCHICAL
VARIATIONAL INEQUALITIES

Lu-Chuan Ceng1 and Ching-Feng Wen2,*

Abstract. In this paper, we consider a triple hierarchical variational inequality
defined over the common solution set of minimization and mixed equilibrium
problems. Combining the hybrid steepest-descent method, viscosity approximation
method and averaged mapping approach to the gradient-projection algorithm, we
propose two iterative methods: implicit one and explicit one, to compute the
approximate solutions of our problem. The convergence analysis of the sequences
generated by the proposed methods is also established.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, C be a
nonempty closed convex subset of H and PC be the metric projection of H onto C.
Let T : C → C be a self-mapping on C. We denote by Fix(T ) the set of fixed
points of T and by R the set of all real numbers. A mapping T : C → C is called
L-Lipschitzian if there exists a constant L ≥ 0 such that

‖Tx − Ty‖ ≤ L‖x − y‖, ∀x, y ∈ C.

In particular, if L = 1, then T is called a nonexpansive mapping; if L ∈ [0, 1), then T

is called a contractive mapping. A mapping A : C → H is called α-inverse strongly
monotone, if there exists a constant α > 0 such that

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C.
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A : C → H is called η-strongly monotone, if there exists a constant η > 0 such that

〈Ax− Ay, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ C.

Let f : C → R be a convex and continuously Fréchet differentiable functional.
Consider the minimization problem (MP) of minimizing f over the constraint set C

(1.1) min
x∈C

f(x)

where we denote by Γ the set of minimizers of MP (1.1) which is assumed to be
nonempty.
For a given mapping A : C → H , the classical variational inequality (VI) is to find

x∗ ∈ C such that

(1.2) 〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C.

It is well-known that variational inequality theory has been studied quite extensively and
has emerged as an important tool in the study of a wide class of obstacle, unilateral, free,
moving, equilibrium problems arising in several branches of pure and applied sciences
in a unified and general framework; see, e.g., [1-9] and the references therein. The
solution set of the VI (1.2) is denoted by VI(C, A). The recent research work shows
that variational inequalities cover several topics, for example, monotone inclusions,
convex optimization and quadratic minimization over fixed point sets; see e.g., [1,
10-17] and the references therein for more details.
Let Θ : C ×C → R be a bifunction and ϕ : C → R be a function. Then, consider

the following mixed equilibrium problem (MEP) of finding x ∈ C such that

(1.3) Θ(x, y) + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C,

which was studied by Ceng and Yao [14]. The solution set of MEP (1.3) is denoted
by MEP(Θ , ϕ).
In this paper, we introduce and study the following triple hierarchical variational

inequality (THVI) defined over the common solution set of minimization and mixed
equilibrium problems:

THVI. Let S : H → H be a nonexpansivemapping, V : H → H be a ρ-contractive
mapping with constant ρ ∈ [0, 1) and F : H → H be a κ-Lipschitzian and η-strongly
monotone mapping with constants κ, η > 0. Let 0 < μ < 2η/κ2 and 0 < γ ≤ τ where
τ = 1 −

√
1 − μ(2η − μκ2). Consider the following triple hierarchical variational

inequality (THVI): find x∗ ∈ Ξ such that

(1.4) 〈(μF − γV )x∗, x − x∗〉 ≥ 0, ∀x ∈ Ξ ,
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which Ξ denotes the solution set of the following hierarchical variational inequality
(HVI): find z∗ ∈ MEP(Θ , ϕ) ∩ Γ such that

(1.5) 〈(μF − γS)z∗, z − z∗〉 ≥ 0, ∀z ∈ MEP(Θ , ϕ) ∩ Γ ,

where the solution set Ξ is assumed to be nonempty.

We combine the viscosity approximation method, hybrid steepest-descent method
and averaged mapping approach to the gradient-projectionmethod to propose an implicit
iterative algorithm that generates a sequence in an implicit way, and study its strong
convergence to a unique solution of the THVI (1.4). We also introduce an explicit
iterative algorithm that generates a sequence in an explicit way and prove that this
sequence converges strongly to a unique solution of the THVI (1.4).

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H . We write
xn ⇀ x to indicate that the sequence {xn} converges weakly to x and xn → x to
indicate that the sequence {xn} converges strongly to x. Moreover, we use ωw(xn) to
denote the weak ω-limit set of the sequence {xn}, i.e.,

ωw(xn) := {x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}}.

The metric (or nearest point) projection fromH ontoC is the mapping PC : H → C
which assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x − PCx‖ = inf
y∈C

‖x − y‖ =: d(x, C).

Some important properties of projections are gathered in the following proposition.

Proposition 2.1. For given x ∈ H and z ∈ C:
(i) z = PCx ⇔ 〈x − z, y − z〉 ≤ 0, ∀y ∈ C;
(ii) z = PCx ⇔ ‖x − z‖2 ≤ ‖x− y‖2 − ‖y − z‖2, ∀y ∈ C;
(iii) 〈PCx − PCy, x− y〉 ≥ ‖PCx − PCy‖2, ∀y ∈ H .

Consequently, PC is nonexpansive and monotone.

Definition 2.1. A mapping T : H → H is said to be:
(a) nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ H ;
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(b) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

〈x − y, Tx− Ty〉 ≥ ‖Tx− Ty‖2, ∀x, y ∈ H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1
2
(I + S),

where S : H → H is nonexpansive; projections are firmly nonexpansive.

Definition 2.2. Let T be a nonlinear operator with domain D(T ) ⊆ H and range
R(T ) ⊆ H .
(a) T is said to be monotone if

〈x − y, Tx− Ty〉 ≥ 0, ∀x, y ∈ D(T ).

(b) Given a number β > 0, T is said to be β-strongly monotone if

〈x − y, Tx− Ty〉 ≥ β‖x − y‖2, ∀x, y ∈ D(T ).

(c) Given a number ν > 0, T is said to be ν-inverse strongly monotone (ν-ism) if

〈x − y, Tx− Ty〉 ≥ ν‖Tx − Ty‖2, ∀x, y ∈ D(T ).

It can be easily seen that if T is nonexpansive, then I − T is monotone. It is also
easy to see that a projection PC is 1-ism. Inverse strongly monotone (also referred
to as co-coercive) operators have been applied widely in solving practical problems in
various fields.

Definition 2.3. A mapping T : H → H is said to be an averaged mapping if it
can be written as the average of the identity I and a nonexpansive mapping, that is,

T ≡ (1− α)I + αS

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when the last
equality holds, we say that T is α-averaged. Thus firmly nonexpansive mappings (in
particular, projections) are 1

2 -averaged maps.

Proposition 2.2. (see [18]). Let T : H → H be a given mapping.
(i) T is nonexpansive if and only if the complement I − T is 1

2 -ism.
(ii) If T is ν-ism, then for γ > 0, γT is ν

γ -ism.
(iii) T is averaged if and only if the complement I −T is ν-ism for some ν > 1/2.

Indeed, for α ∈ (0, 1), T is α-averaged if and only if I − T is 1
2α -ism.

Proposition 2.3. (see [18]). Let S, T, V : H → H be given operators.
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(i) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is averaged and V is
nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement I − T is firmly nonex-
pansive.

(iii) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is firmly nonexpansive
and V is nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if
each of the mappings {Ti}N

i=1 is averaged, then so is the composite T1 · · · TN . In
particular, if T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then
the composite T1T2 is α-averaged, where α = α1 + α2 − α1α2.

(v) If the mappings {Ti}N
i=1 are averaged and have a common fixed point, then

N⋂

i=1

Fix(Ti) = Fix(T1 · · · TN).

The notation Fix(T ) denotes the set of all fixed points of the mapping T , that is,
Fix(T ) = {x ∈ H : Tx = x}.
For solving the equilibrium problem for a bifunction Θ : C × C → R, let us

assume that Θ and ϕ satisfy the following conditions (see [7]):
(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt↓0 Θ(tz + (1− t)x, y) ≤ Θ(x, y);
(A4) for each x ∈ C, y �→ Θ(x, y) is convex and lower semicontinuous;
(A5) for each y ∈ C, x �→ Θ(x, y) is weakly upper semicontinuous;
(B1) for each x ∈ H and r > 0, there exists a bounded subsetDx ⊆ C and yx ∈ C

such that for any z ∈ C \ Dx,
Θ(z, yx) + ϕ(yx) − ϕ(z) +

1
r
〈yx − z, z − x〉 < 0;

(B2) C is a bounded set.

The following lemmas were given in [7, 19].

Lemma 2.1. (see [19]). Let C be a nonempty closed convex subset of a real
Hilbert space H and Θ : C ×C → R be a bifunction satisfying (A1)-(A4). Let r > 0
and x ∈ H . Then, there exists z ∈ C such that

Θ(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 2.2. (see [7]). Let C be a nonempty closed convex subset of a real Hilbert
space H . Let Θ : C × C → R be a bifunction satisfying (A1)-(A5) and ϕ : C → R
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be a proper lower semicontinuous and convex function. For r > 0 and x ∈ H , define
a mapping Qr : H → C as follows:

Qrx := {z ∈ C : Θ(z, y) + ϕ(y)− ϕ(z) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all x ∈ H , (which is called the resolvent of Θ and ϕ). Assume that either (B1) or
(B2) holds. Then, the following hold:

(i) for each x ∈ H, Qrx �= ∅;
(ii) Qr is single-valued;
(iii) Qr is firmly nonexpansive, that is, for any x, y ∈ H ,

‖Qrx − Qry‖2 ≤ 〈Qrx − Qry, x− y〉;
(iv) Fix(Qr) = MEP(Θ , ϕ);
(v) MEP(Θ , ϕ) is closed and convex.

