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DUALITY AND FARKAS-TYPE RESULTS FOR DC INFINITE
PROGRAMMING WITH INEQUALITY CONSTRAINTS

Xiang-Kai Sun*, Sheng-Jie Li and Dan Zhao

Abstract. In this paper, a DC infinite programming problem with inequality
constraints is considered. By using the method of Fenchel conjugate functions, a
dual scheme for the DC infinite programming problem is introduced. Then, under
suitable conditions, weak and strong duality assertions are obtained. Moreover,
by using the obtained duality assertions, some Farkas-type results which charac-
terize the optimal value of the DC infinite programming problem are given. As
applications, the proposed approach is applied to conic programming problems.

1. INTRODUCTION

In this paper, we deal with a new class of DC infinite programming with inequality
constraints given in the following form:

(P )
{

min f(x) − g(x)
s.t. ht(x) ≤ 0, t ∈ T, and x ∈ C,

where T is a nonempty (possibly infinite) index set, C is a nonempty convex subset
of a locally convex space X , and f , g, ht : X → R̄ := R ∪ {+∞}, t ∈ T , are
proper lower semicontinuous, and convex functions. Throughout this paper, we always
assume that

A := C ∩ {x ∈ X : ht(x) ≤ 0, for all t ∈ T} �= ∅.
Moreover, we refer to such problem as DC infinite programming, since the index set
T is infinite, and the objective function is the difference of two convex functions.
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When the space X is finite dimensional, optimization problems with infinite inequality
constraints is called semi-infinite programming.
If g(x) = 0, then, the problem (P ) reduces to the following convex programming

involving infinite constraints:

(P0)
{

min f(x)
s.t. ht(x) ≤ 0, t ∈ T, and x ∈ C.

This problem (P0) has numerous applications in Chebyshev approximation, robotics,
mathematical physics, engineering design, optimal control, cooperative games, trans-
portation problems and robust optimization. It has been studied extensively under
various conditions imposed on the objective function, or the constraint conditions, see
[1-11] and the references cited therein.
DC programming problems are important from both viewpoints of optimization

theory and applications. Many important results have been extensively obtained in the
last decades, see [12-20] and the references therein. On the one hand, such problems
being heavily non-convex can be considered as a special class of quasi-differentiable
programming [21] and thus advanced techniques of variational analysis can be applied,
see [21, 22]. On the other hand, the special convex structure of both plus function and
minus function offers the possibility to use powerful tools of convex analysis in the
study of DC programming problems.
Now, there has been an increasing interest in research in dual problems. The

reason is that they may be easier to solve than the primal ones (which is sometimes
really the case) or that at least they furnish additional information about the primal
ones. At the same time, various dual schemes are proposed for optimization problems,
variational inequalities, and so on. Here, we specially mention the works on duality
defined via convexification techniques due to Boţ et al. [13], Dinh et al. [15, 16]
and Fang et al. [20]. By using the interiority condition, Boţ et al. [13] investigated
Fenchel-Lagrange duality results and Farkas-type lemmas for DC programming with
DC objective functions and finitelymany DC inequality constraints. Dinh et al. [15, 16]
considered the some types Fenchel-Lagrange dual problems for DC conical problems
in terms of the epigraph closure condition. Fang et al. [20] investigated Lagrange
duality results and extended Farkas lemmas for DC infinite programming. However,
there is no paper to deal with Fenchel-Lagrange dual problems for DC programming
problems with DC objective functions and infinitely many inequality constraints. Then,
the purpose of this paper is to obtain strong duality characterizations for (P ) and then
to investigated the Farkas results of (P ), including cone programming problems [15,
16, 25-28], which have received a great deal of attention in recent years. In this paper,
we first recall the closedness qualification condition (CQC) introduced in [24]. We
also give some characterizations of this condition. Note that constraint qualifications
involving subdifferentials have been studied and extensively used, see [25, 26, 29-33]
and the references therein. Our main aims in this paper is to use these constraint
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qualifications to provide complete characterizations for the duality results and Farkas-
type results for problem (P ).
The paper is organized as follows. In Section 2, we recall some notions and give

some preliminary results. In Section 3, we construct the dual problems to (P ), and
prove weak duality and strong duality assertions. By using the duality assertions, we
obtain some Farkas-type results for the problem (P ). In Section 4, we apply these
problems to conic programming problems.

