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APPROXIMATE CONTROLLABILITY OF FRACTIONAL ORDER
NEUTRAL STOCHASTIC INTEGRO-DIFFERENTIAL SYSTEM WITH

NONLOCAL CONDITIONS AND INFINITE DELAY

P. Muthukumar* and C. Rajivganthi

Abstract. This paper deals with the approximate controllability of fractional
order neutral stochastic integro-differential system with nonlocal conditions and
infinite delay in Hilbert spaces under the assumptions that the corresponding
linear system is approximately controllable. The control function for this system
is suitably constructed by using the infinite dimensional controllability operator.
With this control function, the sufficient conditions for approximate controllability
of the proposed probelm in Hilbert space is established. Further, the results are
obtained by using fractional calculus, stochastic analysis techniques, Sadovskii
fixed point theorem and similar to the classical linear growth condition and the
Lipschitz condition. Finally an example is provided to illustrate the application
of the obtained results.

1. INTRODUCTION

Fractional order differential equations have gained considerable importance due to
their application in various sciences, such as physics, mechanics, chemistry, engineer-
ing, etc, [10, 12]. Fractional order differential equations also serve as an excellent tool
for the description of hereditary properties of various materials and processes. In recent
years, there has been a significant development in ordinary and partial differential equa-
tions involving fractional derivatives (see [26] and references therein). There has been
a great deal of interest in the solutions of fractional differential equations in analytical
and numerical senses. Metzler et al. [18] have discussed in detail about the recent
developments in the description of anomalous transport and the random walk’s guide
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to anomalous diffusion using the fractional dynamics approach. Lakshmikantham [13]
initiated the basic theory for fractional functional differential equations. Benchohra et
al. [4] consider the IVP for a particular class of fractional neutral functional differential
equations with infinite delay. The theory of fractional differential equations has been
extensively studied by many authors [39, 40]. One of the basic qualitative behaviours
of a dynamical system is controllability. The controllability problem has been discussed
for fractional dynamical systems in [2, 37]. Tai [36] studied the exact controllability of
fractional impulsive neutral integro differential systems with a nonlocal Cauchy condi-
tion in Banach spaces. However, in order to establish the results, the assumption made
in [36] were that the semigroup associated with linear part is compact and the control-
lability operator is also compact, hence the induced inverse does not exist in the infinite
dimensional state space. Thus, the concept of exact controllability is too strong and
the approximate controllability is more appropriate for these control systems. Sakthivel
et al. [30] proved the approximate controllability by assuming that the C0-semigroup
is compact and the nonlinear function is continuous and uniformly bounded. Recently,
Sukavanam et al. [35] have proved some sufficient conditions for the approximate
controllability of a fractional order system in which the nonlinear term depends on
both state and control variables. Yan [38] proved approximate controllability of partial
neutral functional differential systems of fractional order with state-dependent delay by
using the Krasnoselskii-Schaefer type fixed point theorem with the fractional power of
operators.
The deterministic models often fluctuate due to noise, which is random or at least

appears to be so. Therefore, the study of stochastic problems are more applicable in
dynamical system theory. Controllability plays an important role both in deterministic
and stochastic system theory. Only few authors have been studied the extensions of
deterministic controllability concepts to stochastic control systems. Sakthivel et al. [31]
studied existence of pseudo almost automorphic mild solutions to stochastic fractional
differential equations by using stochastic analysis theory and fixed point strategy. El-
Borai et al. [9] studied semigroup and some fractional stochastic integral equations.
Recently Sakthivel et al. [29, 32] established a set of sufficient conditions for obtaining
the approximate controllability of fractional stochastic differential systems.
On the other hand, Byszewski et al. [5] introduced nonlocal initial conditions into

the initial value problems and argued that the corresponding models more accurately
describe the phenomena since more information was taken into account at the onset
of the experiment, thereby reducing the ill effects incurred by a single (possibly er-
roneous) initial measurement. Mophou et al. [19] studied existence of mild solution
for some fractional differential equations with nonlocal condition. Chang et al. [6]
investigate the fractional order integrodifferential equations with nonlocal conditions in
the Riemann-Liouville fractional derivative sense. Zhang et al. [39] studied the exis-
tence and uniqueness of mild solutions for impulsive fractional equations with nonlocal
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conditions and infinite delay. Lin et al. [14] proved the existence results for impulsive
neutral stochastic functional integro-differential inclusions with nonlocal initial condi-
tions. Some authors have been studied the existence and controllability of stochastic
differential equations with nonlocal conditions (see [3, 22]).
Motivated by the above literature, the aim of the proposed work is to establish suffi-

cient conditions for the approximate controllability of fractional order neutral stochastic
integro-differential system with nonlocal conditions and infinite delay of the form

cDα
t [x(t)− h(t, xt)] = A[x(t) − h(t, xt)] +Bu(t) + f(t, xt)

+
∫ t

−∞
g(t, s, xs)dW (s) t ∈ J = [0, b],(1)

x(0) + μ(x) = x0 = φ, φ ∈ Cv,

where 0 < α < 1; cDα
t denotes the Caputo fractional derivative operator of order α.

Here, x(·) takes value in the Hilbert space H with inner product 〈·, ·〉 and ‖ · ‖. The
operator A generates a strongly continuous semigroup of bounded linear operators T (t)
in H (see [24]). The control function u(·) is takes the values in LF

2 (J, U), a Banach
space of admissible control functions, for a separable Hilbert space U. B is a bounded
linear operator from U into H . Let K be another separable Hilbert space with inner
product 〈·, ·〉K and the norm ‖·‖K. Suppose {W (t)}t≥0 is a givenK valued Brownian
motion or Wiener process with a finite trace nuclear covariance operator Q ≥ 0. We
are also employing the same notation ‖ · ‖ for the norm of L(K,H), where L(K,H)
denotes the space of all bounded linear operators from K into H , simply L(H) if
K = H . The histories xt : (−∞, 0] → Cv defined by xt = {x(t+ θ), θ ∈ (−∞, 0]}
belong to the phase space Cv which is defined in Section 2. h : J × Cv → H ,
f : J × Cv → H and g : J × J1 × Cv → LQ(K,H), are appropriate functions, where
J1 = (−∞, b] and LQ(K,H) denotes the space of all Q- Hilbert Schmidt operators
from K into H . Cui et al. [7] proved the existence result for fractional neutral
stochastic integro-differential equations with infinite delay by using the Sadovskii’s
fixed point theorem. Under this assumptions, let g be a strongly measurable mapping
such that