The following lemma plays a key role in proving strong convergence of the se-
quences generated by our algorithms.

Lemma 2.3. (see [20]). Let {an} be a sequence of nonnegative numbers satisfying
the condition

an+1 ≤ (1− αn)an + αnβn, ∀n ≥ 0,

where {αn}, {βn} are sequences of real numbers such that
(i) {αn} ⊂ [0, 1] and

∑∞
n=0 αn = ∞, or equivalently, ∏∞

n=0(1−αn) := limn→∞∏n
k=0(1− αk) = 0;
(ii) lim supn→∞ βn ≤ 0, or

∑∞
n=0 αn|βn| < ∞.

Then, limn→∞ an = 0.

Below we also gather some basic facts that are needed in the sequel.

Lemma 2.4. (see [21, Demiclosedness Principle]). Let C be a nonempty closed
convex subset of a real Hilbert space H and let T : C → C be a nonexpansive
mapping with Fix(T ) �= ∅. If {xn} is a sequence in C converging weakly to x and if
{(I − T )xn} converges strongly to y, then (I − T )x = y; in particular, if y = 0, then
x ∈ Fix(T ).

The following lemma is not hard to prove.

Lemma 2.5. (see [11]). Let V : H → H be a ρ-contraction with ρ ∈ [0, 1) and
S : H → H be a nonexpansive mapping. Then,

(i) I − V is (1− ρ)-strongly monotone:

〈(I − V )x − (I − V )y, x− y〉 ≥ (1 − ρ)‖x− y‖2, ∀x, y ∈ H ;
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(ii) I − S is monotone:
〈(I − S)x − (I − S)y, x− y〉 ≥ 0, ∀x, y ∈ H.

The following fact is straightforward but useful.

Lemma 2.6. There holds the following inequality in an inner product space X:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ X.

Lemma 2.7. (see [20, Lemma 3.1]). Let λ be a number in (0, 1] and let μ > 0.
Let F : C → H be an operator on C such that, for some constants κ, η > 0, F is
κ-Lipschitzian and η-strongly monotone. Associating with a nonexpansive mapping
T : C → C, define the mapping T λ : C → H by

T λx := (I − λμF )Tx, ∀x ∈ C.

Then T λ is a contraction provided μ < 2η/κ2, that is,

‖T λx − T λy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ C,

where τ = 1 − √
1 − μ(2η − μκ2) ∈ (0, 1]. In particular, if T = I the identity

mapping, then

‖(I − λμF )x − (I − λμF )y‖ ≤ (1 − λτ)‖x− y‖, ∀x, y ∈ C.

3. MAIN RESULTS

Let C be a nonempty closed convex subset of a real Hilbert space H . Let f : C →
R be a convex and continuously Fréchet differentiable functional such that ∇f is an
L-Lipschitzian mapping with L > 0. Noting that ∇f is L-Lipschitzian, it follows that
∇f is 1/L-ism, which then implies that λ∇f is 1/λL-ism according to Proposition 2.2
(ii). So by Proposition 2.2 (iii), the complement I−λ∇f is λL/2-averaged. Now since
the projection PC is 1/2-averaged, we see from Proposition 2.3 (iv) that the composite
PC(I − λ∇f) is (2 + λL)/4-averaged for 0 < λ < 2/L. Therefore, we can write

PC(I − λ∇f) =
2 − λL

4
I +

2 + λL

4
Tλ = sI + (1− s)Tλ,

where Tλ is nonexpansive and s := s(λ) = 2−λL
4 ∈ (0, 1

2 ) for each λ ∈ (0, 2
L). It is

easy to see that
λ → 2

L
⇔ s → 0.

Let S : H → H be a nonexpansive mapping, V : H → H be a ρ-contractive mapping
with constant ρ ∈ [0, 1) and F : H → H be a κ-Lipschitzian and η-strongly monotone
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mapping with constants κ, η > 0. Let 0 < μ < 2η/κ2 and 0 < γ ≤ τ where
τ = 1−√

1 − μ(2η − μκ2). For a given number r > 0, we denote the resolvent of Θ
and ϕ by Qr as defined in Lemma 2.2. Consider the following contraction mapping
Gs,t on H defined by

Gs,t(x) := sγ(tV x + (1 − t)Sx) + (I − sμF )TλQrx, ∀x ∈ H,

where t ∈ (0, 1) and s = 2−λL
4 ∈ (0, 1

2 ) for each λ ∈ (0, 2
L). Note that this contraction

is a self-mapping on H . It is easy to find that the contraction coefficient of Gs,t is
1− (1− ρ)γst. Indeed, in terms of Lemma 2.7 we know that for each x, y ∈ H

‖Gs,t(x) − Gs,t(y)‖
= ‖sγ(tV x + (1− t)Sx) + (I − sμF )TλQrx

−sγ(tV y + (1− t)Sy)− (I − sμF )TλQry‖
≤ sγ‖(tV x + (1− t)Sx) − (tV y + (1 − t)Sy)‖

+‖(I − sμF )TλQrx − (I − sμF )TλQry‖
≤ sγ‖tV x + (1− t)Sx− tV y − (1 − t)Sy‖ + (1 − sτ)‖x − y‖
≤ sγ[t‖V x − V y‖ + (1 − t)‖Sx − Sy‖] + (1 − sτ)‖x − y‖
≤ sγ[tρ‖x− y‖ + (1− t)‖x− y‖] + (1− sτ)‖x− y‖
= sγ(1− t(1− ρ))‖x− y‖ + (1 − sτ)‖x − y‖
= {1 − s[τ − γ(1− t(1 − ρ))]}‖x− y‖
≤ (1 − stγ(1− ρ))‖x− y‖

due to 0 < γ ≤ τ . Since 0 < γ ≤ τ ≤ 1, 0 ≤ ρ < 1, 0 < s < 1
2 and 0 < t < 1,

we get stγ(1 − ρ) < 1
2γ(1− ρ) ≤ 1

2 . This implies that the contraction coefficient of
Gs,t is 1− (1− ρ)γst. Hence, by the Banach contraction principle, Gs,t has a unique
fixed point which is denoted by xs,t ∈ H , that is, xs,t is the unique solution in H of
the fixed-point equation

(3.1) xs,t = sγ(tV xs,t + (1 − t)Sxs,t) + (I − sμF )TλQrxs,t.

Additionally, if we take V = 0, then (3.1) reduces to

(3.2) xs,t = γs(1− t)Sxs,t + (I − sμF )TλQrxs,t.

In particular, whenever μ = 2, F = 1
2I and γ = τ = 1, the implicit schemes (3.1) and

(3.2) reduce to the following implicit schemes, respectively:

(3.3) xs,t = s(tV xs,t + (1 − t)Sxs,t) + (1− s)TλQrxs,t,

and

(3.4) xs,t = s(1 − t)Sxs,t + (1 − s)TλQrxs,t.
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Below is the first result of this paper which displays the behavior of the net {xs,t}
as s → 0 and t → 0 successively.

Theorem 3.1. Let Θ : C × C → R be a bifunction satisfying (A1)-(A5). Let
f : C → R be a convex function such that ∇f is an L-Lipschitzian mapping with
L > 0. Let S : H → H be a nonexpansive mapping, V : H → H be a ρ-contraction
with coefficient ρ ∈ [0, 1) and F : H → H be a κ-Lipschitzian and η-strongly
monotone operator with constants κ and η > 0, respectively. Let 0 < μ < 2η

κ2 and
0 < γ ≤ τ , where τ = 1−√

1 − μ(2η − μκ2). Suppose that the solution set Ξ of HVI
(1.5) is nonempty and that either (B1) or (B2) holds. For each (s, t) ∈ (0, 1

2)× (0, 1)
(with s = 2−λL

4 for each λ ∈ (0, 2
L)), let xs,t be defined implicitly by (3.1). Then,

for each fixed t ∈ (0, 1), the net {xs,t} converges in norm, as s → 0, to a point
xt ∈ MEP(Θ , ϕ) ∩ Γ . Moreover, as t → 0, the net {xt} converges in norm to a
unique solution x∗ ∈ Ξ of the THVI (1.4). Moreover, for each null sequence {sn}
(with sn = 2−λnL

4 ∈ (0, 1
2) for each λn ∈ (0, 2

L)), there exists another null sequence
{tn} in (0, 1) such that the sequence xsn,tn → x∗ in norm as n → ∞.
In particular, if we take V = 0 and if xs,t is defined by the implicit scheme (3.2),

then the iterated limit in the norm topology

s − lim
t→0

lim
s→0

xs,t

exists and is a unique solution x∗ of the variational inequality (VI), which consists in
finding x∗ ∈ Ξ such that

(3.5) 〈Fx∗, x− x∗〉 ≥ 0, ∀x ∈ Ξ .

Furthermore, for each null sequence {sn} (with sn = 2−λnL
4 ∈ (0, 1

2) for each
λn ∈ (0, 2

L)), there exists another null sequence {tn} in (0, 1), such that the sequence
xsn,tn → x∗ in norm as n → ∞.
Proof. We first show that {xs,t} is bounded. Indeed, take any p ∈ MEP(Θ , ϕ)∩Γ .

Observe that for each (s, t) ∈ (0, 1
2 ) × (0, 1) (with s = 2−λL

4 for each λ ∈ (0, 2
L)),

xs,t − p = sγ(tV xs,t + (1 − t)Sxs,t) + (I − sμF )TλQrxs,t − p

= [(I − sμF )TλQrxs,t − (I − sμF )TλQrp] + stγ(V xs,t − V p)
+s(1 − t)γ(Sxs,t − Sp) + st(γV − μF )p + s(1 − t)(γS − μF )p.

