TAIWANESE JOURNAL OF MATHEMATICS Vol. 17, No. 4, pp. 1183-1196, August 2013 DOI: 10.11650/tjm.17.2013.2701 This paper is available online at http://journal.taiwanmathsoc.org.tw

STOKES' THEOREM ON MANIFOLDS: A KURZWEIL-HENSTOCK APPROACH

Varayu Boonpogkrong

Abstract. In this paper, Stokes' theorem is proved by the Kurzweil-Henstock approach. Sufficient conditions for the existence of the exterior derivative of a k-form in \mathbb{R}^n are given. Concepts of strong differentiability are used in sufficient conditions.

1. INTRODUCTION

In mathematics papers and books, the usual definition of the divergence div F of a vector field $F = (F_1, F_2, \ldots, F_n)$ in \mathbb{R}^n is given by $\sum_{i=1}^n \partial F_i / \partial x_i$, whereas in physics papers and books, it is given by an exterior derivative

$$(\operatorname{div} F)(p) = \lim_{\operatorname{diam}(I)\to 0} \frac{1}{|I|} \int_{\partial I} F \cdot \hat{n} \, ds,$$

where I is an interval containing the point p with surface ∂I and \hat{n} is the exterior normal to ∂I . Recently, this physical definition of the divergence has been used by Acker, Macdonald, Hubbard and Boonpogkrong; see [1, 3, 5, 9].

In this paper, we shall use the physical definition of an exterior derivative and k-forms to prove Stokes' theorem by the Kurzweil-Henstock approach.

2. Preliminaries

For any fixed positive integer n, \mathbb{R}^n denotes the *n*-dimensional Euclidean space. Let $S \subset \mathbb{R}^n$; the boundary and outer Lebesgue measure of S are denoted by ∂S and |S| respectively. Let $x \in \mathbb{R}^n$ with $x = (x_1, x_2, \dots, x_n)$; the norm ||x|| is defined by

Communicated by Yuh-Jia Lee.

Received November 27, 2012, accepted January 4, 2013.

²⁰¹⁰ Mathematics Subject Classification: 26A39.

Key words and phrases: The H-K integral, Partition of unity, Manifolds, Stokes' theorem.

This research was supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

Varayu Boonpogkrong

 $||x|| = \sum_{i=1}^{n} |x_i|$. Let $\eta > 0$; $B(x, \eta)$ or $B_{\eta}(x)$ denote $\{y \mid ||x - y|| < \eta\}$. Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$ be k linearly independent vectors in \mathbb{R}^n , and $P_a(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$ be a k-parallelogram spanned by $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$, where the point a is one of the corners. We say $P_a(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$ is anchored at the point a. We may use $P(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$ instead of $P_a(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$. Let E be a k-parallelogram $P(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$ in \mathbb{R}^n . A partition P of E is a finite family of non-overlapping k-subparallelogram $\{I_i\}_{i=1}^m$ whose union is E. We should stress that if $I_i = P(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k)$, then \vec{u}_j and \vec{w}_j are parallel for all j. In this paper, a parallelogram is called an interval. A division D of E is a finite family of point-interval pairs $\{(x_i, I_i)\}_{i=1}^m$ such that $\{I_i\}_{i=1}^m$ is a partition of E. Let $\delta(x)$ be a positive function defined on E. A point-interval pair (x, I) is said to be Henstock δ -fine if $x \in I \subset B(x, \delta(x))$. We remark that we may assume that the point x is one of the corners of k-subparallelogram. Suppose x may not belong to I. Then (x, I) is said to be McShane δ -fine. A division D of E is said to be Henstock δ -fine if each point-interval pair in D is Henstock δ -fine. Similarly we can define McShane δ -fine divisions.

In this section, we only consider *n*-parallelograms in \mathbb{R}^n . Let *E* be an *n*-parallelogram in \mathbb{R}^n and $f: E \to \mathbb{R}$. Let $D = \{(x_i, I_i)\}_{i=1}^m$ be a δ -fine division (Henstock or Mc-Shane) of *E*. We denote the Riemann sum $\sum_{i=1}^m f(x_i) |I_i|$ by $S(f, D, \delta)$, where $|I_i|$ is the volume of I_i . In this paper, a division $D = \{(x_i, I_i)\}_{i=1}^m$ will often be written as $D = \{(x, I)\}$, in which (x, I) represents a typical point-interval pair in *D*. The corresponding Riemann sum will be written as $(D) \sum f(x) |I|$.

Definition 2.1. Let $f : E \to \mathbb{R}$. Then f is said to be Kurzweil-Henstock integrable to $A \in \mathbb{R}$ on E if for each $\epsilon > 0$, there exists a positive function δ on E such that whenever $D = \{(x, I)\}$ is a Henstock δ -fine division of E, we have

$$|S(f, D, \delta) - A| \le \epsilon.$$

We denote A as $\int_E f$.

Definition 2.2. In the above Definition 2.1, if "a Henstock δ -fine division" is replaced by "a McShane δ -fine division". Then f is said to be MsShane integrable on E. We denote A as $(L) \int_E f$.

It is known that (i) f is McShane integrable on E if and only if f is Lebesgue integrable on E; (ii) if f is McShane integrable on E, then f is Kurzweil-Henstock integrable on E; see [7].