∫ t
−∞ ‖g(t, s, xs)‖2

Qds<∞. μ : C(J,H)→H is bounded and the initial data
x0 is an F0- adapted H- valued random variable independent of Wiener process W .
To the best of our knowledge, there is no work reported on the approximate control-

lability of fractional order neutral stochastic integro-differential system with nonlocal
conditions and infinite delay in Hilbert spaces. The paper is organized as follows:
Section 2 contains preliminaries such as definitions of fractional calculus and lemmas.
In section 3 we discuss the main result of this paper. In section 4. an example is given
to illustrate our results.

2. PRELIMINARIES

For more details of this section, the reader may refer to [1, 8, 20, 23, 25, 27, 34]
and the references therein. Throughout the paper (H, ‖ · ‖) and (K, ‖ · ‖K) denote real
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separable Hilbert spaces. Let (Ω, F, P ) be a complete probability space equipped with
a normal filtration {Ft, t ∈ J} satisfying the usual conditions(i.e., right continuous
and F0 containing all P - null sets of F). An H-valued random variable is an F−
measurable function x(t) : Ω → H , and the collection of random variables S =
{x(t, ω) : Ω → H |t∈J} is called a stochastic process. Generally, we just write x(t)
instead of x(t, ω) and x(t) : J → H in the space of S. Let {ζi}∞i=1 be a complete
orthonormal basis of K. Suppose that {W (t); t ≥ 0} is a K- valued Wiener process
with finite trace nuclear covariance operator Q ≥ 0, denote Tr(Q) =

∑∞
i=1 λi < ∞,

which satisfies Qζi = λiζi. So, actually, W (t) =
∑∞

i=1

√
λiβi(t)ζi, where {βi(t)}∞i=1

are mutually independent one-dimensional standard Wiener processes. We assume that
Ft = σ{W (s) : 0 ≤ s ≤ t} is the σ- algebra generated by W and Fb = F. Let
χ ∈ L(K,H) and define

‖χ‖2
Q = Tr(χQχ∗) =

∞∑
i=1

‖
√
λiχζi‖2.

If ‖χ‖Q < ∞, then χ is called a Q-Hilbert Schmidt operator. Let LQ(K,H)
denote the space of all Q-Hilbert Schmidt operators χ : K → H . The completion
LQ(K,H) of L(K,H) with respect to the topology induces by the norm ‖ · ‖Q where
‖χ‖2

Q = 〈χ, χ〉 is a Hilbert space with the above norm topology. The collection
of all strongly measurable, square integrable H valued random variables, denoted by
L2(Ω, F, P ;H) ≡ L2(Ω;H), is a Banach space equipped with norm ‖x(·)‖L2 =
(E‖x(·;ω)‖2

H)1/2, where the expectation, E is defined by E(h1) =
∫
Ω h1(ω)dP . Let

J1 = (−∞, b] and C(J1, L2(Ω;H)) be the Banach space of all continuous maps from
J1 into L2(Ω;H) satisfying the condition supt∈J1

E‖x(t)‖2 <∞.
Now, we present the abstract phase space Cv. Assume that v : (−∞, 0] → (0,+∞) is a
continuous function satisfying l =

∫ 0
−∞ v(t)dt < +∞. The Banach space

(
Cv , ‖ · ‖Cv

)
induced by the function v is defined as follows

Cv =

⎧⎪⎪⎨⎪⎪⎩
ϕ : (−∞, 0] → H, for any a > 0, E(|ϕ(θ)|2)1/2

is a boundedand measurable function

on [−a, 0] and
∫ 0

−∞
v(s)sups≤θ≤0E(|ϕ(θ)|2)1/2ds < +∞}.

.

If Cv is endowed with the norm ‖ϕ‖Cv =
∫ 0
−∞ v(s)sups≤θ≤0E(|ϕ(θ)|2)1/2ds, ϕ ∈

Cv. Denote by C((−∞, b], H) the space of all continuousH- valued stochastic process
{ξ(t), t ∈ (−∞, b]}. Let Cb = {x; x ∈ C((−∞, b], H), x0 = φ ∈ Cv}.
Set ‖ · ‖b be a seminorm defined by

‖x‖b = ‖x0‖Cv + sup
s∈[0,t]

(
E|x(s)|2)1/2

, x ∈ Cb.
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In addition to the familiar Young, Holder and Minkowski inequalities, the inequality
of the form (

∑n
i=1 ai)m ≤ nm−1

∑n
i=1 a

m
i , where ai is a nonnegative constants (i =

1, 2, . . . , n) and m, n ∈ N, is helpful in establishing various estimates.

Definition 2.1. The fractional integral of order α with the lower limit 0 for a
function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)
(t− s)1−α

ds, t > 0, α > 0,

provided the right hand side is pointwise defined on [0,∞), where Γ(·) is the gamma
function.

Definition 2.2. The Caputo derivative of order α with the lower limit 0 for a
function f can be written as

cDαf(t) =
1

Γ(n − α)

∫ t

0

fn(s)
(t− s)α+1−n

ds = In−αfn(t), t > 0, 0 ≤ n−1 < α < n.

The Caputo derivative of a constant equal to zero. If f is an abstract function
with values in H , then the integrals which appear in the above definitions are taken in
Bochner’s sense (see [17]).