Noticing 0 < γ ≤ τ and utilizing Lemma 2.7, we have

‖xs,t − p‖
= ‖sγ(tV xs,t + (1 − t)Sxs,t) + (I − sμF )TλQrxs,t − p‖
= ‖[(I − sμF )TλQrxs,t − (I − sμF )TλQrp] + stγ(V xs,t − V p)

+s(1 − t)γ(Sxs,t − Sp) + st(γV − μF )p + s(1 − t)(γS − μF )p‖
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≤ ‖(I − sμF )TλQrxs,t − (I − sμF )TλQrp‖+ stγ‖V xs,t − V p‖
+s(1 − t)γ‖Sxs,t − Sp‖+ st‖(γV − μF )p‖ + s(1 − t)‖(γS − μF )p‖

≤ (1− sτ)‖xs,t − p‖ + stγρ‖xs,t − p‖
+s(1 − t)γ‖xs,t − p‖ + st‖(γV − μF )p‖ + s(1 − t)‖(γS − μF )p‖

≤ [1− sτ + stγρ + s(1 − t)γ]‖xs,t − p‖
+(st + s(1− t)) max{‖(γV − μF )p‖, ‖(γS − μF )p‖}

≤ (1− stγ(1− ρ))‖xs,t − p‖ + s max{‖(γV − μF )p‖, ‖(γS − μF )p‖}.
This implies that

‖xs,t − p‖ ≤ 1
tγ(1− ρ)

max{‖(γV − μF )p‖, ‖(γS − μF )p‖}.

It follows that for each fixed t ∈ (0, 1), {xs,t} is bounded and so are the nets {Qrxs,t},
{TλQrxs,t}, {V xs,t}, {Sxs,t} and {FTλQrxs,t}. We note that

(3.6)

‖Qrxs,t − TλQrxs,t‖
≤ ‖Qrxs,t − xs,t‖ + ‖xs,t − TλQrxs,t‖
= ‖Qrxs,t − xs,t‖ + s‖γ(tV xs,t

+(1 − t)Sxs,t)− μFTλQrxs,t‖
= ‖Qrxs,t − xs,t‖ + s‖t(γV xs,t − μFTλQrxs,t)

+(1 − t)(γSxs,t − μFTλQrxs,t)‖
≤ ‖Qrxs,t − xs,t‖ + s max{‖γV xs,t − μFTλQrxs,t‖,

‖γSxs,t − μFTλQrxs,t‖}.
Utilizing Lemma 2.2, we obtain

‖Qrxs,t − p‖2 = ‖Qrxs,t − Qrp‖2

≤ 〈xs,t − p, Qrxs,t − Qrp〉
=

1
2
(‖xs,t − p‖2 + ‖Qrxs,t − p‖2 − ‖xs,t − Qrxs,t‖2),

and so

(3.7) ‖Qrxs,t − p‖2 ≤ ‖xs,t − p‖2 − ‖xs,t − Qrxs,t‖2.

Then, from Lemma 2.6 and (3.7), we have
‖xs,t − p‖2

= ‖[(I − sμF )TλQrxs,t − (I − sμF )p] + stγ(V xs,t − V p)
+s(1 − t)γ(Sxs,t − Sp) + st(γV − μF )p + s(1 − t)(γS − μF )p‖2

≤ (1 − sτ)2‖TλQrxs,t − p‖2 + 2stγ〈V xs,t − V p, xs,t − p〉
+2s(1− t)γ〈Sxs,t − Sp, xs,t − p〉+ 2〈st(γV − μF )p
+s(1 − t)(γS − μF )p, xs,t − p〉
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≤ (1− sτ)2‖TλQrxs,t − p‖2 + 2stγρ‖xs,t − p‖2 + 2s(1− t)γ‖xs,t − p‖2

+2s‖t(γV − μF )p + (1− t)(γS − μF )p‖‖xs,t − p‖
≤ (1− sτ)2‖Qrxs,t − p‖2 + 2stγρ‖xs,t − p‖2 + 2s(1 − t)γ‖xs,t − p‖2

+2s‖t(γV − μF )p + (1− t)(γS − μF )p‖‖xs,t − p‖
≤ (1− sτ)2(‖xs,t − p‖2 − ‖xs,t − Qrxs,t‖2) + 2stγρ‖xs,t − p‖2

+2s(1 − t)γ‖xs,t − p‖2+2s max{‖γV − μF )p‖, ‖(γS − μF )p‖}‖xs,t − p‖
= [1− 2sτ + s2τ2 + 2stγρ+2s(1− t)γ]‖xs,t−p‖2 − (1− sτ)2‖xs,t − Qrxs,t‖2

+2s max{‖γV − μF )p‖, ‖(γS − μF )p‖}‖xs,t − p‖
≤ [1− 2stγ(1− ρ) + s2τ2]‖xs,t − p‖2 − (1 − sτ)2‖xs,t − Qrxs,t‖2

+2s max{‖γV − μF )p‖, ‖(γS − μF )p‖}‖xs,t − p‖
≤ ‖xs,t − p‖2 + s2τ2‖xs,t − p‖2 − (1 − sτ)2‖xs,t − Qrxs,t‖2

+2s max{‖γV − μF )p‖, ‖(γS − μF )p‖}‖xs,t − p‖,

and hence

(1− sτ)2‖xs,t − Qrxs,t‖2

≤ s2τ2‖xs,t − p‖2 + 2s max{‖γV − μF )p‖, ‖(γS − μF )p‖}‖xs,t − p‖.

This together with (3.6), implies that

(3.8) lim
s→0

‖xs,t − Qrxs,t‖ = 0 and lim
s→0

‖Qrxs,t − TλQrxs,t‖ = 0.

Now, observe that

‖xs,t − p‖2 = 〈sγ(tV xs,t + (1 − t)Sxs,t) + (I − sμF )TλQrxs,t − p, xs,t − p〉
= 〈(I − sμF )TλQrxs,t − (I − sμF )TλQrp, xs,t − p〉

+stγ〈V xs,t − V p, xs,t − p〉 + s(1 − t)γ〈Sxs,t − Sp, xs,t − p〉
+st〈(γV − μF )p, xs,t − p〉 + s(1 − t)〈(γS − μF )p, xs,t − p〉

≤ [1− sτ + stγρ + s(1− t)γ]‖xs,t − p‖2

+st〈(γV − μF )p, xs,t − p〉 + s(1 − t)〈(γS − μF )p, xs,t − p〉
≤ (1− stγ(1− ρ))‖xs,t − p‖2 + st〈(γV − μF )p, xs,t − p〉

+s(1 − t)〈(γS − μF )p, xs,t − p〉.

It turns out that

(3.9)
‖xs,t − p‖2

≤ 1
tγ(1−ρ)

〈(tγV +(1−t)γS−μF )p, xs,t−p〉, ∀p∈MEP(Θ , ϕ) ∩ Γ .
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Assume {sn} ⊂ (0, 1
2 ) is such that sn → 0 (⇔ λn → 2

L ). From (3.9), we obtain
immediately that

(3.10)
‖xsn,t − p‖2

≤ 1
tγ(1− ρ)

〈(tγV +(1−t)γS−μF )p, xsn,t−p〉, ∀p∈MEP(Θ , ϕ) ∩ Γ .

Since {xsn,t} is bounded, without loss of generality, we may assume that {xsn,t}
converges weakly to a point xt ∈ H . From (3.8), we get ‖xsn,t − Qrxsn,t‖ = 0 and
‖Qrxsn,t − TλnQrxsn,t‖ → 0. So, we get Qrxsn,t ⇀ xt. Utilizing Lemmas 2.2 and
2.4 we know that xt ∈ Fix(Qr) = MEP(Θ , ϕ). Now, observe that

‖PC(I − λn∇f)Qrxsn,t − Qrxsn,t‖
= ‖snQrxsn,t + (1 − sn)TλnQrxsn,t − Qrxsn,t‖
= (1 − sn)‖TλnQrxsn,t − Qrxsn,t‖
≤ ‖TλnQrxsn,t − Qrxsn,t‖,

where sn = 2−λnL
4 ∈ (0, 1

2 ) for each λn ∈ (0, 2
L). Hence, we have

‖PC(I − 2
L
∇f)Qrxsn,t − Qrxsn,t‖

≤ ‖PC(I − 2
L
∇f)Qrxsn,t − PC(I − λn∇f)Qrxsn,t‖

+‖PC(I − λn∇f)Qrxsn,t − Qrxsn,t‖
≤ ‖(I − 2

L
∇f)Qrxsn,t − (I − λn∇f)Qrxsn,t‖

+‖PC(I − λn∇f)Qrxsn,t − Qrxsn,t‖
≤ ‖(I − 2

L
∇f)Qrxsn,t − (I − λn∇f)Qrxsn,t‖

+‖PC(I − λn∇f)Qrxsn,t − Qrxsn,t‖
≤ (

2
L
− λn)‖∇f(Qrxsn,t)‖+ ‖TλnQrxsn,t − Qrxsn,t‖.

From the boundedness of {Qrxsn,t}, sn → 0 (⇔ λn → 2
L ) and ‖Qrxsn,t −

TλnQrxsn,t‖ → 0, we conclude that

lim
n→∞ ‖PC(I − 2

L
∇f)Qrxsn,t − Qrxsn,t‖ = 0.

Utilizing Lemma 2.4 we deduce from Qrxsn,t ⇀ xt that

xt = PC(I − 2
L
∇f)xt.

This means that xt ∈ Γ . Therefore, xt ∈ MEP(Θ , ϕ)∩ Γ . We can then substitute xt

for p in (3.10) to derive
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‖xsn,t − xt‖2 ≤ 1
tγ(1− ρ)

〈(tγV + (1− t)γS − μF )xt, xsn,t − xt〉.