In this paper, we only consider Kurzweil-Henstock integrals.

3. Integration of k-forms in \mathbb{R}^n

Now we shall consider k-parallelograms in \mathbb{R}^n . Let β be a function that maps $P(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$ to the $(x_{i_1}, x_{i_2}, \ldots, x_{i_k})$ component of the signed k-dimensional

volume of $P(\vec{u}_1, \vec{u}_2, ..., \vec{u}_k)$, which is given by the determinant of the $k \times k$ matrix formed by selecting rows $i_1, i_2, ..., i_k$ of the matrix whose columns are the vectors $\vec{u}_1, \vec{u}_2, ..., \vec{u}_k$. The function β is denoted by $dx_{i_1} \wedge dx_{i_2} \wedge ... \wedge dx_{i_k}$, which is called an elementary k-form on \mathbb{R}^n . It is known, see [5], that

$$\sum_{j=1}^{k} (-1)^{j-1} dx_{i_j}(\vec{v}_j) (dx_{i_1} \wedge \ldots \wedge \widehat{dx}_{i_j} \wedge \ldots \wedge dx_{i_k}) (P(\vec{v}_1, \ldots, \hat{\vec{v}}_j, \ldots, \vec{v}_k))$$

= $(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) (P(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k)).$

We use the notation $(\vec{v}_1, \ldots, \hat{\vec{v}}_j, \ldots, \vec{v}_k)$ for $(\vec{v}_1, \ldots, \vec{v}_{j-1}, \vec{v}_{j+1}, \ldots, \vec{v}_k)$.

Let us have $F : P(\vec{u}_1, \vec{u}_2, ..., \vec{u}_k) \to \mathbb{R}$ and $P(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$ a k-subparallelogram of $P(\vec{u}_1, \vec{u}_2, ..., \vec{u}_k)$. We assume that \vec{u}_j and \vec{w}_j are parallel for all j. Hence the signed volumes of $(dx_{i_1} \land dx_{i_2} \land ... \land dx_{i_k})P(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$ and $(dx_{i_1} \land dx_{i_2} \land ... \land dx_{i_k})P(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$ and $(dx_{i_1} \land dx_{i_2} \land ... \land dx_{i_k})P(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$ and $(dx_{i_1} \land dx_{i_2} \land ... \land dx_{i_k})P(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$ are of the same sign. Let

$$h(x, P(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)) = F(x) \left[(dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_k}) P(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k) \right].$$

Then h is a point-parallelogram function. Using the Kurzweil-Henstock approach, we can define an integral of h over $P(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k)$,

$$\int_{P(\vec{u}_1,\vec{u}_2,\ldots,\vec{u}_k)} F(x)(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}),$$

denoted by $\int_{P(\vec{u}_1, \vec{u}_2, ..., \vec{u}_k)} h$, called the Kurzweil-Henstock integral of h. More precisely, for every $\epsilon > 0$, there exists $\delta(x) > 0$ such that whenever $\{(x^j, P(\vec{u}_1^j, ..., \vec{u}_k^j))\}_{j=1}^q$ is a Henstock δ -fine division of $P(\vec{u}_1, \vec{u}_2, ..., \vec{u}_k)$, we have

$$\left|\sum_{j=1}^{q} F(x^j)(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) P(\vec{u}_1^j, \ldots, \vec{u}_k^j) - \int_{P(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)} h\right| \le \epsilon.$$

We may assume that x^j is one of the corners of $P(\vec{u}_1^j, \vec{u}_2^j, \dots, \vec{u}_k^j)$.

In the above, $F(x)(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k})$ or briefly $F(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k})$ is also called an elementary k-form on \mathbb{R}^n , denoted by φ in the following.

In the following, let $I = \{1, 2, ..., k+1\}$, $I_j = I \setminus \{j\}$, then V(I) denotes $(\vec{v}_1, \vec{v}_2, ..., \vec{v}_{k+1})$ and $V(I_j)$ denotes $(\vec{v}_1, ..., \hat{\vec{v}}_j, ..., \vec{v}_{k+1})$. Let $I^* = \{i_1, i_2, ..., i_k\}$, then $dX(I^*)$ denotes $dx_{i_1} \wedge dx_{i_2} \wedge ... \wedge dx_{i_k}$ and $dX(I^*_j)$ denotes $dx_{i_1} \wedge ... \wedge \widehat{dx}_{i_j} \wedge ... \wedge dx_{i_k}$.

The oriented boundary $\partial P_a(V(I))$ of an oriented (k+1)-parallelogram $P_a(V(I))$

is composed of its 2(k+1) faces, each of the form $P_{a+\vec{v}_i}(V(I_i))$ or $P_a(V(I_i))$. Then

$$(1) \qquad = \sum_{i=1}^{k+1} (-1)^{i-1} \int_{P_{a+\vec{v}_{i}}(V(I_{i})) - P_{a}(V(I_{i}))} \varphi \\ = \sum_{i=1}^{k+1} (-1)^{i-1} \int_{P_{a}(V(I_{i}))} (F(x+\vec{v}_{i}) - F(x)) (dx_{i_{1}} \wedge dx_{i_{2}} \wedge \ldots \wedge dx_{i_{k}}).$$

In this paper, for convenience, $x + \vec{v}^T$ is always written as $x + \vec{v}$.