Definition 2.3. [7, 39] An H- valued stochastic process {x(t), t ∈ (−∞, b]} is
a mild solution of the system (1) if x(0) + μ(x) = x0 = φ ∈ Cv, and for each
u ∈ LF

2 (J, U) the process x satisfies the following integral equation

(2)

x(t) = T̂α(t)[φ(0)− μ(x)− h(0, φ)] + h(t, xt)

+
∫ t

0
(t− s)α−1Tα(t− s)Bu(s)ds +

∫ t

0
(t− s)α−1

× Tα(t− s)f(s, xs)ds

+
∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
g(s, τ, xτ)dW (τ)

]
ds,

Where T̂α(t)x =
∫ ∞
0 ηα(θ)T (tαθ)xdθ, Tα(t)x = α

∫ ∞
0 θηα(θ)T (tαθ)xdθ, ηα(θ) =

1
αθ

−1− 1
αwα(θ−

1
α ) ≥ 0, wα(θ) = 1

π

∑∞
n=1(−1)n−1θ−αn−1 Γ(nα+1)

n! sin(nπα), θ ∈
(0,∞), ηα is a probability density function defined on (0,∞), that is ηα(θ) ≥ 0,
θ ∈ (0,∞) and

∫ ∞
0 ηα(θ)dθ = 1.

Lemma 2.4. (see [40]). The operators T̂α(t) and Tα(t) have the following prop-
erties:

(a) For any fixed t ≥ 0, the operator T̂α(t) and Tα(t) are linear and bounded
operators, i.e., for any x ∈ H , ‖T̂α(t)x‖ ≤M‖x‖ and ‖Tα(t)x‖ ≤ Mα

Γ(1+α)‖x‖.
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(b) {T̂α(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous.
(c) For every t > 0, T̂α(t) and Tα(t) are also compact operators.

It is convenient to introduce the relevant operators and the basic controllability
condition

(1) The operator Lb
0 ∈ L(LF

2 (J,H), L2(Ω, Fb, H)) is defined by

Lb
0u =

∫ b

0
(b− s)α−1Tα(b− s)Bu(s)ds,

clearly the adjoint (Lb
0)

∗ : L2(Ω, Fb, H) → LF
2 (J,H) is defined by

[(Lb
0)

∗z](t) = B∗T ∗
α(b− t)E{z|Ft}.

(2) The controllability operator Πb
0 associated with the linear stochastic system of

(1) is defined by

Πb
0{·} = Lb

0(L
b
0)

∗{·} =
∫ b

0
(b− s)2(α−1)Tα(b− s)BB∗T ∗

α(b− s)E{·|Fs}ds

which belongs to L(L2(Fb, H), L2(Fb, H)) and the controllability operator ψb
t ∈

L(H,H) is

ψb
t =

∫ b

t
(b− s)2(α−1)Tα(b− s)BB∗T ∗

α(b− s)ds, 0 ≤ s ≤ t.

Let x(t; φ, u) denotes state value of the system (1) at time t corresponding to the
control u ∈ LF

2 (J, U). In particular, the state of system (1) at t = b, x(b; φ, u) is called
the terminal state with control u. R(b; φ, u) = {x(b; φ, u), u ∈ LF

2 (J, U)} is called
the reachable set of the system (1).

Definition 2.5. The system (1) is approximately controllable on J if R(b; φ, u) =
L2(Ω, F, H), where R(b; φ, u) is the closure of the reachable set.

Lemma 2.6. For any xb ∈ L2(Ω, F, P ;H) there exists γ(s) ∈ LF
2 (Ω, L2(J;LQ(K,H)))

such that xb = Exb +
∫ b
0 γ(s)dW (s).

We define the control function in the following form

(3)

uλ(t, x)

= B∗(b− t)α−1T ∗
α(b− t)

[
(λI + ψb

0)
−1(

Exb − T̂α(b)(φ(0)− μ(x) − h(0, φ))− h(b, xb)
)]

−B∗(b−t)α−1T ∗
α(b−t)

∫ t

0
(λI+ψb

s)
−1(b−s)α−1Tα(b−s)f(s, xs)ds
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−B∗(b− t)α−1T ∗
α(b− t)

∫ t

0

(λI + ψb
s)

−1(b− s)α−1Tα(b− s)[ ∫ s

−∞
g(s, τ, xτ)dW (τ)

]
ds

+B∗(b− t)α−1T ∗
α(b− t)

∫ t

0

(λI + ψb
s)

−1γ(s)dW (s).

Lemma 2.7. Assume that x ∈ Cb, then for all t ∈ J , xt ∈ Cv . Moreover,

l
(
E|x(t)|2)1/2 ≤ ‖xt‖Cv ≤ l sup

s∈[0,t]

(
E|x(s)|2)1/2 + ‖x0‖Cv .

To prove our main results, we list the following basic assumptions of this paper.

(H1) The function h, f : J×Cv → H are continuous, and there exist positive constants
Mh, Mf such that

E‖h(t, x)− h(t, y)‖2
H ≤ Mh‖x− y‖2

Cv
,

E‖h(t, x)‖2
H ≤ Mh(1 + ‖x‖2

Cv
),

E‖f(t, x)− f(t, y)‖2
H ≤ Mf‖x− y‖2

Cv
,

E‖f(t, x)‖2
H ≤ Mf (1 + ‖x‖2

Cv
), for every x, y ∈ Cv, t ∈ J.

(H2) μ is continuous and there exists some positive constants Mμ such that

E‖μ(x)− μ(y)‖2
H ≤ Mμ‖x− y‖2

Cv
,

E‖μ(x)‖2
H ≤ Mμ(1 + ‖x‖2

Cv
), for every x, y ∈ Cv.

(H3) For each ϕ ∈ Cv, k(t) = lima→∞
∫ 0
−a g(t, s, ϕ)dW (s) exists and is continuous.

Further, there exists a positive constant Mk such that E‖k(t)‖2
H ≤Mk.

(H4) The function g : J × J1 × Cv → LQ(K,H) satisfies the following

(i) for each x ∈ Cv , g(·, ·, x) : J × J → LQ(K,H) is strongly measurable,
and for each (t, s) ∈ J × J , g(t, s, ·) : Cv → LQ(K,H) is continuous and
there exists a constant Lg > 0 such that∫ t

0

E‖g(t, s, x)− g(t, s, y)‖2
Qds ≤ Lg‖x− y‖2

Cv
, for every x, y ∈ Cv.