Consequently, the weak convergence of {xsn,t} to xt actually implies that xsn,t → xt

strongly. This has proved the relative norm-compactness of the net {xs,t} as s → 0.
Now, we return to (3.10) and take the limit as n → ∞ to get

‖xt − p‖2 ≤ 1
tγ(1− ρ)

〈(tγV + (1− t)γS − μF )p, xt − p〉, ∀p ∈ MEP(Θ , ϕ)∩ Γ .

In particular, xt solves the HVI of finding xt ∈ MEP(Θ , ϕ) ∩ Γ such that

〈(tγV + (1 − t)γS − μF )p, xt − p〉 ≥ 0, ∀p ∈ MEP(Θ , ϕ) ∩ Γ ,

that is,

〈(μF − tγV − (1− t)γS)p, p− xt〉 ≥ 0, ∀p ∈ MEP(Θ , ϕ) ∩ Γ .

Let us show that the mapping μF − tγV − (1− t)γS is monotone. Indeed, we observe
that for each x, y ∈ H ,

〈(μF − tγV − (1− t)γS)x− (μF − tγV − (1 − t)γS)y, x− y〉
= μ〈Fx − Fy, x − y〉 − tγ〈V x − V y, x− y〉 − (1− t)γ〈Sx− Sy, x− y〉
≥ μη‖x− y‖2 − tγρ‖x− y‖2 − (1− t)γ‖x− y‖2

= [(μη − γ) + tγ(1− ρ)]‖x− y‖2.

Noticing the inequality μη ≥ τ (the argument can be seen in the sequel), we conclude
from 0 < γ ≤ τ and ρ ∈ [0, 1) that

(μη − γ) + tγ(1− ρ) ≥ (μη − τ) + tγ(1− ρ) > 0.

This shows that the mapping (μF − tγV − (1 − t)γS) is strongly monotone, and
hence, monotone. It is easy to see that the mapping (μF − tγV − (1 − t)γS) is
Lipschitz continuous. It is well known that the set MEP(Θ , ϕ)∩ Γ �= ∅ is closed and
convex. Then, by applying the well-known Minty lemma (see [22]) for the operator
(μF − tγV − (1− t)γS) and the set MEP(Θ , ϕ)∩ Γ , we conclude that xt solves the
Minty variational inequality of finding xt ∈ MEP(Θ , ϕ) ∩ Γ such that

(3.11) 〈(tγV + (1 − t)γS − μF )xt, xt − p〉 ≥ 0, ∀p ∈ MEP(Θ , ϕ) ∩ Γ .

Note that (3.11) is equivalent to the fact that

xt = PMEP(Θ,ϕ)∩Γ (I − μF + tγV + (1− t)γS)xt.



1454 Lu-Chuan Ceng and Ching-Feng Wen

That is, xt is a unique fixed point in MEP(Θ , ϕ)∩ Γ of the contraction

PMEP(Θ,ϕ)∩Γ (I − μF + tγV + (1− t)γS).

Obviously, this is sufficient to conclude that the entire net {xs,t} converges in norm to
xt as s → 0.
Next, we show that as t → 0, the net {xt} converges strongly to x∗ which is a

unique solution of the HVI (1.5).
In (3.11), we take any y ∈ Ξ to derive

(3.12) 〈(tγV + (1 − t)γS − μF )xt, xt − y〉 ≥ 0.

Note that 0 < γ ≤ τ and

μη ≥ τ ⇔ μη ≥ 1 −
√

1 − μ(2η − μκ2)

⇔
√

1 − μ(2η − μκ2) ≥ 1 − μη

⇔ 1 − 2μη + μ2κ2 ≥ 1 − 2μη + μ2η2

⇔ κ2 ≥ η2

⇔ κ ≥ η.

It is clear that

〈(μF − γS)x− (μF − γS)y, x− y〉 ≥ (μη − γ)‖x− y‖2, ∀x, y ∈ H.

Hence, it follows from 0 < γ ≤ τ ≤ μη that μF − γS is monotone. Thus, we have

(3.13) 〈γSxt − μFxt, xt − y〉 ≤ 〈γSy − μFy, xt − y〉 ≤ 0.

It follows from (3.11) and (3.12) that

(3.14) 〈(γV − μF )xt, xt − y〉 ≥ 0, ∀y ∈ Ξ .

Hence,

μη‖xt − y‖2 ≤ μ〈Fxt − Fy, xt − y〉
≤ 〈μFy − γV xt, y − xt〉
= 〈(μF − γV )y, y − xt〉 + γ〈V y − V xt, y − xt〉
≤ 〈(μF − γV )y, y − xt〉 + γρ‖y − xt‖2.

Therefore,

(3.15) ‖xt − y‖2 ≤ 1
μη − γρ

〈(μF − γV )y, y − xt〉, ∀y ∈ Ξ .

In particular,
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‖xt − y‖ ≤ 1
μη − γρ

‖μF − γV )y‖, ∀t ∈ (0, 1),

which implies that {xt} is bounded.
Next, let us show that ωw(xt) ⊂ Ξ ; namely, if {tn} is a null sequence in (0, 1)

such that xtn ⇀ x′, then x′ ∈ Ξ . To see this, we use (3.11) to get

〈(μF − γS)xt, p− xt〉 ≥ t

1 − t
〈(μF − γV )xt, p− xt〉, ∀p ∈ MEP(Θ , ϕ)∩ Γ .

However, since μF − γS is monotone,

〈(μF − γS)p, p− xt〉 ≥ 〈(μF − γS)xt, p− xt〉.

Combining the last two relations yields

(3.16) 〈(μF−γS)p, p−xt〉 ≥ t

1 − t
〈(μF−γV )xt, p−xt〉, ∀p ∈ MEP(Θ , ϕ)∩Γ .

Letting t = tn → 0 as n → ∞ in (3.16), we get

(3.17) 〈(μF − γS)p, p− x′〉 ≥ 0, ∀p ∈ MEP(Θ , ϕ) ∩ Γ .

Since μF−γS is monotone and Lipschitz continuous, andMEP(Θ , ϕ)∩Γ is nonempty,
closed and convex, by applying Minty lemma [22] on the set MEP(Θ , ϕ)∩ Γ and on
the operator μF − γS, the inequality (3.17) is equivalent to

〈(μF − γS)x′, p− x′〉 ≥ 0, ∀p ∈ MEP(Θ , ϕ)∩ Γ .

Namely, x′ is a solution of the HVI (1.5); hence x′ ∈ Ξ .
We further prove that x′ = x∗, a unique solution of the THVI (1.4). As a matter

of fact, it follows from (3.15) that for x′ ∈ Ξ

‖xtn − x′‖2 ≤ 1
μη − γρ

〈(γV − μF )x′, xtn − x′〉.

Therefore, the weak convergence to x′ of {xtn} implies that xtn → x′ in norm. Now,
we can let t = tn → 0 in (3.14) to get

〈(γV − μF )x′, x′ − y〉 ≥ 0, ∀y ∈ Ξ .

It turns out that x′ ∈ Ξ solves the THVI (1.4). By uniqueness, we have x′ = x∗. This
is sufficient to guarantee that xt → x∗ in norm, as t → 0.
Finally, put V = 0 and let {xs,t} be defined by the implicit scheme (3.2). Then

the THVI (1.4) reduces to (3.5). Moreover, the iterated limit in the norm topology

s − lim
t→0

lim
s→0

xs,t
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exists and is the unique solution x∗ ∈ Ξ of VI (3.5). In addition, it is easy to see
that for each null sequence {sn} (with sn = 2−λL

4 for each λn ∈ (0, 2
L)), there exists

another null sequence {tn} in (0, 1), such that the sequence xsn,tn → x∗ in norm as
n → ∞. This completes the proof.
In the above Theorem 3.1, put μ = 2, F = 1

2I and γ = τ = 1. Then the HVI
(1.5) reduces to the HVI of finding x∗ ∈ MEP(Θ , ϕ)∩ Γ such that

(3.18) 〈(I − S)x∗, x− x∗〉 ≥ 0, ∀x ∈ MEP(Θ , ϕ) ∩ Γ ,

In this case, THVI (1.4) reduces to the VI of finding x∗ ∈ Ξ such that

(3.19) 〈(I − V )x∗, x− x∗〉 ≥ 0, ∀x ∈ Ξ .

In terms of Theorem 3.1, for each fixed t ∈ (0, 1), the net {xs,t} converges in norm,
as s → 0 (⇔ λ → 2

L ), to a point xt ∈ MEP(Θ , ϕ) ∩ Γ . Moreover, as t → 0, the
net {xt} converges in norm to the unique solution x∗ ∈ Ξ of VI (3.19). Hence, for
each null sequence {sn} (with sn = 2−λnL

4 ∈ (0, 1
2) for each λn ∈ (0, 2

L)), there exists
another null sequence {tn} in (0, 1), such that the sequence xsn,tn → x∗ in norm as
n → ∞.
Additionally, if we take V = 0, then VI (3.19) reduces to the following VI:

find x∗ ∈ Ξ such that 〈x∗, x − x∗〉 ≥ 0 , ∀x ∈ Ξ ,

which is equivalent to
x∗ = PΞ (0).

Note that

x∗ = PΞ (0) ⇔ ‖0 − x∗‖ ≤ ‖0− y‖ (∀y ∈ Ξ ) ⇔ ‖x∗‖ = min
y∈Ξ

‖y‖.