4. Exterior Derivative of a k-Form in \mathbb{R}^n

To understand the exterior derivative, first we consider the directional derivative of a function $F : \mathbb{R}^n \to \mathbb{R}$, where F is called a 0-form. Let $x \in \mathbb{R}^n$ and \vec{v} a vector in \mathbb{R}^n be given. We define dF as follows:

$$(dF)(x, \vec{v}) = \lim_{h \to 0} \frac{F(x + h\vec{v}) - F(x)}{h}.$$

It is well-known that if $\vec{v} = (v_1, v_2, \dots, v_n)^T$, then

$$\lim_{h \to 0} \frac{F(x + h\vec{v}) - F(x)}{h} = [DF(x)] \cdot \vec{v} = \sum_{j=1}^{n} (\partial_j F(x)) v_j.$$

We write

$$dF = \sum_{j=1}^{n} (\partial_j F)(dx_j)$$

and $(dF)(x, \vec{v}) = \sum_{j=1}^{n} (\partial_j F(x))(dx_j(\vec{v})) = \sum_{j=1}^{n} (\partial_j F(x))v_j$. $dF = \sum_{j=1}^{n} (\partial_j F)(dx_j)$ is called the exterior derivative of F and dF is called a

 $dF = \sum_{j=1}^{n} (\partial_j F)(dx_j)$ is called the exterior derivative of F and dF is called a 1-form.

Now we shall define the exterior derivative $d\varphi$ of an elementary k-form φ , which is given by

$$\varphi = F\left(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}\right).$$

Note that φ is a point-parallelogram function $\varphi(x, P(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)) = F(x) [(dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_k})P(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)].$

Let $x \in \mathbb{R}^n$ and a (k+1)-parallelogram $P(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_{k+1})$ be given. The exterior derivative $d\varphi$ is defined as follows

$$d\varphi = \lim_{\substack{P_x(U(I)) \subset B(x,\delta(x))\\\delta(x) \to 0}} \frac{\int_{\partial P_x(U(I))} \varphi}{SV(P_x(U(I)))},$$

where $\vec{u}_j = h_j \vec{v}_j$, $U(I) = (\vec{u}_1, \vec{u}_2, ..., \vec{u}_{k+1})$, $I = \{1, 2, ..., k+1\}$, $SV(P_x(U(I)))$ is the signed (k+1)-dimensional volume of $P_x(U(I))$ and $P_x(V(I)) = P_x(\vec{v}_1, \vec{v}_2, ..., \vec{v}_{k+1})$.

The exterior derivative $d\varphi$ is a point-parallelogram function and the parallelograms here are (k + 1)-parallelograms. More precisely, for each $\epsilon > 0$, there exists $\delta(x) > 0$ such that for any (k + 1)-parallelogram $P_x(U(I)) \subset B(x, \delta(x))$, we have

$$\left| \int_{\partial P_x(U(I))} \varphi - (d\varphi)(x, P_x(U(I))) \right| < \epsilon |SV(P_x(U(I)))|.$$

Theorem 4.2 after Definition 4.1 shows that $d\varphi = dF \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}$, which is a (k + 1)-form. The (k + 1)-form $d\varphi$ takes point-(k + 1)-parallelogram $(x, P_x(U(I)))$ and returns a number.

The concept of strong differentiability used in [3] shall be used again in this section.

Definition 4.1. Let $F : \mathbb{R}^n \to \mathbb{R}$. Then F is said to be strongly Henstock differentiable at x with respect to a (k + 1)-parallelogram $P(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{k+1})$ with derivative A(x) if (i) F is classical (Fréchet) differentiable at x; (ii) for each $\epsilon > 0$, there exists $\delta(x) > 0$ such that for every (k + 1)-parallelogram $P_x(U(I)) \subset B(x, \delta(x))$ and, for $i = 1, 2, \ldots, k + 1, z \in P_x(U(I_i))$, we have

$$|F(z + \vec{u}_i) - F(z) - A(x) \cdot (\vec{u}_i)| \le \epsilon \|\vec{u}_i\|,$$

where $P_x(U(I))$ is given in the definition of $d\varphi$.

It is clear that

$$A = (\partial_1 F, \partial_2 F, \dots, \partial_n F).$$

Suppose $P_x(V(I))$ is replaced by P(V(I)), where P(V(I)) may not be anchored at the point x. Then F is said to be strongly McShane differentiable at x.

An example given in [3, section 8, remark (viii)] shows that there exists a function F which is strongly Henstock differentiable, but is not C^1 .

Theorem 4.2. Let $F : \mathbb{R}^n \to \mathbb{R}$ be continuous and $\varphi = F(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k})$. Suppose that F is strongly Henstock differentiable at x with respect to a (k + 1)-parallelogram $P(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{k+1})$. Then the exterior derivative $d\varphi$ exists and $d\varphi = dF \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}$, which is a (k + 1)-form.