(ii) there is a positive integrable function m ∈ L1([0, b]) and a continuous non-
decreasing function Mg : [0,∞) → (0,∞) such that for every (t, s, x) ∈
J × J × Cv, we have∫ t

0
E‖g(t, s, x)‖2

Qds ≤ m(t)Mg(‖x‖2
Cv

), lim
r→∞ inf

Mg(r)
r

ds=Δ<∞.
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(H5) Let R(λ, ψb
t) = (λI + ψb

t )
−1 for λ > 0. For each 0 ≤ t ≤ b, the operator

λ(λI +ψb
t)

−1 → 0 in the strong operator topology as λ → 0+. Observe that the
linear fractional deterministic control system

(4)
cDα

t x(t) = Ax(t) +Bu(t), t ∈ [0, b],

x(0) = x0,

corresponding to equation (1) is approximately controllable on [t, b] iff the op-
erator λ(λI + ψb

t)−1 → 0 strongly as λ → 0+. The approximate controllability
for linear fractional deterministic control system (4) is a natural generalization
of approximate controllability of linear first order control system (Theorem 2 in
[15, 16]).

Theorem 2.8. (see [28]). Assume that Φ is a condensing operator on a Ba-
nach space H. i.e., Φ is continuous and takes bounded sets into bounded sets, and
α(Φ(B)) ≤ α(B) for every bounded set of B of H with α(B) > 0. If Φ(D) ⊂ D for a
convex, closed and bounded set of D of H, then Φ has a fixed point in D (where α(·)
denotes the Kuratowski Measure of non compactness).

3. APPROXIMATE CONTROLLABILITY

Theorem 3.1. Assume that the hypotheses (H1)-(H4) hold then for each 0 < λ ≤ 1,
the operator D has a fixed point in Cb provided that

20M2Mμl
2 + 20Mhl

2 + 100
{ Mα

Γ(1 + α)

}2N1b

λ2(
M2Mμl

2 +Mhl
2 +

{ Mα

Γ(1 + α)

}2 b2α

α2
Mf l

2 + 2
{ Mα

Γ(1 + α)

}2

b2α

α2
l2Tr(Q)Δ sup

t∈J
m(s)

)
+ 20

{ Mα

Γ(1 + α)

}2 b2α

α2
Mf l

2

+40
{ Mα

Γ(1 + α)

}2 b2α

α2
l2Tr(Q)Δ sup

t∈J
m(s) < 1

and (
(M2Mμ +Mh)

(
3 +

12bN1

λ2

{ Mα

Γ(1 + α)

}2)
+

12N1

λ2

{ Mα

Γ(1 + α)

}4 b2α+1

α2
(Mf + 2Tr(Q)Lg)

)
< 1.

Proof. Define the mapping D : Cb → Cb as
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(Dx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (−∞, 0]

T̂α(t)[φ(0)− μ(x) − h(0, φ)] + h(t, xt)

+
∫ t

0

(t− s)α−1Tα(t− s)Bu(s)ds

+
∫ t

0

(t− s)α−1Tα(t− s)f(s, xs)ds

+
∫ t

0

(t− s)α−1Tα(t− s)[
∫ s

−∞
g(s, τ, xτ)dW (τ)]ds, t ∈ J.

.

Now, we are able to show that D has a fixed point in the space Cb, which is the mild
solution for the system (1). Let x(t) = z(t) + ρ̂(t), −∞ < t ≤ b, where ρ̂(t) is
defined by

ρ̂(t) =

{
φ(t), t ∈ (−∞, 0],

T̂α(t)φ(0), t ∈ J.
.

It is evident that z satisfies z0 = 0, t ∈ (−∞, 0] and

z(t) = T̂α(t)
[
− μ(z + ρ̂) − h(0, φ)

]
+ h(t, zt + ρ̂t)

+
∫ t

0
(t− s)α−1Tα(t− s)Bu(s)ds +

∫ t

0
(t− s)α−1

×Tα(t− s)f(s, zs + ρ̂s)ds

+
∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
g(s, τ, zτ + ρ̂τ )dW (τ)

]
ds.

Define the Banach space
(C0

b , ‖ · ‖b

)
induced by Cb, C0

b = {z ∈ Cb, z0 = 0 ∈ Cv}
with norm

‖z‖b = ‖z0‖Cv + sup
s∈[0,b]

(
E|z(s)|2)1/2 = sup

s∈[0,b]

(
E|z(s)|2)1/2

.

Set Bq = {z ∈ C0
b , ‖z‖2

b ≤ q} for some q > 0. Then Bq, for each q, is a bounded,
closed convex set in C0

b . For z ∈ Bq , by Lemma 2.7, we have

‖zt + ρ̂t‖2
Cv

≤ 2
(‖zt‖2

Cv
+ ‖ρ̂t‖2

Cv

)
,

≤ 4
(
l2 sup

s∈[0,t]
E‖z(s)‖2 + ‖z0‖2

Cv
+ l2 sup

s∈[0,t]
E‖ρ̂(s)‖2 + ‖ρ̂0‖2

Cv

)
,

≤ 4l2(q +M2E‖φ(0)‖2
H) + 4‖φ‖2

Cv
.

For each positive number q, Bq is clearly a bounded closed convex set in C0
b . We

claim that there exists a positive number q such that D(Bq) ⊂ Bq . If this is not
true, then for each positive integer q, there exist zq ∈ Bq and t ∈ (−∞, b] such that
E‖D(zq)(t)‖2

H > q
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q ≤ E‖T̂α(t)
[
− μ(zq+ρ̂) − h(0, φ)

]
+h(t, zq

t +ρ̂t)

+
∫ t

0

(t− s)α−1Tα(t − s)B
{
B∗(b− s)α−1

×T ∗
α(b− s)

[
(λI+ψb

0)
−1(Exb+T̂α(b)[μ(zq+ρ̂)+h(0, φ)] − h(b, zq

b +ρ̂b))

+
∫ t

0

(λI+ψb
s)

−1γ(s)dW (s)
]
− B∗(b − s)α−1T ∗

α(b− s)∫ t

0

(λI+ψb
s)