Thus, by Theorem 3.1, the iterated limit in the norm topology

s − lim
t→0

lim
s→0

xs,t

exists and is the minimum-norm solution x∗ of VI (3.18). Moreover, for each null
sequence {sn} (with sn = 2−λnL

4 ∈ (0, 1
2 ) for each λn ∈ (0, 2

L)), there exists another
null sequence {tn} in (0, 1), such that the sequence xsn,tn → x∗ in norm as n → ∞.
Therefore, we obtain the following conclusion.

Corollary 3.1. Let Θ : C × C → R be a bifunction satisfying (A1)-(A5). Let
f : C → R be a convex function such that ∇f is an L-Lipschitzian mapping with
L > 0. Let S : H → H be a nonexpansive mapping and V : H → H be a ρ-
contraction with coefficient ρ ∈ [0, 1). Suppose that the solution set Ξ of HVI (3.18)
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is nonempty and that either (B1) or (B2) holds. For each (s, t) ∈ (0, 1
2 ) × (0, 1)

(with s = 2−λL
4 for each λ ∈ (0, 2

L)), let xs,t be defined implicitly by (3.3). Then,
for each fixed t ∈ (0, 1), the net {xs,t} converges in norm, as s → 0, to a point
xt ∈ MEP(Θ , ϕ) ∩ Γ . Moreover, as t → 0, the net {xt} converges in norm to a
unique solution x∗ ∈ Ξ of the VI (3.19). Moreover, for each null sequence {sn} (with
sn = 2−λnL

4 ∈ (0, 1
2 ) for each λn ∈ (0, 2

L)), there exists another null sequence {tn}
in (0, 1) such that the sequence xsn,tn → x∗ in norm as n → ∞.
In particular, if we take V = 0 and if xs,t is defined by the implicit scheme (3.4),

then the iterated limit in the norm topology

s − lim
t→0

lim
s→0

xs,t

exists and is the minimum-norm solution x∗ of the HVI (3.18). Furthermore, for each
null sequence {sn} (with sn = 2−λnL

4 ∈ (0, 1
2 ) for each λn ∈ (0, 2

L)), there exists
another null sequence {tn} in (0, 1) such that the sequence xsn,tn → x∗ in norm as
n → ∞.
Next, we introduce an explicit scheme for finding a unique solution of the THVI

(1.4). This scheme is indeed obtained by discretizing the implicit scheme as investigated
in the above. Recall that PC(I − λn∇f) is 2+λnL

4 -averaged for each λn ∈ (0, 2
L).

Therefore, we can write

PC(I − λn∇f) =
2 − λnL

4
I +

2 + λnL

4
Tλn = snI + (1− sn)Tλn,

where Tλn is nonexpansive and sn := sn(λn) = 2−λnL
4 ∈ (0, 1

2 ) for each λn ∈ (0, 2
L).

It is easy to see that
λn → 2

L
⇔ sn → 0.

Now, starting with an arbitrary initial guess x0 ∈ H , we define a sequence {xn}
iteratively by

(3.20) xn+1 = snγ(tnV xn + (1 − tn)Sxn) + (I − snμF )TλnQrnxn, ∀n ≥ 0,

where the functions Θ , ϕ, the mappings S, V, F and the parameters μ, γ are the same
as stated in the above, {rn} is a sequence in (0,∞) and {tn} is a sequence (0, 1).
Additionally, if we take V = 0, then (3.20) reduces to the following iterative scheme:

(3.21) xn+1 = sn(1− tn)γSxn + (I − snμF )TλnQrnxn, ∀n ≥ 0.

In particular, whenever μ = 2, F = 1
2I and γ = τ = 1, the explicit schemes (3.20)

and (3.21) reduce to the following explicit schemes, respectively,

(3.22) xn+1 = sn(tnV xn + (1 − tn)Sxn) + (1 − sn)TλnQrnxn, ∀n ≥ 0,
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and

(3.23) xn+1 = sn(1 − tn)Sxn + (1− sn)TλnQrnxn, ∀n ≥ 0.

Comparing with the convergence of the implicit scheme (3.1), the convergence of
the explicit scheme (3.20) seems much more subtle.

Theorem 3.2. Let Θ : C × C → R be a bifunction satisfying (A1)-(A5). Let
f : C → R be a convex function such that ∇f is an L-Lipschitzian mapping with
L > 0. Let S : H → H be a nonexpansive mapping, V : H → H be a ρ-contraction
with coefficient ρ ∈ [0, 1) and F : H → H be a κ-Lipschitzian and η-strongly
monotone operator with constants κ and η > 0, respectively. Let 0 < μ < 2η

κ2 and
0 < γ ≤ τ , where τ = 1 − √

1 − μ(2η − μκ2). Assume that the solution set Ξ of
HVI (1.5) is nonempty, that either (B1) or (B2) holds and that the following conditions
hold:

(i) limn→∞ tn = 0 and limn→∞ sn = 0 (⇔ λn → 2
L );

(ii) limn→∞
rn−rn−1

s2
ntn

= 0, limn→∞
sntn−sn−1tn−1

s2
ntn

= 0 and limn→∞
sn−sn−1

s2
nsn−1tn

= 0;
(iii)

∑∞
n=0 sntn = ∞ and lim infn→∞ rn > 0;

(iv) there is a constant k̄ > 0 satisfying ‖x−PC(I− 2
L∇f)x‖ ≥ k̄[d(x, MEP(Θ , ϕ)∩

Γ )] for each x∈C, where d(x, MEP(Θ , ϕ) ∩ Γ ) = infy∈MEP(Θ,ϕ)∩Γ ‖x−y‖;
(v) limn→∞ s

1/2
n
tn

= 0.
We have

(a) If {xn} is the sequence generated by the scheme (3.20) and is bounded, then
{xn} converges in norm to the point x∗ ∈ MEP(Θ , ϕ) ∩ Γ which is a unique
solution of the THVI (1.4).

(b) If {xn} is the sequence generated by the scheme (3.21) and is bounded, then
{xn} converges in norm to a unique solution x∗ of the VI of finding x∗ ∈ Ξ
such that

(3.24) 〈Fx∗, x− x∗〉 ≥ 0, ∀x ∈ Ξ .

Proof. We treat only case (a); that is, the sequence {xn} is generated by the scheme
(3.20). We divide the proof into several steps.

Step 1. limn→∞
‖xn+1−xn‖

sn
= 0.

Indeed, from (3.20), we observe that

xn+1 − xn

= sntnγ(V xn − V xn−1) + sn(1 − tn)γ(Sxn − Sxn−1)
+[(I − snμF )TλnQrnxn − (I − snμF )Tλn−1Qrn−1xn−1]
+(sntn − sn−1tn−1)γ[V xn−1 − Sxn−1]
+(sn − sn−1)(γSxn−1 − μFTλn−1Qrn−1xn−1).
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Thus, by Lemma 2.7 we obtain that

(3.25)

‖xn+1 − xn‖
≤ sntnγρ‖xn − xn−1‖ + sn(1 − tn)γ‖xn − xn−1‖

+(1 − snτ)‖TλnQrnxn − Tλn−1Qrn−1xn−1‖
+|sntn − sn−1tn−1|γ‖V xn−1 − Sxn−1‖
+|sn − sn−1|‖γSxn−1 − μFTλn−1Qrn−1xn−1‖

≤ sntnγρ‖xn − xn−1‖ + sn(1 − tn)γ‖xn − xn−1‖
+(1 − snτ)‖TλnQrnxn − Tλn−1Qrn−1xn−1‖
+M1(|sntn − sn−1tn−1|+ |sn − sn−1|),

where γ‖V xn − Sxn‖ + ‖γSxn − μFTλnQrnxn‖ ≤ M1, ∀n ≥ 0 for some M1 > 0.
Let p ∈ MEP(Θ , ϕ) ∩ Γ . Since ∇f is 1

L -ism, PC(I − λn∇f) is nonexpansive.
So, it follows that

‖PC(I − λn∇f)Qrn−1xn−1‖
≤ ‖PC(I − λn∇f)Qrn−1xn−1 − p‖ + ‖p‖
= ‖PC(I − λn∇f)Qrn−1xn−1 − PC(I − λn∇f)p‖+ ‖p‖
≤ ‖Qrn−1xn−1 − p‖ + ‖p‖
≤ ‖xn−1 − p‖ + ‖p‖.

This together with the boundedness of {xn} implies that {PC(I − λn∇f)Qrn−1xn−1}
is bounded. Also, observe that

‖Tλn Qrn−1xn−1 − Tλn−1 Qrn−1 xn−1‖
= ‖ 4PC (I−λn∇f)−(2−λnL)I

2+λnL
Qrn−1 xn−1 − 4PC (I−λn−1∇f)−(2−λn−1L)I

2+λn−1L
Qrn−1xn−1‖

≤ ‖ 4PC (I−λn∇f)
2+λnL Qrn−1 xn−1 − 4PC (I−λn−1∇f)

2+λn−1L Qrn−1 xn−1‖
+‖ 2−λn−1L

2+λn−1L Qrn−1 xn−1 − 2−λnL
2+λnL Qrn−1xn−1‖

= ‖ 4(2+λn−1 L)PC(I−λn∇f)Qrn−1 xn−1−4(2+λnL)PC(I−λn−1∇f)Qrn−1 xn−1

(2+λnL)(2+λn−1L)
‖

+
4L|λn−λn−1 |

(2+λnL)(2+λn−1L)‖Qrn−1 xn−1‖
≤ ‖ 4L(λn−1−λn)PC(I−λn∇f)Qrn−1xn−1+4(2+λnL)(PC (I−λn∇f)Qrn−1xn−1−PC(I−λn−1∇f)Qrn−1 xn−1)