Proof. Let $I = \{1, 2, ..., k+1\}$ and $V(I) = (\vec{v}_1, \vec{v}_2, ..., \vec{v}_{k+1})$. Let $\vec{u}_j = h_j \vec{v}_j$, where $0 < h_j \le 1, j = 1, 2, ..., k+1$ and $U(I) = (\vec{u}_1, \vec{u}_2, ..., \vec{u}_{k+1})$. By definition,

$$d\varphi = \lim_{\substack{P_x(U(I)) \subset B(x,\delta(x))\\\delta(x) \to 0}} \frac{\int_{\partial P_x(U(I))} \varphi}{SV(P_x(U(I)))}.$$

We may assume that $SV(P_x(U(I)))$ is always positive in this proof.

Now, we shall show that

$$\lim_{\substack{P_x(U(I))\subset B(x,\delta(x))\\\delta(x)\to 0}}\frac{\int_{\partial P_x(U(I))}\varphi}{SV(P_x(U(I)))} = dF \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}$$

First, consider

$$\int_{P_x(U(I_j))} (F(z+\vec{u}_j)-F(z))(dx_{i_1}\wedge dx_{i_2}\wedge\ldots\wedge dx_{i_k}),$$

where $U(I_j) = (\vec{u}_1, \dots, \hat{\vec{u}}_j, \dots, \vec{u}_{k+1})$. By given, F is strongly Henstock differentiable at x. Hence we have, for any $z \in P_x(U(I_j))$

$$|F(z+\vec{u}_j) - F(z) - A(x) \cdot \vec{u}_j| \le \epsilon \|\vec{u}_j\|,$$

where $A = (\partial_1 F, \partial_2 F, \dots, \partial_n F)$. Thus

$$|(F(z+\vec{u}_j) - F(z))(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) - (A(x) \cdot \vec{u}_j)(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k})| \le \epsilon \|\vec{u}_j\| |(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k})|.$$

Hence

$$\left| \int_{P_x(U(I_j))} (F(z+\vec{u}_j) - F(z))(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) - (A(x) \cdot \vec{u}_j) \int_{P_x(U(I_j))} (dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) \right|$$
$$\leq \epsilon \|\vec{u}_j\| \int_{P_x(U(I_j))} |(dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k})|.$$

Note that if $\vec{u}_j = (u_{j_1}, \ldots, u_{j_n})^T$, then

$$A(x) \cdot \vec{u}_j = \sum_{l=1}^n \partial_l F(x) u_{j_l} = \sum_{l=1}^n \partial_l F(x) (dx_l) (\vec{u}_j).$$

Thus

$$\sum_{j=1}^{k+1} (-1)^{j-1} (A(x) \cdot \vec{u}_j) (dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) P_x(U(I_j))$$

=
$$\sum_{j=1}^{k+1} (-1)^{j-1} \left[\sum_{l=1}^n \partial_l F(x) (dx_l) (\vec{u}_j) \right] (dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) P_x(U(I_j))$$

= $(dF \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) P_x(U(I)).$

Recall that $dF \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}$ is the wedge product of dF and $dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}$.

Similarly, we have

$$\begin{split} &\sum_{j=1}^{k+1} (-1)^{j-1} \|\vec{u}_{j}\| \| (dx_{i_{1}} \wedge dx_{i_{2}} \wedge \ldots \wedge dx_{i_{k}}) P_{x}(U(I_{j})) \| \\ &= \sum_{j=1}^{k+1} (-1)^{j-1} \|h_{j} \vec{v}_{j}\| \| (dx_{i_{1}} \wedge dx_{i_{2}} \wedge \ldots \wedge dx_{i_{k}}) P_{x}(U(I_{j})) \| \\ &= \sum_{j=1}^{k+1} (-1)^{j-1} h_{j} \|\vec{v}_{j}\| \| (dx_{i_{1}} \wedge dx_{i_{2}} \wedge \ldots \wedge dx_{i_{k}}) (h_{1}h_{2} \cdots \hat{h_{j}} \cdots h_{k+1}) P_{x}(V(I_{j})) \| \\ &= (h_{1}h_{2} \cdots h_{k+1}) \sum_{j=1}^{k+1} (-1)^{j-1} \|\vec{v}_{j}\| \| (dx_{i_{1}} \wedge dx_{i_{2}} \wedge \ldots \wedge dx_{i_{k}}) P_{x}(V(I_{j})) \| \\ &= (h_{1}h_{2} \cdots h_{k+1}) Q(V(I)) \\ &= (h_{1}h_{2} \cdots h_{k+1}) |SV(P_{x}(V(I)))| \frac{Q(V(I))}{|SV(P_{x}(V(I)))|} \\ &= |SV(P_{x}(U(I)))| R(V(I)). \end{split}$$

In the above, Q(V(I)) and R(V(I)) are defined accordingly and R(V(I)) is a fixed value since $P_x(V(I))$ is fixed. In the above, we use the fact that $\vec{u}_j = h_j \vec{v}_j$ and $h_1 h_2 \cdots h_{k+1} SV(P_x(V(I))) = SV(P_x(U(I)))$. Applying equation (1) with $P_a(V(I))$ replaced by $P_x(U(I))$ and $I = \{1, 2, \dots, k+1\}$, we have

$$\left| \int_{\partial P_x(U(I))} \varphi - (dF \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}) P_x(U(I)) \right|$$

$$\leq \epsilon R(V(I)) |SV(P_x(U(I)))|$$

whenever $P_x(U(I)) \subset B(x, \delta(x))$. Thus

 $d\varphi = dF \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}.$

5. Stokes' Theorem in \mathbb{R}^n

A similar proof of the following theorem is given in [3, 9]. The proof is intuitive and natural.