−1(b− s)α−1Tα(b− s)

×f(s, zq
s+ρ̂s)ds−B∗(b−s)α−1T ∗

α(b−s)
∫ t

0

(λI+ψb
s)

−1(b−s)α−1Tα(b−s)

×[
∫ s

−∞
g(s, τ, zq

τ +ρ̂τ )dW (s)]ds
}
ds+

∫ t

0

(t− s)α−1Tα(t − s)f(s, zq
s +ρ̂s)ds

+
∫ t

0

(t− s)α−1Tα(t − s)[
∫ s

−∞
g(s, τ, zq

τ +ρ̂τ )dW (τ )]ds‖2
H ,

≤ 5M2Mμ(1+‖zq +ρ̂‖2
Cv

)+5M2Mh(1+‖φ‖2
Cv

)+5Mh(1+‖zq
t +ρ̂t‖2

Cv
)+25

{ Mα

Γ(1+α)

}2

×N1b

λ2
(‖xb‖2+M2Mμ(1+‖zq+ρ̂‖2

Cv
)+M2Mh(1+‖φ‖2

Cv
)+Mh(1+‖zq

t +ρ̂t‖2
Cv

))

+25
{ Mα

Γ(1+α)

}4N1

λ2

bα+1

α

∫ t

0

(b− s)α−1E‖f(s, zq
s +φs)‖2

Hds+25
{ Mα

Γ(1+α)

}4N1

λ2

bα+1

α

×
∫ t

0

(b− s)α−1E‖
∫ s

−∞
g(s, τ, zq

τ +φτ )dW (τ )‖2
Qds+5

{ Mα

Γ(1+α)

}2 bα

α

∫ t

0

(t − s)α−1

×E‖f(s, zq
s +φs)‖2

Hds+5
{ Mα

Γ(1+α)

}2 bα

α

∫ t

0

(t − s)α−1

×E‖
∫ s

−∞
g(s, τ, zq

τ +φτ )dW (τ )‖2
Qds,

≤ 5M2Mμ(1+4l2(q+M2E‖φ(0)‖2)+4‖φ‖2
Cv

)+5M2Mh(1+‖φ‖2
Cv

)+5Mh(1+4l2(q

+M2E‖φ(0)‖2)+4‖φ‖2
Cv

)+25
{ Mα

Γ(1+α)

}2N1b

λ2

[
‖xb‖2+M2Mμ(1+4l2(q+M2E‖φ(0)‖2)

+4‖φ‖2
Cv

)+M2Mh(1+‖φ‖2
Cv

)+Mh(1+4l2(q+M2E‖φ(0)‖2)+4‖φ‖2
Cv

)+
{ Mα

Γ(1+α)

}2

×b
2α

α2
Mf(1+4l2(q+M2E‖φ(0)‖2)+4‖φ‖2

Cv
)+

{ Mα

Γ(1+α)

}2 b2α

α2
{2Mk+2Tr(Q)Mg

×(4l2(q+M2E‖φ(0)‖2)+4‖φ‖2
Cv

) sup
s∈J

m(s)}
]

+5
{ Mα

Γ(1+α)

}2 b2α

α2
Mf (1+4l2(q+M2E‖φ(0)‖2)
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+4‖φ‖2
Cv

)+5
{ Mα

Γ(1+α)

}2 b2α

α2
{2Mk+2Tr(Q)Mg(4l2(q+M2E‖φ(0)‖2)

+4‖φ‖2
Cv

) sup
s∈J

m(s)},

dividing on both sides by q and taking q → ∞, we get

20M2Mμl
2+20Mhl

2+100
{ Mα

Γ(1+α)

}2N1b

λ2

(
M2Mμl

2+Mhl
2

+
{ Mα

Γ(1+α)

}2 b2α

α2
Mf l

2+2
{ Mα

Γ(1+α)

}2

b2α

α2
l2Tr(Q)Δ sup

t∈J
m(s)

)
+20

{ Mα

Γ(1+α)

}2 b2α

α2
Mf l

2

+40
{ Mα

Γ(1+α)

}2 b2α

α2
l2Tr(Q)Δ sup

t∈J
m(s) ≥ 1,

where N1 = ‖(t − s)2(α−1)Tα(t − s)BB∗T ∗
α(t − s)‖2. This is contradiction to our

assumption. Hence, for the some positive integer q, D(Bq) ⊂ Bq.
Next we show that the operator D = D1+D2 is condensing, the operators D1 and

D2 are defined on Bq by, respectively

(D1z)(t) = T̂α(t)
[
− μ(z+ρ̂) − h(0, φ)

]
+h(t, zt+ρ̂t)

+
∫ t

0
(t− s)α−1Tα(t− s)Bu(s)ds,

(D2z)(t) =
∫ t

0
(t− s)α−1Tα(t− s)f(s, zs+ρ̂s)ds+

∫ t

0
(t− s)α−1Tα(t− s)

×
[ ∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)

]
ds.

In order to use Theorem 2.8, we will verify that D1 is a contraction while D2 is
completely continuous. For better readability, we break the proof into a sequence of
steps.

Step 1. D1 is a contraction on Bq .
Let t ∈ J and z1, z2 ∈ Bq , we have

E‖(D1z1)(t)− (D1z2)(t)‖2
H

≤ 3E‖T̂α(t)(μ(z1+ρ̂) − μ(z2+ρ̂))‖2
H+3E‖h(t, z1,t+ρ̂t) − h(t, z2,t+ρ̂t)‖2

H

+3E‖
∫ t

0
(t− s)α−1Tα(t− s)B

{
B∗(b− s)α−1T ∗

α(b− s)(λI+ψb
0)

−1[
T̂α(t)(μ(z1+ρ̂) − μ(z2+ρ̂))
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+(h(t, z1,t+ρ̂t) − h(t, z2,t+ρ̂t))
]

−B∗(b− s)α−1T ∗
α(b− s)

∫ t

0

(λI+ψb
s)

−1(b− s)α−1Tα(b− s)

×(f(s, z1,s+ρ̂s) − f(s, z2,s+ρ̂s))ds

−B∗(b− s)α−1T ∗
α(b− s)