(2+λnL)(2+λn−1L)
‖

+
4L|λn−λn−1 |

(2+λnL)(2+λn−1L)‖Qrn−1 xn−1‖
≤ 4L|λn−1−λn|‖PC (I−λn∇f)Qrn−1 xn−1‖

(2+λnL)(2+λn−1L)
+

4(2+λnL)‖PC (I−λn∇f)Qrn−1 xn−1−PC(I−λn−1∇f)Qrn−1 xn−1‖
(2+λnL)(2+λn−1L)

+
4L|λn−λn−1 |

(2+λnL)(2+λn−1L)‖Qrn−1 xn−1‖
≤ |λn − λn−1|[L‖PC(I − λn∇f)Qrn−1xn−1‖ + 4‖∇f(Qrn−1 xn−1)‖ + L‖Qrn−1 xn−1‖]
≤ M2|λn − λn−1|,

where L‖PC(I − λn+1∇f)Qrnxn‖ + 4‖∇f(Qrnxn)‖ + L‖Qrnxn‖ ≤ M2, ∀n ≥ 0
for some M2 > 0. This immediately implies that
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(3.26)

‖TλnQrnxn − Tλn−1Qrn−1xn−1‖
≤ ‖TλnQrnxn−TλnQrn−1xn−1‖+‖TλnQrn−1xn−1−Tλn−1Qrn−1xn−1‖
≤ ‖Qrnxn − Qrn−1xn−1‖ + M2|λn − λn−1|
= ‖Qrnxn − Qrn−1xn−1‖ + 4M2

L |sn − sn−1|.
Furthermore, for simplicity, we write un = Qrnxn for all n ≥ 0. Then we have

(3.27) Θ(un, y) + ϕ(y)− ϕ(un) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

and

(3.28) Θ(un−1, y)+ϕ(y)−ϕ(un−1)+
1

rn−1
〈y−un−1, un−1−xn−1〉 ≥ 0, ∀y ∈ C.

Putting y = un−1 in (3.27) and y = un in (3.28), respectively, we obtain that

Θ(un, un−1) + ϕ(un−1)− ϕ(un) +
1
rn

〈un−1 − un, un − xn〉 ≥ 0,

and

Θ(un−1, un) + ϕ(un) − ϕ(un−1) +
1

rn−1
〈un − un−1, un−1 − xn−1〉 ≥ 0.

By (A2), we have

〈un − un−1,
un−1 − xn−1

rn−1
− un − xn

rn
〉 ≥ 0,

and hence

〈un − un−1, un−1 − un + un − xn−1 − rn−1

rn
(un − xn)〉 ≥ 0.

Since lim infn→∞ rn > 0, we may assume, without loss of generality, that rn ≥
c, ∀n ≥ 0 for some c > 0. Thus we have

‖un − un−1‖2 ≤ 〈un − un−1, xn − xn−1 + (1− rn−1

rn
)(un − xn)〉

≤ ‖un − un−1‖{‖xn − xn−1‖ + |1 − rn−1

rn
|‖un − xn‖},

and hence

(3.29)
‖un − un−1‖ ≤ ‖xn − xn−1‖ +

1
rn

|rn − rn−1|‖un − xn‖

≤ ‖xn − xn−1‖ +
M3

c
|rn − rn−1|.
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where ‖un − xn‖ ≤ M3, ∀n ≥ 0 for some M3 > 0. Therefore, from (3.25), (3.26)
and (3.29) it follows that

‖xn+1 − xn‖
≤ sntnγρ‖xn−xn−1‖+sn(1−tn)γ‖xn−xn−1‖+(1−snτ)[‖Qrnxn−Qrn−1xn−1‖

+4M2
L |sn − sn−1|] + M1(|sntn − sn−1tn−1| + |sn − sn−1|)

≤ sntnγρ‖xn − xn−1‖ + sn(1− tn)γ‖xn − xn−1‖ + (1− snτ)[‖xn − xn−1‖
+M3

c |rn − rn−1| + 4M2
L |sn − sn−1|] + M1(|sntn − sn−1tn−1| + |sn − sn−1|)

= [sntnγρ + sn(1 − tn)γ + (1 − snτ)]‖xn − xn−1‖
+(1−snτ)[M3

c |rn−rn−1|+ 4M2
L |sn−sn−1|]+M1(|sntn−sn−1tn−1|+|sn−sn−1|)

≤ (1− sntnγ(1− ρ))‖xn − xn−1‖ + M3
c |rn − rn−1| + 4M2

L |sn − sn−1|
+M1(|sntn − sn−1tn−1| + |sn − sn−1|)

≤ (1− sntnγ(1− ρ))‖xn − xn−1‖ + M3
c |rn − rn−1| + (M1 + 4M2

L )|sn − sn−1|
+M1|sntn − sn−1tn−1|,

which hence leads to

‖xn+1−xn‖
sn

≤ (1− sntnγ(1− ρ)) ‖xn−xn−1‖
sn

+ M3
c

|rn−rn−1|
sn

+(M1 + 4M2
L ) |sn−sn−1 |

sn
+ M1

|sntn−sn−1tn−1|
sn

= (1− sntnγ(1− ρ)) ‖xn−xn−1‖
sn−1

+ (1− sntnγ(1− ρ))( ‖xn−xn−1‖
sn

− ‖xn−xn−1‖
sn−1

)

+M3
c

|rn−rn−1|
sn

+ (M1 + 4M2
L ) |sn−sn−1|

sn
+ M1

|sntn−sn−1tn−1|
sn

≤ (1− sntnγ(1− ρ)) ‖xn−xn−1‖
sn−1

+ sntn‖xn − xn−1‖ 1
sntn

| 1
sn

− 1
sn−1

|
+sntn[M3

c
|rn−rn−1|

s2
ntn

+ (M1 + 4M2
L ) |sn−sn−1|

s2
ntn

+ M1
|sntn−sn−1tn−1|

s2
ntn

].

By conditions (ii) and (iii), we can apply Lemma 2.3 to the last inequality to conclude

lim
n→∞

‖xn+1 − xn‖
sn

= 0.

Step 2. limn→∞ ‖xn − un‖ = 0, limn→∞ ‖un − Tλnun‖ = 0 and limn→∞ ‖un −
PC(I − 2

L∇f)un‖ = 0, where un := Qrnxn for all n ≥ 0.
Indeed, since

xn+1 − Tλnun = sn[γ(tnV xn + (1 − tn)Sxn)− μFTλnun],
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we have

(3.30)

‖xn − Tλnun‖
≤ ‖xn − xn+1‖ + ‖xn+1 − Tλnun‖
≤ ‖xn−xn+1‖+sn[tn‖γV xn−μFTλnun‖+(1−tn)‖γSxn−μFTλnun‖]
≤ ‖xn − xn+1‖ + sn max{‖γV xn − μFTλnun‖, ‖γSxn − μFTλnun‖}.

Therefore, from sn → 0 and ‖xn − xn+1‖ → 0 it follows that

lim
n→∞ ‖xn − Tλnun‖ = 0.

Noticing the firmly nonexpansivity of Qrn , for each p ∈ MEP(Θ , ϕ) ∩ Γ we have

‖un − p‖2 = ‖Qrnxn − Qrnp‖2

≤ 〈xn − p, un − p〉
=

1
2
(‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖2),

and hence
‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2.

Utilizing Lemmas 2.6 and 2.7 we know that

‖xn+1 − p‖2

= ‖snγ(tnV xn + (1 − tn)Sxn) + (I − snμF )Tλnun − p‖2

= ‖[(I − snμF )Tλnun − (I − snμF )Tλnp] + sntnγ(V xn − V p)
+sn(1− tn)γ(Sxn − Sp) + sntn(γV − μF )p + sn(1− tn)(γS − μF )p‖2

≤ ‖[(I − snμF )Tλnun − (I − snμF )Tλnp] + sntnγ(V xn − V p)
+sn(1− tn)γ(Sxn − Sp)‖2

+2sn[tn〈(γV − μF )p, xn+1 − p〉+ (1− tn)〈(γS − μF )p, xn+1 − p〉]
≤ [(1− snτ)‖un − p‖ + sntnγρ‖xn − p‖ + sn(1 − tn)γ‖xn − p‖]2

+2sn max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖
= [(1− snτ)‖un − p‖ + snγ(1− (1 − ρ)tn)‖xn − p‖]2

+2sn max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖
≤ [(1− snτ)‖un − p‖ + snγ‖xn − p‖]2

+2sn max{‖γV − μF )p‖, ‖γS − μF )p‖}‖xn+1 − p‖
≤ (1 − snτ)‖un − p‖2 + sn

γ2

τ ‖xn − p‖2

+2sn max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖
≤ (1 − snτ)(‖xn − p‖2 − ‖xn − un‖2) + sn

γ2

τ ‖xn − p‖2

+2sn max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖
= (1 − sn

τ2−γ2

τ )‖xn − p‖2 − (1− snτ)‖xn − un‖2
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+2sn max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖
≤ ‖xn − p‖2 − (1− snτ)‖xn − un‖2

+2sn max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖,
which hence implies that

(3.31)

(1− snτ)‖xn − un‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+2sn max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖
≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖

+2sn max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖.
Since sn → 0 and ‖xn − xn+1‖ → 0, we get

lim
n→∞ ‖xn − un‖ = 0.

Thus, from ‖xn − Tλnun‖ → 0, we also have

‖un − Tλnun‖ ≤ ‖un − xn‖ + ‖xn − Tλnun‖ → 0, as n → ∞.

That is,
lim

n→∞ ‖un − Tλnun‖ = 0.

Furthermore, utilizing the arguments similar to those in the proof of Theorem 3.1, we
can derive

lim
n→∞ ‖un − PC(I − 2

L
∇f)un‖ = 0.