2. MATHEMATICAL PRELIMINARIES

Throughout this paper, let X be a real locally convex vector spaces with its contin-
uous dual spaces X∗, endowed with the weak∗ topologies w(X∗, X). We always use
the notation 〈·, ·〉 for the canonical paring between X and X∗. Let D be a set in X ,
the interior (resp. closure, convex hull, convex cone hull) of D is denoted by int D
(resp. cl D, co D, cone D). Thus if W ⊆ X∗, then cl W denotes the weak∗ closure
of W . We shall adopt the convention that cone D = {0} when D is an empty set.
Let D∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0, ∀x ∈ X} be the dual cone of D. The indicator
function δD : X → R̄ of X is defined by

δD(x) =
{

0, if x ∈ D,
+∞, if x �∈ D.

The support function σD : X∗ → R̄ of D is defined by

σD(x∗) = sup
x∈D

〈x∗, x〉.

Further, let RT be the product space of λ = (λt)t∈T with λt ∈ R for all t ∈ T , let
R(T ) be collection of λ ∈ RT with λt �= 0 for finitely many t ∈ T , and let R

(T )
+ be

the positive cone in R(T ) defined by

R
(T )
+ := {λ ∈ R(T ) : λt ≥ 0 for all t ∈ T}.

Given u ∈ RT and λ ∈ R(T ), and denoting supp λ := {t ∈ T : λt �= 0}, we have

〈λ, u〉 :=
∑
t∈T

λtut =
∑

t∈supp λ

λtut.

Let l : X → R̄ be a proper convex function. The effective domain and the epigraph
are defined by

dom l = {x ∈ X : l(x) < +∞}
and

epi l = {(x, r) ∈ X × R : l(x) ≤ r},



1230 Xiang-Kai Sun, Sheng-Jie Li and Dan Zhao

respectively. l is said to be proper if its effective domain is nonempty and l(x) > −∞,
for all x ∈ X . The conjugate function l∗ : X∗ → R̄ of l is defined by

l∗(x∗) = sup
x∈X

{〈x∗, x〉 − l(x)}.

Let x̄ ∈ dom l. For any ε ≥ 0, the ε-subdifferential of l at x̄ is the convex set defined
by

∂εl(x̄) = {x∗ ∈ X∗ : l(x) ≥ l(x̄) + 〈x∗, x − x̄〉 − ε, ∀x ∈ X}.
When x̄ �∈ dom l, we define that ∂εl(x̄) = ∅. If ε = 0, the set ∂l(x̄) := ∂0l(x̄) is the
classical subdifferential of convex analysis, that is,

∂l(x̄) = {x∗ ∈ X∗ : l(x) ≥ l(x̄) + 〈x∗, x− x̄〉, ∀x ∈ X}.
It is easy to prove that for any x̄ ∈ dom l and x∗ ∈ X∗, the following inequality holds

l(x̄) + l∗(x∗) ≤ 〈x∗, x̄〉+ ε ⇔ x∗ ∈ ∂εl(x̄).

Moreover, following [34], we have

epi l∗ =
⋃
ε≥0

{(x∗, 〈x∗, x̄〉+ ε − l(x̄)) : x∗ ∈ ∂εl(x̄)} .(1)

Let E be a convex set of X . the ε-normal cone to E at a point x̄ ∈ E is defined by

Nε(E, x̄) = {x∗ ∈ X∗ : 〈x∗, x − x̄〉 ≤ ε, for any x ∈ E}.
If ε = 0, N0(E, x̄) is the normal cone N (E, x̄) of convex analysis. Moreover, it is
easy to see that Nε(E, x̄) = ∂εδE(x̄).