Theorem 5.1. Let $E = P(\vec{v}_1, \vec{v}_2, ..., \vec{v}_{k+1})$ be a (k+1)-parallelogram. Let φ be a k-form in \mathbb{R}^n . Suppose the exterior derivative $d\varphi$ exists on a (k+1)-parallelogram

E with respect to (k + 1)-parallelogram $P(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_{k+1})$ where \vec{v}_i and \vec{w}_i are parallel for all *i*. Then $d\varphi$ is Kurzweil-Henstock integrable on *E* and

$$\int_E d\varphi = \int_{\partial E} \varphi.$$

Proof. Suppose the exterior derivative $d\varphi$ exists on E. Hence for each $x \in E$ and each $\epsilon > 0$, there exists $\delta(x) > 0$ such that whenever an (k + 1)-parallelogram I with $x \in I \subset B(x, \delta(x))$, we have

$$\left| d\varphi(I) - \int_{\partial I} \varphi \right| \leq \epsilon |I|$$

In the above, I is of the form $P(\vec{w}_1, \vec{w}_2, ..., \vec{w}_{k+1})$ and more precisely, $d\varphi(I)$ should be written as $d\varphi(x, I)$.

Let $D = \{(x, I)\}$ be a Henstock δ -fine division of E. Then we have

$$\left| (D) \sum \left\{ d\varphi(I) - \int_{\partial I} \varphi \right\} \right| \le \epsilon (D) \sum |I|.$$

Therefore

$$\left| (D) \sum d\varphi(I) - \int_{\partial E} \varphi \right| \le \epsilon |E|.$$

Consequently $d\varphi$ is Kurzweil-Henstock integrable on E and

$$\int_E d\varphi = \int_{\partial E} \varphi.$$

6. INTEGRAL ON MANIFOLDS

The Kurzweil-Henstock integration on Manifolds has been studied in [2, 3]. For easy reference, we give a brief introduction here.

In this section, \mathbb{H}^n denotes the upper half-space in \mathbb{R}^n , which consists of those $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ for which $x_n \ge 0$. A non-empty subset M of \mathbb{R}^n is said to be a k-manifold if for each $x \in M$, there exist an open subset V of M containing x, an open subset U of \mathbb{R}^k (or \mathbb{H}^k) and a homeomorphism mapping $\alpha : U \to V$, i.e., α is a bijection and both α and α^{-1} are continuous, and $D\alpha(y)$ has rank k for each $y \in U$,

where
$$D\alpha = \begin{pmatrix} \frac{\partial \alpha_1}{\partial y_1} & \frac{\partial \alpha_1}{\partial y_2} & \cdots & \frac{\partial \alpha_1}{\partial y_k} \\ \frac{\partial \alpha_2}{\partial y_1} & \frac{\partial \alpha_2}{\partial y_2} & \cdots & \frac{\partial \alpha_2}{\partial y_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \alpha_n}{\partial y_1} & \frac{\partial \alpha_n}{\partial y_2} & \cdots & \frac{\partial \alpha_n}{\partial y_k} \end{pmatrix}$$
 and $\alpha(y) = (\alpha_1(y), \alpha_2(y), \dots, \alpha_n(y)),$

 $y = (y_1, y_2, ..., y_k)$. Such an α is called a chart. If the mapping $\alpha : U \to V$ is a C^1 -diffeomorphism, i.e., α is a bijection and both α and α^{-1} are of C^1 -class, then M is said to be a differentiable k-manifold. Let M be a manifold. A finite collection $\Theta = \{\alpha_j\}_{j=1}^m$ of charts, where $\alpha_j : U_j \to V_j$, is said to be an atlas if the union of all V_j is M. Let $\alpha : U \to V$ be a chart and $I \subseteq U$ be a k-parallelogram in \mathbb{R}^k . Let $I^{\alpha} = \alpha(I)$, which is called a tile. Here I^{α} can be viewed as a distorted k-parallelogram.

A partial partition $P = \{I_i^{\alpha_{s_i}}\}_{i=1}^m$ of M is a finite collection of non-overlapping distorted k-parallelogram. If the union of $\{I_i^{\alpha_{s_i}}\}_{i=1}^m$ is M, then P is said to be a partition of M. A partial division D of M is a finite collection of point-distorted k-parallelogram pairs $\{(x_i, I_i^{\alpha_{s_i}})\}_{i=1}^m$ such that $\{I_i^{\alpha_{s_i}}\}_{i=1}^m$ is a partial partition of M. If $\{I_i^{\alpha_{s_i}}\}_{i=1}^m$ is a partition of M, then D is said to be a division of M.