∫ t

0

(λI+ψb
s)

−1(b− s)α−1

×Tα(b− s)
( ∫ s

0
g(s, τ, z1,τ+ρ̂τ )dW (τ)−

∫ s

0
g(s, τ, z2,τ+ρ̂τ )dW (τ)

)
ds

}
ds‖2

H ,

≤ 3M2Mμ‖z1−z2‖2
Cv

+3Mh‖z1,t−z2,t‖2
Cv

+
12bN1

λ2

{ Mα

Γ(1+α)

}2[
M2Mμ‖z1 − z2‖2

Cv

+Mh‖z1,t − z2,t‖2
Cv

+
{ Mα

Γ(1+α)

}2 bα

α

∫ t

0
(b− s)α−1Mf‖z1,s − z2,s‖2

Cv
ds

+2Tr(Q)
{ Mα

Γ(1+α)

}2 bα

α

∫ t

0
(b− s)α−1Lg‖z1,s − z2,s‖2

Cv
ds

]
,

≤
(
(M2Mμ+Mh)

(
3+

12bN1

λ2

{ Mα

Γ(1+α)

}2)
+

12N1

λ2

{ Mα

Γ(1+α)

}4 b2α+1

α2
(Mf +2Tr(Q)Lg)

)
× sup

0≤s≤t
E‖z1(s)− z2(s)‖2.

Therefore (
(M2Mμ+Mh)

(
3+

12bN1

λ2

{ Mα

Γ(1+α)

}2)
+

12N1

λ2

{ Mα

Γ(1+α)

}4 b2α+1

α2
(Mf +2Tr(Q)Lg)

)
<1.

Thus, D1 is a contraction mapping.
Step 2. D2 maps bounded sets to bounded set in Bq.
In fact, if z ∈ Bq, from Lemma 2.7, it follows that

‖zt+ρ̂t‖2
Cv

≤ 4l2(q+M2E‖φ(0)‖2
H)+4‖φ‖2

Cv
= q∗, for all t ∈ J.

E‖D2z(t)‖2
H

≤ 2E‖
∫ t

0
(t− s)α−1Tα(t− s)f(s, zs+ρ̂s)ds‖2

H +2E‖
∫ t

0
(t− s)α−1Tα(t− s)

×[
∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds‖2

Q,

≤ 2
{ Mα

Γ(1+α)

}2 bα

α

∫ t

0
(t− s)α−1Mf (1+‖zs+ρ̂s‖2

Cv
)ds+2

{ Mα

Γ(1+α)

}2 bα

α
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×
∫ t

0
(t− s)α−1(2Mk+2Tr(Q)m(s)Mg(‖zs+ρ̂s‖)2Cv

)ds,

≤ 2
{ Mα

Γ(1+α)

}2 b2α

α2
Mf (1+q∗)+4

{ Mα

Γ(1+α)

}2 b2α

α2
(Mk+Tr(Q)Mg(q∗) sup

t∈J
m(s)),

≤ q∗∗,

which is shows the desired result of the claim.

Step 3. The set of functions {D2z, z ∈ Bq} is an equicontinuous on J .
Let 0 < ε < t < b and δ > 0 such that ‖Tα(s) − Tα(s∗)‖ < ε, for every s, s∗ ∈ J

with ‖s− s∗‖ ≤ δ. Let 0 < t1 < t2 ≤ b, for each z ∈ Bq, we have

E‖D2z(t2)−D2z(t1)‖2
H

≤ ‖
∫ t2

0

(t2 − s)α−1Tα(t2 − s)f(s, zs+ρ̂s)ds+
∫ t2

0

(t2 − s)α−1Tα(t2 − s)

×[
∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds−

∫ t1

0

(t1 − s)α−1Tα(t1 − s)f(s, zs+ρ̂s)ds

−
∫ t1

0
(t1 − s)α−1Tα(t1 − s)[

∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds‖2

H,

≤ 6E‖
∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s)f(s, zs+ρ̂s)ds‖2

H

+6E‖
∫ t2

t1

(t2 − s)α−1Tα(t2 − s)f(s, zs+ρ̂s)ds‖2
H +6E‖

∫ t1

0
(t1 − s)α−1

×[Tα(t2 − s) − Tα(t1 − s)]f(s, zs+ρ̂s)ds‖2
H +6E‖

∫ t1

0
[(t2 − s)α−1

−(t1 − s)α−1]Tα(t2 − s)[
∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds‖2

Q

+6E‖
∫ t2

t1

(t2 − s)α−1Tα(t2 − s)[
∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds‖2

Q

+6E‖
∫ t1

0
(t1 − s)α−1[Tα(t2−s)−Tα(t1 − s)][

∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds‖2

Q,

≤ 6
{ Mα

Γ(1+α)

}2
∫ t1

0
|(t2 − s)α−1 − (t1 − s)α−1|2Mf (1+q∗)ds

+6
{ Mα

Γ(1+α)

}2
∫ t2

t1

|(t2 − s)α−1|2Mf(1+q∗)ds

+6ε2
∫ t1

0
|(t1 − s)α−1|2Mf (1+q∗)ds+6

{ Mα

Γ(1+α)

}2
∫ t1

0
|(t2 − s)α−1
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−(t1 − s)α−1|2(2Mk+2Tr(Q)m(s)Mg(q∗))ds

+6
{ Mα

Γ(1+α)

}2
∫ t2

t1

|(t2 − s)α−1|2(2Mk+2Tr(Q)m(s)Mg(q∗))ds

+6ε2
∫ t1

0

|(t1 − s)α−1|2(2Mk+2Tr(Q)m(s)Mg(q∗))ds.

In view of Lemma 2.4 and the fact that Tα(·) is compact, strongly continuous operator,
the operator Tα(s) is continuous in the uniform operator topology on (0, b]. So, as
t2 − t1 → 0, with ε sufficiently small, the right hand side of the above inequality is
independent of z ∈ Bq and tends to zero. The equicontinuous for the cases t1 < t2 ≤ 0
or t1 ≤ 0 ≤ t2 ≤ b are very simple. Thus, the set {D2z, z ∈ Bq} is equicontinuous.
Step 4. The set {(D2z)(t), z ∈ Bq} is relatively compact in Bq .