Definition 2.1. Let the functions l1, l2 : X → R̄ be given. The infimal convolution
function of l1, l2 is the function l1�l2 : X → R̄ defined by

(l1�l2)(x) = inf
x=x1+x2

{l1(x1) + l2(x2)}.

We say that l1�l2 is exact at x ∈ X if there exist x1, x2 ∈ X such that (l1�l2)(x) =
l1(x1) + l2(x2). Furthermore, we call l1�l2 exact if it is exact at every x ∈ X .

Now, let us recall the following result which will be used in the following section.

Lemma 2.1. (See [30]). Let l1, l2 : X → R̄ be proper, convex and lower semi-
continuous functions such that dom l1 ∩ dom l2 �= ∅. Then, the following relation
holds

epi (l1 + l2)∗ = cl (epi (l∗1�l∗2)) = cl (epi l∗1 + epi l∗2),

where the closure is taken in the product topology of (X∗, τ) × R, for any locally
convex topology τ on X∗ giving X as dual.
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Lemma 2.2. (See [35]). Let l1, l2 : X → R̄ be two proper, convex and lower
semicontinuous functions. Then

inf
x∈X

{l1(x) − l2(x)} = inf
x∗∈X∗ {l

∗
2(x

∗) − l∗1(x
∗)}.

3. MAIN RESULTS

In this section, we first construct the dual problems of (P ), and present the duality
assertions. Then, by using the duality assertions, we investigated some Farkas-type
results for the problem (P ). Now, we first introduce the following closedness condition
which completely characterize the duality of the problem (P ).

Definition 3.1. (See [24]). The problem (P ) is said to satisfy the closedness
qualification condition (CQC), if the set

(CQC) epi f∗ + cone

(⋃
t∈T

epi h∗
t

)
+ epi δ∗C ,

is weak∗ closed in the space X∗ × R.

Remark 3.1. Let A := C ∩ {x ∈ X : ht(x) ≤ 0, for all t ∈ T}. Then, A is a
convex subset of X and the following relation established in [8] holds:

epi δ∗A = cl

(
cone

(⋃
t∈T

epi h∗
t

)
+ epi δ∗C

)
.(2)

The next lemma provides several characterizations of the (CQC) property for DC
infinite programs. The equivalence results of this lemma extend to the general DC
infinite program setting (P ) those recently obtained in [16, Theorem 3.1] for cone-
constrained programs. Moreover, this condition will be crucial in the sequel and it also
deserves some attention for its independent interest.

Lemma 3.1. (See [24]). The following statements are equivalent:

(i) Condition (CQC) holds.
(ii) For any x∗ ∈ X∗,

(3)

(f+δA)∗(x∗)

= min
λ∈R

(T )
+

min
u∗ ,v∗t ∈X∗,

t∈supp λ

⎧⎨
⎩f∗(u∗)+

∑
t∈suppλ

λth
∗
t (v

∗
t )+δ∗C

⎛
⎝x∗−u∗−

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭ .

(iii) For any x̄ ∈ A ∩ dom f and ε ≥ 0, we have the equality



1232 Xiang-Kai Sun, Sheng-Jie Li and Dan Zhao

(4)

∂ε(f + δA)(x̄) =
⋃

λ∈R
(T )
+

⋃
ε1,ε2,εt≥0,t∈supp λ,

ε1+
∑

t∈supp λ λt [εt−ht(x̄)]+ε2=ε⎧⎨
⎩∂ε1f(x̄) +

∑
t∈supp λ

λt∂εtht(x̄) + Nε2(C, x̄)

⎫⎬
⎭ .