Let δ be a positive function on M and $x \in M$. A point-distorted k-parallelogram pair (x, I^{α}) is said to be Henstock δ -fine if $x \in I^{\alpha} \subset B(x, \delta(x))$. A partial division D of M is said to be a Henstock δ -fine partial division of M if each point-distorted k-parallelogram pair in D is Henstock δ -fine. If, in addition, D is a division of M, then D is said to be a Henstock δ -fine division of M. Similarly, we can define McShane δ -fine and McShane δ -fine division, see Section 2.

Let $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ be a chart and $x \in M$ with $\alpha(y) = x$. Let $\vec{v_i} = (\partial_i \alpha_1(y), \partial_i \alpha_2(y), \ldots, \partial_i \alpha_n(y))^T$ and $\vec{u_i} = h_i \vec{v_i}$, where $0 < h_i \leq 1$. Let $J = \{1, 2, \ldots, k\}$, $V(J) = (\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k})$ and $U(J) = (\vec{u_1}, \vec{u_2}, \ldots, \vec{u_k})$. Then the volume of I^{α} can be approximated by the volume of the k-parallelogram $P_x(U(J))$ induced by U(J). The volume of $P_x(U(J))$ is given by

$$\left[\det\left(\left[D\alpha(y)\right]^T \cdot D\alpha(y)\right)\right]^{\frac{1}{2}}|I|.$$

A k-form $\varphi = F(dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k})$ defined on M is said to be α parameterisable if the closure of supp F can be parameterised by one chart α , i.e., $\alpha : U \to V \supset \overline{\text{supp }F}$. In the following, $\operatorname{supp }F$ is denoted by $\operatorname{supp }\varphi$.

Definition 6.1. Let M be a compact differentiable k-manifold with atlas Θ . An α parameterisable k-form φ defined on M is said to be *KH-integrable* to real number A on M associated with chart α if for every $\epsilon > 0$, there exists a positive function δ defined on M such that for every Henstock δ -fine partial division $D = \{(x_i, I_i^{\alpha})\}_{i=1}^m$ of M covering supp φ with $x_i \in supp \varphi$, for each i, we have

$$|S(\varphi, \delta, D) - A| \le \epsilon,$$

where

$$S(\varphi, \delta, D) = \sum_{i=1}^{m} F(x_i) (dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k}) P_{x_i}(\boldsymbol{U}^i(J))$$

and $P_{x_i}(U^i(J))$ is the k-parallelogram corresponding to I_i^{α} as mentioned before Definition 6.1. We denote A by $(KH) \int_M \varphi$.

The value of the integral does not depend on α , more precisely, if a k-form φ is KH-integrable on M with respect to a chart α and another chart β , then the values of these two integrals are equal, see [3]. Hence the integral value is uniquely determined. Independence of the integral with respect to a chart is not required. Furthermore, if F is continuous on M, then φ is KH-integrable on M. We remark that in [3] Corollary 1, the claim that f is HK-integrable with respect to chart α if and only if f is HK-integrable with respect to any other chart α' is not correct.

Let M be a compact differentiable k-manifold with an atlas Θ . Let $\alpha : U \to V$ be a chart in the atlas Θ and $\varphi = F(dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k})$ be a k-form defined on M. Then φ is said to be KH-integrable on V if $F\chi_V(dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k})$, denoted by $\varphi\chi_V$, is KH-integrable on M. Suppose φ is KH-integrable on V. Then, $(F\omega)(dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k})$, denoted by $\varphi\omega$, is KH-integrable on V if ω is of class C^{∞} and $\operatorname{supp} \omega \subseteq V$. Here we use the fact that if g is Kurzweil-Henstock integrable on a compact interval $E^* \subseteq \mathbb{R}^k$ and $\omega : E^* \to \mathbb{R}$ is of class C^{∞} , then $g\omega$ is Kurzweil-Henstock integrable on E^* ; see [6, 8].

In general, a δ -fine division may not exist on a compact manifold with more than one chart. For example, let M be a unit sphere in \mathbb{R}^3 and U be an open unit disk in \mathbb{R}^2 . Let α_1 be a function mapping the open unit disk U to the upper half of the unit sphere M defined by $\alpha_1(t_1, t_2) = (t_1, t_2, \sqrt{1 - t_1^2 - t_2^2})$; and $\alpha_2, \ldots, \alpha_6$ be functions mapping the open unit disk U to the lower, right, left, front and back half of the unit sphere M defined in a similar way. Clearly M is a compact 2-manifold with atlas $\Theta = {\alpha_j}_{j=1}^6$. Suppose a δ -fine division exists on M. Then there exist two nonoverlapping distorted intervals from different charts such that their common points form a non-degenerated curve in \mathbb{R}^3 . Suppose that the two distorted intervals are $\alpha_1(I)$ and $\alpha_5(I)$. Then $(t_1, t_2, \sqrt{1 - t_1^2 - t_2^2}) = (\sqrt{1 - s_1^2 - s_2^2}, s_1, s_2)$ on the common curve. We may assume that s_1 and t_1 are constants; s_2 and t_2 are variables. Then $t_2 = s_1$ and $s_2 = \sqrt{1 - t_1^2 - t_2^2} = \sqrt{1 - t_1^2 - s_1^2}$, i.e., s_2 and t_2 are also constants. Thus the two distorted intervals have only one common point. It leads to a contradiction. Therefore a δ -fine division does not exist on M. So we shall use a partition of unity in the following Definition 6.2.