Let 0 < t ≤ b be fixed and ε be a real number satisfying 0 < ε < t. For δ > 0, for
z ∈ Bq , we define

(Dε,δ
2 z)(t)

= α

∫ t−ε

0

∫ ∞

δ
θ(t− s)α−1ηα(θ)T ((t− s)αθ)f(s, zs+ρ̂s)ds+α

∫ t−ε

0

∫ ∞

δ
θ(t− s)α−1

×ηα(θ)T ((t− s)αθ)[
∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds,

= T (εαδ)α
∫ t−ε

0

∫ ∞

δ
θ(t− s)α−1ηα(θ)T ((t− s)αθ − εαδ)f(s, zs+ρ̂s)ds+T (εαδ)α

×
∫ t−ε

0

∫ ∞

δ
θ(t− s)α−1ηα(θ)T ((t− s)αθ − εαδ)[

∫ s

−∞
g(s, τ, zτ+ρ̂τ)dW (τ)]ds.

We know that ‖D2z(t)‖2
H ≤ q∗∗ and consequently, for z ∈ Bq, we find that

D2z(t)

= T (εαδ)α
∫ t−ε

0

∫ ∞

δ
θ(t− s)α−1ηα(θ)T ((t− s)αθ − εαδ)f(s, zs+ρ̂s)ds+T (εαδ)α

×
∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ)T ((t− s)αθ − εαδ)[
∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds

+α
∫ t

t−ε

∫ ∞

0
θ(t− s)α−1ηα(θ)T ((t− s)αθ)f(s, zs+ρ̂s)ds

+α
∫ t

t−ε

∫ ∞

0

θ(t− s)α−1ηα(θ)T ((t− s)αθ)[
∫ s

−∞
g(s, τ, zτ+ρ̂τ )dW (τ)]ds,

∈ T (εαδ)Bq∗∗(0, H)+Cε,

where diam (Cε) ≤
{

Mα
Γ(1+α)

}2
ε2α

α2 (Mf(1+q∗)+2Mk)+2Tr(Q)
{

Mα
Γ(1+α)

}2
εα

α

∫ t
t−ε(t−

s)α−1Mg(q∗)
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sups∈J m(s)ds, which proves that D2z is relatively compact in Bq . From the hypothe-
ses (H1) and (H4), we know that D2 is continuous. Therefore, from the Arzela-Ascoli
theorem, the operator D2 is completely continuous. From Theorem 2.8, D has a fixed
point and which is a mild solution of (1).

Thus, by Theorem 3.1, for any λ > 0 the operator D has a fixed point xλ in Bq ,
which is clearly a mild solution of the following equation

xλ(t)

= T̂α(t)[φ(0) − μ(x) − h(0, φ)]+h(t, xt)

+
∫ t

0

(t− s)α−1Tα(t − s)B
{
B∗(b− s)α−1T ∗

α(b − s)

×
[
(λI+ψb

0)
−1

(
Exb − T̂α(b)(φ(0) − μ(x) − h(0, φ))− h(b, xb)

)]
−B∗(b− s)α−1T ∗

α(b− s)
∫ t

0

(λI+ψb
s)

−1(b− s)α−1Tα(b − s)f(s, xs)ds

−B∗(b− s)α−1T ∗
α(b− s)

∫ t

0

(λI+ψb
s)

−1

×(b− s)α−1Tα(b− s)[
∫ s

−∞
g(s, τ, xτ )dW (τ )]ds

+B∗(b− s)α−1Tα(b− s)
∫ t

0

(λI+ψb
s)

−1

×γ(s)dW (s)
}
ds+

∫ t

0

(t − s)α−1Tα(t− s)f(s, xs)ds

+
∫ t

0

(t−s)α−1Tα(t − s)
[ ∫ s

−∞
g(s, τ, xτ )dW (τ )

]
ds,

(5)

= T̂α(t)[φ(0)−μ(x) − h(0, φ)]+h(t, xt)+ψt
0T

∗
α(b−t)(λI+ψb

0)−1
(
Exb−T̂α(b)

×(φ(0) − μ(x) − h(0, φ))− h(b, xb)
)

+
∫ t

0

[I − ψt
sT

∗
α(b− t)(λI+ψb

s)
−1Tα(b − t)]

×(t − s)α−1Tα(t− s)f(s, xs)ds

+
∫ t

0

[I − ψt
sT

∗
α(b−t)(λI+ψb

s)−1Tα(b− t)](t− s)α−1

×Tα(t−s)[
∫ s

−∞
g(s, τ, xτ)dW (τ )]ds+

∫ t

0

ψt
sT

∗
α(b−t)(λI+ψb

s)−1γ(s)dW (s).

Theorem 3.2. Under the hypotheses (H1) − (H5) and Theorem 3.1 hold, the
functions f and g are uniformly bounded in H and LQ(K,H) then the system (1) is
approximately controllable on J .
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Proof. Let xλ be a solution of (1), then writing equation (5) at t = b yields

xλ(b) = xb − λ(λI+ψb
0)

−1
(
Exb − T̂α(b)(φ(0)− μ(xλ)− h(0, φ))− h(b, xλ

b )
)

−
∫ b

0
λ(λI+ψb

s)
−1(b− s)α−1Tα(b− s)f(s, xλ

s )ds

−
∫ b

0
λ(λI+ψb

s)
−1(b− s)α−1Tα(b− s)

×
[ ∫ s

−∞
g(s, τ, xλ

τ )dW (τ)
]
ds−

∫ b

0
λ(λI+ψb

s)
−1γ(s)dW (s)