Now, we will establish a dual problem to (P ) and give the sufficient conditions
which ensure that the optimal objective value of the primal problem coincides with the
optimal objective value of the dual problem. In order to introduce the dual scheme for
problem (P ), we need the following lemma.

Lemma 3.2. (See [7, 18]). For any x feasible to the problem (P ), we have

g(x) = sup
x∗∈X∗

{〈x∗, x〉 − g∗(x∗)}.

Proof. Since g is proper convex, and lower semicontinuous function, we have

g(x) = g∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − g∗(x∗)} .

This completes the proof.

Note that the problem (P ) can be rewritten as:

(P ) inf
x∈X

{f(x) − g(x) + δA(x)}.

Since g is lower semicontinuous, the standard convexification technique can be applied.
Then, by Lemma 3.2, the problem (P ) becomes:

(P ) inf
x∗∈X∗ inf

x∈X
{f(x) + δA(x) + g(x∗) − 〈x∗, x〉}.

Note that for any x∗ ∈ X∗, the inner infimum of the last formula

(Px∗
) inf

x∈X
{f(x) + δA(x) + g(x∗) − 〈x∗, x〉}

is a convex optimization problem, and its Fenchel-Lagrange dual problem is

(Dx∗
) sup

λ∈R
(T )
+ , u∗,v∗

t ∈X∗,

t∈supp λ

⎧⎨
⎩g∗(x∗)−f∗(u∗)−

∑
t∈supp λ

λth
∗
t (v

∗
t )−δ∗C

⎛
⎝x∗−u∗−

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭ .

Thus, this reformulation motivates us to define the following dual problem of (P ):

(D) inf
x∗∈X∗ sup

λ∈R
(T )
+ , u∗,v∗

t ∈X∗,

t∈suppλ

⎧⎨
⎩g∗(x∗)−f∗(u∗)−

∑
t∈supp λ

λth
∗
t (v

∗
t )−δ∗C

⎛
⎝x∗−u∗−

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭.
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Here and throughout this paper, following Fang et al. [17, 19] and Zalinescu [36], we
adapt the convention that

(+∞) − (+∞) = (−∞) − (−∞) = (+∞) + (−∞) = (−∞) + (+∞) = +∞,

0 · (+∞) = +∞ and 0 · (−∞) = 0.

Now, we will study the weak dualities and the strong dualities between (P ) and
(D). For the optimization problem (P ), we denote by val(P ) its optimal objective
value and this notation is extended to the optimization problems that we use in this
paper.

Definition 3.2. We say that

(i) the weak duality between (P ) and (D) holds, if val(P ) ≥ val(D).
(ii) the strong duality between (P ) and (D) holds, if val(P ) = val(D), and for any

x∗ ∈ X∗ satisfying val(Dx∗
) = val(D), the dual problem (Dx∗

) has an optimal
solution.

Remark 3.2. It is easy to see that the strong duality between (P ) and (D) holds
if and only if

val(P ) = inf
x∗∈X∗ max

λ∈R
(T )
+ , u∗,v∗t ∈X∗,

t∈supp λ⎧⎨
⎩g∗(x∗)−f∗(u∗)−

∑
t∈supp λ

λth
∗
t (v

∗
t )−δ∗C

⎛
⎝x∗−u∗−

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭ .

Theorem 3.1. The weak duality between (P ) and (D) is fulfilled, namely, val(P ) ≥
val(D).

Proof. It follows from the definition of conjugate functions that for any λ ∈ RT
+,

t ∈ supp λ, x∗, u∗, v∗t ∈ X∗, and x ∈ A, we have

g∗(x∗)− f∗(u∗) −
∑

t∈supp λ

λth
∗
t (v

∗
t )− δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠

≤ g∗(x∗)− 〈u∗, x〉+ f(x)−
∑

t∈supp λ

λt〈v∗t , x〉

+
∑

t∈supp λ

λtht(x)−
〈

x∗ − u∗ −
∑

t∈supp λ

λtv
∗
t , x

〉

≤ g∗(x∗)− 〈x∗, x〉+ f(x) +
∑

t∈supp λ

λtht(x).
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Thus, for any x ∈ A, we have

inf
x∗∈X∗ sup

λ∈R
(T )
+ , u∗,v∗t ∈X∗,

t∈supp λ

{
g∗(x∗)− f∗(u∗)