Step 3. ωw(xn) ⊂ Ξ ⊂ MEP(Θ , ϕ)∩ Γ .
Indeed, since H is reflexive and {xn} is bounded, there exists a weakly convergent

subsequence of {xn} and hence ωw(xn) is nonempty. Let q ∈ ωw(xn). Then there
exists a subsequence {xni} of {xn} such that xni ⇀ q. Hence it is clear from
‖xn−un‖ → 0 that uni ⇀ q. Utilizing Lemma 2.4, from ‖un−PC(I− 2

L∇f)un‖ → 0
we obtain q = PC(I − 2

L∇f)q. This means that q ∈ Γ .
Now, let us show that q ∈ MEP(Θ , ϕ). Since un = Qrnxn, for each y ∈ C we

have
Θ(un, y) + ϕ(y)− ϕ(un) +

1
rn

〈y − un, un − xn〉 ≥ 0.

It follows from (A2) that

ϕ(y)− ϕ(un) +
1
rn

〈y − un, un − xn〉 ≥ Θ(y, un).

Replacing n by ni, we have



1464 Lu-Chuan Ceng and Ching-Feng Wen

ϕ(y)− ϕ(uni) +
1

rni

〈y − uni , uni − xni〉 ≥ Θ(y, uni).

Since uni
−xni

rni
→ 0 and uni ⇀ q, it follows from (A4) that

0 ≥ −ϕ(y) + ϕ(q) + Θ(y, q), ∀y ∈ C.

Put zt = ty + (1− t)q for all t ∈ (0, 1] and y ∈ C. Then we have zt ∈ C and

−ϕ(zt) + ϕ(q) + Θ(zt, q) ≤ 0,

which together with (A1) and (A4), implies that

0 = Θ(zt, zt) + ϕ(zt)− ϕ(zt)
≤ tΘ(zt, y) + (1− t)Θ(zt, q) + tϕ(y) + (1− t)ϕ(q)− ϕ(zt)
≤ t(Θ(zt, y) + ϕ(y)− ϕ(zt)) + (1 − t)(Θ(zt, q) + ϕ(q)− ϕ(zt))
≤ t(Θ(zt, y) + ϕ(y)− ϕ(zt)),

and hence
0 ≤ Θ(zt, y) + ϕ(y) − ϕ(zt).

From (A3), we conclude that as t → 0,

0 ≤ Θ(q, y) + ϕ(y)− ϕ(q), ∀y ∈ C.

This leads to q ∈ MEP(Θ , ϕ). So, we get q ∈ MEP(Θ , ϕ)∩Γ . Therefore, ωw(xn) ⊂
MEP(Θ , ϕ) ∩ Γ .
On the other hand, from (3.20) we observe that

(3.32)
xn − xn+1

= sntn(μF − γV )xn + sn(1− tn)(μF − γS)xn

+(1 − sn)(I − TλnQrn)xn + sn[(I − μF )xn − (I − μF )TλnQrnxn].

Set
yn =

xn − xn+1

sn(1− tn)
, ∀n ≥ 0.

It can be easily seen from (3.32) that

yn = (μF − γS)xn +
tn

1− tn
(μF − γV )xn

+
1 − sn

sn(1− tn)
(I − TλnQrn)xn +

1
1 − tn

[(I − μF )xn − (I − μF )TλnQrnxn].
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This yields that, for each p ∈ MEP(Θ , ϕ) ∩ Γ ,

(3.33)

〈yn, xn − p〉
= 〈(μF − γS)xn, xn − p〉 + tn

1−tn
〈(μF − γV )xn, xn − p〉

+ 1−sn
sn(1−tn)

〈(I − TλnQrn)xn − (I − TλnQrn)p, xn − p〉
+ 1

1−tn
〈(I − μF )xn − (I − μF )TλnQrnxn, xn − p〉

= 〈(μF − γS)p, xn − p〉+ 〈(μF − γS)xn − (μF − γS)p, xn − p〉
+ 1−sn

sn(1−tn)〈(I − TλnQrn)xn − (I − TλnQrn)p, xn − p〉
+ tn

1−tn
〈(μF − γV )xn, xn − p〉

+ 1
1−tn

〈(I − μF )xn − (I − μF )TλnQrnxn, xn − p〉.

In (3.33), the second and third terms are also nonnegative due to the monotonicity of
μF − γS and I − TλnQrn . We, therefore, deduce from (3.33) that

(3.34)
〈yn, xn − p〉 ≥ 〈(μF − γS)p, xn − p〉 + tn

1−tn
〈(μF − γV )xn, xn − p〉

+ 1
1−tn

〈(I − μF )xn − (I − μF )TλnQrnxn, xn − p〉.

Note that ‖xn − TλnQrnxn‖ → 0 (due to Step 2) implies ‖(I − μF )xn − (I −
μF )TλnQrnxn‖ → 0. Also, since ‖yn‖ → 0 by (3.31), tn → 0 and {xn} is bounded
by assumption which implies that {μF − γV )xn} is bounded, we obtain from (3.34)
that

(3.35) lim sup
n→∞

〈(μF − γS)p, xn − p〉 ≤ 0, ∀p ∈ MEP(Θ , ϕ)∩ Γ .

This suffices to guarantee that q ∈ Ξ . As a matter of fact, since xni ⇀ q ∈ ωw(xn),
we deduce from (3.35) that

〈(μF − γS)p, q− p〉 ≤ lim sup
n→∞

〈(μF − γS)p, xn − p〉 ≤ 0, ∀p ∈ MEP(Θ , ϕ)∩ Γ ,

that is,
〈(μF − γS)p, p− q〉 ≥ 0, ∀p ∈ MEP(Θ , ϕ)∩ Γ .

Since μF−γS is monotone and Lipschitz continuous, andMEP(Θ , ϕ)∩Γ is nonempty,
closed and convex, by the Minty Lemma [22] the last inequality is equivalent to the
inequality (1.5). Thus, we derive q ∈ Ξ. This shows that ωw(xn) ⊂ Ξ .

Step 4. xn → x∗ ∈ MEP(Θ , ϕ) ∩ Γ , which is a unique solution of the THVI
(1.4).
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Indeed, since the mapping μF −γV is (μη−γρ)-strongly monotone and μκ+γρ-
Lipschitz continuous, namely,

〈(μF − γV )x − (μF − γV )y, x− y〉 ≥ (μη − γρ)‖x− y‖2, ∀x, y ∈ H

and
‖(μF − γV )x− (μF − γV )y‖ ≤ (μκ + γρ)‖x− y‖, ∀x, y ∈ H,

there exists a unique solution of the VI of finding x∗ ∈ Ξ such that

〈(μF − γV )x∗, x − x∗〉 ≥ 0, ∀x ∈ Ξ .

We take a subsequence {xnj} of {xn} satisfying

lim sup
n→∞

〈(γV − μF )x∗, xn − x∗〉 = lim
j→∞

〈(γV − μF )x∗, xnj − x∗〉.

Without loss of generality, we may further assume that xnj ⇀ x̃; then x̃ ∈ Ξ as we
just proved. Since x∗ is a solution of the THVI (1.4), we get

(3.36) lim sup
n→∞

〈(γV − μF )x∗, xn − x∗〉 = 〈(γV − μF )x∗, x̃ − x∗〉 ≤ 0.

From (3.20), it follows that (noticing 0 < γ ≤ τ )

‖xn+1 − x∗‖2

= 〈(I − snμF )Tλnun − (I − snμF )Tλnx∗, xn+1 − x∗〉
+sntnγ〈V xn − V x∗, xn+1 − x∗〉
+sn(1− tn)γ〈Sxn − Sx∗, xn+1 − x∗〉 + sntn〈(γV − μF )x∗, xn+1 − x∗〉
+sn(1− tn)〈(γS − μF )x∗, xn+1 − x∗〉

≤ (1− snτ)‖un − x∗‖‖xn+1 − x∗‖ + sntnγρ‖xn − x∗‖‖xn+1 − x∗‖
+sn(1− tn)γ‖xn − x∗‖‖xn+1 − x∗‖ + sntn〈(γV − μF )x∗, xn+1 − x∗〉
+sn(1− tn)〈(γS − μF )x∗, xn+1 − x∗〉

≤ [(1− snτ) + sntnγρ + sn(1 − tn)γ]‖xn − x∗‖‖xn+1 − x∗‖
+sntn〈(γV − μF )x∗, xn+1 − x∗〉
+sn(1− tn)〈(γS − μF )x∗, xn+1 − x∗〉

≤ [1− sntnγ(1− ρ)]‖xn − x∗‖‖xn+1 − x∗‖ + sntn〈(γV − μF )x∗, xn+1 − x∗〉
+sn(1− tn)〈(γS − μF )x∗, xn+1 − x∗〉

≤ [1−sntnγ(1−ρ)] 12(‖xn−x∗‖2+‖xn+1−x∗‖2)+sntn〈(γV −μF )x∗, xn+1−x∗〉
+sn(1− tn)〈(γS − μF )x∗, xn+1 − x∗〉.

It turns out that
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(3.37)

‖xn+1 − x∗‖2

≤ 1−sntnγ(1−ρ)
1+sntnγ(1−ρ)

‖xn−x∗‖2+
2

1+sntnγ(1−ρ)
[sntn〈(γV −μF )x∗, xn+1−x∗〉

+sn(1 − tn)〈(γS − μF )x∗, xn+1 − x∗〉]
≤ [1−sntnγ(1−ρ)]‖xn−x∗‖2+

2
1+sntnγ(1−ρ)

[sntn〈(γV −μF )x∗, xn+1−x∗〉

+sn(1−tn)〈(γS−μF )x∗ , xn+1−x∗〉]

= [1−sntnγ(1−ρ)]‖xn − x∗‖2+
2sntn

1 + sntnγ(1−ρ)
[〈(γV −μF )x∗, xn+1−x∗〉

+
(1 − tn)

tn
〈(γS − μF )x∗, xn+1 − x∗〉]

= (1 − γn)‖xn − x∗‖2 + δn,

where
γn = sntnγ(1− ρ),

and

δn =
2sntn

1+sntnγ(1−ρ)
[〈(γV−μF )x∗, xn+1−x∗〉+(1−tn)

tn
〈(γS−μF )x∗, xn+1−x∗〉].