It follows from the assumption on f and g are uniformly bounded on J . Then, there
is a subsequence, still denoted by f(s, xλ

s ) and
∫ s
0 g(s, τ, x

λ
τ )dW (τ) which converges

weakly to say, f(s, w) in H , g(s, τ, w) in L(K,H). The compactness of Tα(t), t > 0
which implies that Tα(b − s)f(s, xλ

s ) → Tα(b − s)f(s, w), Tα(b − s)g(s, τ, xλ
τ ) →

Tα(b − s)g(s, τ, w). On the other hand, by hypothesis (H5), for all 0 ≤ t ≤ b ,
λ(λI+ψb

t )
−1 → 0 strongly as λ → 0+ and ‖λ(λI+ψb

t )
−1‖ ≤ 1. Therefore, by the

Lebesque dominated convergence theorem it follows that

E‖xλ(b)− xb‖2

≤ E‖λ(λI+ψb
0)

−1
(
Exb − T̂α(b)(φ(0)− μ(xλ)− h(0, φ))− h(b, xλ

b )
)

−
∫ b

0

λ(λI+ψb
s)

−1(b− s)α−1Tα(b− s)f(s, xλ
s )ds

−
∫ b

0
λ(λI+ψb

s)
−1(b− s)α−1Tα(b− s)

×[
∫ s

−∞
g(s, τ, xλ

τ )dW (τ)]ds−
∫ b

0
λ(λI+ψb

s)
−1γ(s)dW (s)‖2 → 0 as λ→ 0+.

So xλ(b) → xb holds, which shows that the system (1) is approximately controllable
and hence the theorem is proved.

Remark 3.3. In real world problems, impulsive effects also exist in addition to
stochastic effects. The theory of impulsive differential equations is much richer than
the theory of classical differential equations without impulse effects. The impulsive
differential equations serve as basic models to study the dynamics of evolution pro-
cesses that are subject to sudden changes in their states [33]. The applications of
the impulsive differential equations arise in epidemiology, pharmacokinetics, fed-batch
culture in fermentative production and population dynamics, etc. (see [21] and the
references therein). Among the previous research, little is concerned with differential
equations with fractional order and impulses [36, 39]. Moreover, impulsive control,
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which is based on the theory of impulsive differential equations has gained renewed
interests recently for its promising applications toward controlling systems exhibiting
chaotic behavior. The results in Theorem 3.2 can be extended to study the approximate
controllability of fractional neutral stochastic integro-differential control systems with
impulsive effects by employing the idea and technique as in Theorem 3.2.

4. EXAMPLE

In this section an example is presented for the approximate controllability results to
the following fractional order neutral stochastic partial differential system with nonlocal
conditions and infinite delay in Hilbert spaces

(6)

cDα
t

[
z(t, x)−

∫ t

−∞
e4(s−t)z(s, x)ds

]
=

∂2

∂x2

[
z(t, x)−

∫ t

−∞
e4(s−t)z(s, x)ds

]
+η(t, x)

+
∫ 0

−∞
â(s) sinz(t+s, x)ds

+
∫ t

−∞

∫ t

−∞
ξ(t, x, s− t)g(z(s, x))dsdβ(s, x),

x ∈ [0, π], t ∈ J = [0, b]

z(t, 0) = z(t, π) = 0 t ∈ J

z(0, x)+
∫ π

0
k1(x, y)z(t, y)dy = ϕ(t, x), t ∈ (−∞, 0],

where cDα
t is a Caputo fractional partial derivative of order 0 < α < 1, b > 0,

k1(x, y) ∈ L2([0, π] × [0, π]) and
∫ 0
−∞ |â(s)|ds < ∞. We can set this problem in

our formulation by taking H = L2([0, π]) defined on a stochastic space (Ω, F, P ). β
is the real standard Wiener process(that is K = R and Q = 1). The operator A is
defined by Az = z

′′ with domain D(A) = {z ∈ Hz, z
′are absolutely continuous, z′′ ∈

H, z(0) = z(π) = 0}. It is well known that A generates a strongly continuous
semigroup T (·), which is compact, analytic and self adjoint. The spectrum of A
consists of the eigen values −n2 for n ∈ N, with corresponding normalized eigen
vectors zn(x) =

√
2
π sin(nx). In addition, the following properties hold

(a) {zn; n ∈ N} is an orthonormal basis of H ,
(b) If � ∈ D(A) then A� = −∑∞

n=1 n
2 < �, zn > zn,

(c) For every � ∈ H , T (t)� =
∑∞

n=1 e
−n2t < �, zn > zn,
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(d) The operator (−A)1/2 is given by (−A)1/2� =
∑∞

n=1 n < �, zn > zn on the
space D((−A)1/2) = {�(·) ∈ H ;

∑∞
n=1 n < �, zn > zn ∈ H}.

Define the bounded linear operator B : U → H by Bu(t)(x) = η(t, x), 0 ≤ x ≤
π, u ∈ U.
Now, we present a special phase space Cv . Let v(s) = e2s, s < 0, then l =∫ 0
−∞ v(s)ds = 1

2 . Let ‖ϕ‖Cv =
∫ 0
−∞ v(s) sups≤θ≤0(E|ϕ(θ)|2)1/2ds, then it follows

from the reference [11] that (Cv , ‖ · ‖Cv) is a Banach space. For (t, ϕ) ∈ J × Cv ,
where ϕ(θ)(x) = ϕ(θ, x), (θ, x) ∈ (−∞, 0]× [0, π], and define the Lipschitz contin-
uous functions h, f : J × Cv → H , g : J × Cv → LQ(H), for the infinite delay as
follows

h(t, ϕ)(x) =
∫ 0

−∞
e−4θϕ(θ)(x)dθ,

f(t, ϕ)(x) =
∫ 0

−∞
â(θ) sin(ϕ(θ)(x))dθ,

g(t, ϕ)(x) =
∫ 0

−∞
ξ(t, x, θ)g(ϕ(θ)(x))dθ,

Then, the equation (6) can be rewritten as the abstract form as the system (1). Thus,
under the appropriate conditions on the functions h, f, and g are satisfies the hypotheses
(H1) − (H4). On the other hand, it can be easily seen that the deterministic linear
fractional control system corresponding to (6) is approximately controllable on [0, π]
(see [15, 16]). All conditions of the Theorem 3.2 is satisfied, therefore the system (6)
is approximately controllable on [0, π].
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