A partition of unity $\{\omega_j\}_{j=1}^m$, where each ω_j is of class C^{∞} (see [4, p. 298]) and supp $\omega_j = \overline{\text{supp}\omega_j}$, on a manifold with an atlas $\Theta = \{\alpha_j\}_{j=1}^m$ is said to be dominated by Θ if for each j, supp $\omega_j \subset V_j$, where $\alpha_j : U_j \to V_j$.

Definition 6.2. Let M be a compact differentiable k-manifold and $\Theta = \{\alpha_j\}_{j=1}^m$ an atlas of M with $\alpha_j : U_j \to V_j$. Let $\{\omega_j\}_{j=1}^m$ be a partition of unity dominated by atlas Θ on M. Suppose that a k-form φ is KH-integrable on each V_j . Then the KH-integral of φ on M is defined by

$$(KH)\int_M \varphi = \sum_{j=1}^m (KH)\int_M \varphi \omega_j.$$

Suppose $d\varphi$ is KH-integrable on M and φ is KH-integrable on ∂M . Using the Henstock Lemma; see [8, p. 81] or following the proof of Lemma 3 in [3], we can prove that for each $\epsilon > 0$, there exists $\delta(x) > 0$ such that whenever $D = \{(x, I^{\alpha})\}$ is a Henstock δ -fine division of M, we have

(2)
$$(D)\sum |d\varphi(x,I^{\alpha}) - d\varphi(x,P_{x}(\boldsymbol{U}(J)))| < \epsilon.$$

(3)
$$(D)\sum |\int_{\partial P_x(U(J))}\varphi - \int_{\partial I^{\alpha}}\varphi| < \epsilon.$$

7. STOKES' THEOREM ON MANIFOLDS

In this section, we consider compact oriented differentiable (k + 1)-manifolds M with atlas Θ and boundary ∂M in \mathbb{R}^n . It is known that the boundary ∂M is a k-dimensional manifold without boundary. We assume that the atlas Θ is orientation-preserving.

Let $\varphi = F(dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k})$ be a k-form in \mathbb{R}^n , where F is continuous and suppose that the exterior derivative $d\varphi$ exists in the following sense:

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ be a chart, $x \in M$ with $\alpha(y) = x$ and $\vec{v}_i = (\partial_i \alpha_1(y), \partial_i \alpha_2(y), ..., \partial_i \alpha_n(y))^T$. Let $J = \{1, 2, ..., k+1\}$, $V(J) = (\vec{v}_1, \vec{v}_2, ..., \vec{v}_{k+1})$. Let $\vec{u}_i = h_i \vec{v}_i$, where $0 < h_i \le 1$, i = 1, 2, ..., k+1 and $U(J) = (\vec{u}_1, \vec{u}_2, ..., \vec{u}_{k+1})$.

$$d\varphi = \lim_{\substack{P_x(\boldsymbol{U}(J)) \subset B(x,\delta(x))\\\delta(x) \to 0}} \frac{\int_{\partial P_x(\boldsymbol{U}(J))} \varphi}{SV(P_x(\boldsymbol{U}(J)))}.$$

We stress that when taking limit, the chart is fixed. Recall that $SV(P_x(U(J)))$ is the signed (k + 1)-dimensional volume of $P_x(U(J))$.

More precisely, for each $\epsilon > 0$, there exists $\delta(x) > 0$ such that when $P_x(U(J)) \subset B(x, \delta(x))$, we have

$$\left| d\varphi(x, P_x(\boldsymbol{U}(J))) - \int_{\partial P_x(\boldsymbol{U}(J))} \varphi \right| \le \epsilon |SV(P_x(\boldsymbol{U}(J)))|.$$

Lemma 7.1. Let M be a compact oriented differentiable (k + 1)-manifold and $\varphi = F(dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k})$ a k-form in \mathbb{R}^n , where F is continuous. Suppose that the exterior derivative $d\varphi$ exists with respect to the chart α and $d\varphi$ is α -parametrisable. Then $d\varphi$ is Kurzweil-Henstock integrable on M and

$$\int_M d\varphi = \int_{\partial M} \varphi.$$

Varayu Boonpogkrong

Proof. Assume the chart $\alpha : U \to V$. Let $\epsilon > 0$. Then, by the definition of $d\varphi$, there exists $\delta(x) > 0$ on V such that when $P_x(U(J)) \subset B(x, \delta(x))$, we have

$$\left| d\varphi(x, P_x(\textbf{\textit{U}}(J))) - \int_{\partial P_x(\textbf{\textit{U}}(J))} \varphi \right| \leq \epsilon |SV(P_x(\textbf{\textit{U}}(J)))|$$

We may assume that $B(x, \delta(x)) \subset V$ and inequality (2) and (3) hold. Let $D = \{(x, I^{\alpha})\}$ be a Henstock δ -fine partial division covering $\overline{\operatorname{supp}} d\varphi$ with $x \in \overline{\operatorname{supp}} d\varphi$. We may assume that D is a division of M, since if $I^{\alpha} \cap \overline{\operatorname{supp}} d\varphi = \emptyset$, then $\int_{I^{\alpha}} d\varphi = 0$ and $\int_{\partial I^{\alpha}} \varphi = 0$.