However, since x∗ ∈ Ξ , by assumption (iv) we obtain that

(3.38)

〈(γS−μF )x∗, xn+1−x∗〉
= 〈(γS−μF )x∗, xn+1−un〉 + 〈(γS−μF )x∗, un−PMEP(Θ,ϕ)∩Γun〉

+〈(γS−μF )x∗, PMEP(Θ,ϕ)∩Γun−x∗〉
≤ 〈(γS−μF )x∗, xn+1−un〉 + 〈(γS−μF )x∗, un−PMEP(Θ,ϕ)∩Γun〉
≤ ‖(γS−μF )x∗‖‖xn+1−un‖+‖(γS−μF )x∗‖d(un, MEP(Θ , ϕ)∩ Γ )

≤ ‖(γS−μF )x∗‖‖xn+1−un‖+‖(γS−μF )x∗‖ 1
k̄
‖un−PC(I− 2

L∇f)un‖
≤ ‖(γS−μF )x∗‖[‖xn+1−un‖ + 1

k̄
(‖un−PC(I−λn∇f)un‖

+‖PC(I−λn∇f)un−PC(I− 2
L∇f)un‖)]

≤ ‖(γS−μF )x∗‖[‖xn+1−un‖ + 1
k̄
(‖un−PC(I−λn∇f)un‖

+‖(I−λn∇f)un−(I− 2
L∇f)un‖)]

= ‖(γS−μF )x∗‖[‖xn+1−un‖ + 1
k̄
(‖un−PC(I−λn∇f)un‖

+( 2
L−λn)‖∇f(un)‖)]

= ‖(γS−μF )x∗‖[‖xn+1−un‖
+

1
k̄
(‖un−PC(I−λn∇f)un‖ +

4sn

L
‖∇f(un)‖)].

In addition, it is clear from (3.31) that
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(1− snτ)
‖xn − un‖2

t2n

≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖
t2n

+2
sn

t2n
max{‖(γV − μF )p‖, ‖(γS − μF )p‖}‖xn+1 − p‖.

Since sn
t2n

→ 0 and ‖xn−xn+1‖
t2n

= ‖xn−xn+1‖
sn

· sn
t2n

→ 0, we have

lim
n→∞

‖xn − un‖
tn

= 0.

Meantime, it is also clear from (3.30) that

lim
n→∞

‖xn − Tλnun‖
tn

= 0.

From (3.38) it follows that

1
tn
〈(γS − μF )x∗, xn+1 − x∗〉

≤ ‖(γS − μF )x∗‖[ ‖xn+1−un‖
tn

+ 1
k̄
( ‖un−PC(I−λn∇f)un‖

tn
+ 4sn

Ltn
‖∇f(un)‖)]

≤ ‖(γS − μF )x∗‖[ ‖xn+1−xn‖+‖xn−un‖
tn

+ 1
k̄
( (1−sn)‖un−Tλnun‖

tn
+ 4sn

Ltn
‖∇f(un)‖)]

≤ ‖(γS−μF )x∗‖[ ‖xn+1−xn‖+‖xn−un‖
tn

+ 1
k̄
( ‖un−xn‖+‖xn−Tλnun‖

tn
+ 4sn

Ltn
‖∇f(un)‖)],

which leads to

(3.39) lim sup
n→∞

1
tn
〈(γS − μF )x∗, xn+1 − x∗〉 ≤ 0.

Consequently, from (3.36), (3.39) and assumption (v) we infer that in inequality (3.37),

lim sup
n→∞

δn/γn ≤ 0 and
∞∑

n=0

γn = ∞.

Therefore, we can apply Lemma 2.3 to (3.37) to conclude that xn → x∗. The proof
of part (a) is complete. It is easy to see that part (b) now becomes a straightforward
consequence of part (a) since, if V = 0, THVI (1.4) reduces to VI (3.24). This
completes the proof.

In the above Theorem 3.2, put μ = 2, F = 1
2I and γ = τ = 1. Then the HVI (1.5)

reduces to the HVI (3.18). In this case, the THVI (1.4) reduces to the VI (3.40). In
terms of Theorem 3.2 (a), {xn} converges in norm to the point x∗ ∈ MEP(Θ , ϕ)∩ Γ
which is a unique solution of VI (3.40).
Additionally, if we take V = 0, then VI (3.24) reduces to the following VI:

find x∗ ∈ Ξ such that 〈x∗, x − x∗〉 ≥ 0 , ∀x ∈ Ξ ,
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which is equivalent to
x∗ = PΞ (0).

Note that

x∗ = PΞ (0) ⇔ ‖0 − x∗‖ ≤ ‖0− y‖ (∀y ∈ Ξ ) ⇔ ‖x∗‖ = min
y∈Ξ

‖y‖.

Thus, by Theorem 3.2 (b), {xn} converges in norm to the minimum-norm solution of
the HVI (3.18). Therefore, we get the following conclusion.

Corollary 3.2. Let Θ : C × C → R be a bifunction satisfying (A1)-(A5). Let
f : C → R be a convex function such that ∇f is an L-Lipschitzian mapping with
L > 0. Let S : H → H be a nonexpansive mapping and V : H → H be a ρ-
contraction with coefficient ρ ∈ [0, 1). Assume that the solution set Ξ of HVI (3.18)
is nonempty, that either (B1) or (B2) holds and that the following conditions hold:

(i) limn→∞ tn = 0 and limn→∞ sn = 0 (⇔ λn → 2
L );

(ii) limn→∞
rn−rn−1

s2
ntn

= 0, limn→∞
sntn−sn−1tn−1

s2
ntn

= 0 and limn→∞
sn−sn−1

s2
nsn−1tn

= 0;

(iii)
∑∞

n=0 sntn = ∞ and lim infn→∞ rn > 0;
(iv) there is a constant k̄ > 0 satisfying ‖x−PC(I− 2

L∇f)x‖ ≥ k̄[d(x, MEP(Θ , ϕ)∩
Γ )] for each x ∈ C, where d(x, MEP(Θ , ϕ)∩ Γ )=infy∈MEP(Θ,ϕ)∩Γ ‖x−y‖;

(v) limn→∞ s
1/2
n
tn

= 0. We have
(a) If {xn} is the sequence generated by the scheme (3.22) and is bounded, then

{xn} converges in norm to the point x∗ ∈ MEP(Θ , ϕ) ∩ Γ which is a unique
solution of the VI of finding x∗ ∈ Ξ such that

(3.40) 〈(I − V )x∗, x− x∗〉 ≥ 0, ∀x ∈ Ξ .

(b) If {xn} is the sequence generated by the scheme (3.23) and is bounded, then
{xn} converges in norm to a minimum-norm of the HVI (3.18).

Remark 3.1. As an example, we consider the following sequences:
(i) {sn} and {tn} are essentially chosen the same as in [24], that is,

sn =
1

(n + 1)s
and tn =

1
(n + 1)t

.

(ii) {rn} is chosen as
rn =

1
(n + 1)s

+
1
2
.

Conditions (i)-(iii) of Theorem 3.2 are satisfied provided 0 < s, t < 1 and 2s + t ≤ 1.
Also, condition (v) is satisfied provided s/t > 2.
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4. CONCLUDING REMARKS

We consider a variational inequality with a variational inequality constraint over
the intersection of the solution set of a mixed equilibrium problem (MEP) and the
solution set of a minimization problem (MP) for a convex and continuously Fréchet
differential functional, called a triple hierarchical variational inequality (THVI) over the
common solution set of minimization and equilibrium problems. It is worth pointing out
that the class of triple hierarchical variational inequalities over the fixed point set of a
nonexpansive mapping has been introduced and studied in the setting of Hilbert spaces;
see Ceng, Ansari and Yao [1]. In [1], the authors combined the regularization method,
the hybrid steepest-descent method, and the projection method to propose an implicit
scheme that generates a net in an implicit way, and derived its strong convergence to
a unique solution of the THVI over the fixed point set of a nonexpansive mapping.
Meantime, the authors also proposed an explicit scheme that generates a sequence via
an iterative algorithm and proved that the sequence converges strongly to the unique
solution of the THVI over the fixed point set of a nonexpansive mapping. In this paper,
the THVI over the fixed point set of a nonexpansive mapping in [1] is extended to
develop our triple hierarchical variational inequality (THVI) over the common solution
set of minimization and equilibrium problems. Combining the hybrid steepest-descent
method, the viscosity approximation method and the averaged mapping approach to the
gradient-projection algorithm, we propose two iterative schemes: implicit and explicit
ones, to compute the approximate solutions of the THVI over the common solution set
of minimization and equilibrium problems. The convergence analysis of the proposed
schemes is also studied. That is, it is proven not only that the net generated by the
proposed implicit scheme converges strongly to the unique solution of the THVI over
the common solution set of minimization and equilibrium problems but also that the
sequence generated by the proposed explicit scheme converges strongly to the unique
solution of the THVI over the common solution set of minimization and equilibrium
problems. The argument techniques in our Theorems 3.1 and 3.2 are very different
from the argument ones in [23, Theorems 3.1 and 3.2] because we use the properties
of resolvent operator of Θ and ϕ and the averaged mapping approach to the gradient-
projection algorithm.
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