Therefore

$$\begin{split} \left| (D) \sum d\varphi \left(x, I^{\alpha} \right) - \int_{\partial M} \varphi \right| \\ &= \left| (D) \sum d\varphi (x, I^{\alpha}) - (D) \sum \int_{\partial I^{\alpha}} \varphi \right| \\ &\leq \left| (D) \sum \left(d\varphi (x, I^{\alpha}) - d\varphi (x, P_x (U(J)))) \right| \\ &+ \left| (D) \sum \left(\int_{\partial P_x (U(J))} \varphi - \int_{\partial I^{\alpha}} \varphi \right) \right| \\ &+ \left| (D) \sum \left(d\varphi (x, P_x (U(J))) - \int_{\partial P_x (U(J))} \varphi \right) \right| \\ &\leq \left| (D) \sum \left(d\varphi (x, I^{\alpha}) - d\varphi (x, P_x (U(J)))) \right| \\ &+ \left| (D) \sum \left(\int_{\partial P_x (U(J))} \varphi - \int_{\partial I^{\alpha}} \varphi \right) \right| + \epsilon (D) \sum |SV(P_x (U(J)))| \\ &\leq 2\epsilon + \epsilon \beta, \end{split}$$

where β is a constant. Hence

$$\int_{M} d\varphi = \int_{\partial M} \varphi.$$

Theorem 7.2. Let M be a compact oriented differentiable (k + 1)-manifold in \mathbb{R}^n with atlas Θ and $\varphi = F(dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k})$ a k-form in \mathbb{R}^n , where F is continuous. Suppose that the exterior derivative $d\varphi$ and $d(\varphi\gamma)$ exist on M for any $\gamma \in C^{\infty}$ with respect to the atlas Θ . Then

$$\int_M d\varphi = \int_{\partial M} \varphi.$$

1194

Proof. Let $\{\gamma_i\}_{i=1}^m$ be a partition of unity dominated by atlas $\Theta = \{\alpha_i\}_{i=1}^m$ with $\alpha_i : U_i \to V_i$.

Then, for each i, $\overline{\operatorname{supp}\varphi\gamma_i} \subseteq \overline{\operatorname{supp}\gamma_i}$. Applying Lemma 7.1 to $\varphi\gamma_i$, which is α_i -parametrisable with $\alpha_i : U_i \to V_i$, we have

$$\int_M d(\varphi \gamma_i) = \int_{\partial M} \varphi \gamma_i.$$

Note that $d\varphi = \sum_{i=1}^{m} d(\varphi \gamma_i)$. Thus,

$$\int_{M} d\varphi = \sum_{i=1}^{m} \int_{M} d(\varphi \gamma_{i}) = \sum_{i=1}^{m} \int_{\partial M} \varphi \gamma_{i} = \int_{\partial M} \varphi.$$

The strong Henstock differentiability of F can be defined similarly on Manifold as in Definition 4.1 for an n-dimensional space.

Theorem 7.3. Let M be a compact oriented differentiable (k + 1)-manifold in \mathbb{R}^n with atlas Θ and $\varphi = F(dx_{j_1} \wedge dx_{j_2} \wedge \ldots \wedge dx_{j_k})$ a k-form in \mathbb{R}^n , where F is continuous. Suppose that F is strongly Henstock differentiable on M with respect to (k+1)-parallelograms induced by the atlas Θ . Then the exterior derivative $d\varphi$ exists with respect to the atlas Θ and $d\varphi = dF \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}$ on M.

The proof of Theorem 7.3 is similar to that of Theorem 4.2.

References

- 1. F. Acker, The missing link, Math. Intell., 18 (1996), 4-9.
- 2. V. Boonpogkrong, Kurzweil-Henstock integral on manifolds, *Taiwanese J. Math.*, 15 (2011), 559-571.
- 3. V. Boonpogkrong, T. S. Chew and P. Y. Lee, On the divergence theorem on manifolds, *Journal of Mathematical Analysis and Applications*, **397** (2013), 182-190.
- 4. A. Browder, Mathematical Analysis: An Introduction, Springer, 1996.
- 5. J. Hubbard and B. B. Hubbard, Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach, Prentice Hall, 1999.
- J. Kurzweil, On multiplication of Perron integrable functions, *Czechoslovak Math. J.*, 23(98) (1973), 542-566.
- 7. Lee Peng Yee and R. Vyborny, *The Integral: An Easy Approach after Kurzweil and Henstock*, Cambridge University Press, 2000.
- 8. Lee Tuo-Yeong, A multidimensional integration by parts formula for the Henstock-Kurzweil integral, *Mathematica Bohemica*, **133** (2008), 63-74.
- 9. A. Macdonald, Stokes' theorem, Real Anal. Exchange, 27 (2001/2002), 739-748.

Varayu Boonpogkrong

Varayu Boonpogkrong Department of Mathematics and Statistics Prince of Songkla University Hat Yai 90110 Thailand and Centre of Excellence in Mathematics CHE, Si Ayutthaya Rd. Bangkok 10400 Thailand E-mail: varayu.b@psu.ac.th

1196