−
∑

t∈supp λ

λth
∗
t (v

∗
t )− δ∗C

(
x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

)}

≤ inf
x∗∈X∗ {g

∗(x∗) − 〈x∗, x〉}+ f(x) +
∑

t∈supp λ

λtht(x)

= −g∗∗(x) + f(x) +
∑

t∈supp λ

λtht(x)

≤ f(x) − g(x),

which means that val(P ) ≥ val(D), and the proof is complete.

Theorem 3.2. If (CQC) is fulfilled, then, the strong duality between (P ) and (D)
holds, namely, val(P ) = val(D), and for any x∗ ∈ X∗ satisfying val(Dx∗

) = val(D),
the dual problem (Dx∗

) has an optimal solution.

Proof. Since the problem (P ) can be rewritten as

inf
x∈X

{(f + δA)(x)− g(x)},

it follows from Lemma 2.2 that

inf
x∈X

{(f + δA)(x) − g(x)} = inf
x∗∈X∗ {g

∗(x∗)− (f + δA)∗(x∗)}.(5)

By Lemma 3.1 and the condition (CQC), we get

(f + δA)∗(x∗)

= min
λ∈R

(T )
+

min
u∗,v∗t ∈X∗,

t∈supp λ

⎧⎨
⎩f∗(u∗) +

∑
t∈supp λ

λth
∗
t (v

∗
t ) + δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭ .
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This equality and (5) leads to

val(P ) = inf
x∈X

{(f + δA)(x)− g(x)}

= inf
w∗∈X∗

⎧⎪⎨
⎪⎩g∗(x∗) − min

λ∈R
(T )
+ , u∗ ,v∗t ∈X∗,

t∈supp λ⎧⎨
⎩f∗(u∗) +

∑
t∈supp λ

λth
∗
t (v

∗
t ) + δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭
⎫⎬
⎭

= inf
x∗∈X∗ max

λ∈R
(T )
+ , u∗ ,v∗t ∈X∗,

t∈supp λ

{g∗(x∗) − f∗(u∗)

−
∑

t∈supp λ

λth
∗
t (v

∗
t ) − δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭ .

Thus, by Remark 3.2, we have that the strong duality between (P ) and (D) holds, and
the proof is completed.

By using the duality assertions presented in the previous theorems, we can obtain
the following Farkas-type results.

Theorem 3.3. If the condition (CQC) is satisfied, then, for any α ∈ R, the
following statements are equivalent:

(i) x ∈ C, ht(x) ≤ 0, t ∈ T =⇒ f(x)− g(x) ≥ α.

(ii) (0,−α) + epi g∗ ⊆ epi f∗ + cone
(⋃

t∈T epi h∗
t

)
+ epi δ∗C .

(iii) For any x∗ ∈ X∗, there exist λ ∈ R
(T )
+ , u∗, v∗t ∈ X∗ and t ∈ supp λ such that

g∗(x∗)− f∗(u∗) −
∑

t∈supp λ

λth
∗
t (v

∗
t )− δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠ ≥ α.

Proof. (i)⇒ (ii). Suppose that (i) holds. Then, for any x ∈ A, f(x) ≥ g(x) + α.
It follows that (f + δA)(x) ≥ g(x) + α, which means that (g + α)∗ ≥ (f + δA)∗. In
turn, this gives that

(0,−α) + epi g∗ = epi (g + α)∗ ⊆ epi (f + δA)∗.
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Moreover, since the condition (CQC) is satisfied, it follows from Lemma 2.1 and (2)
that

epi (f + δA)∗ = cl (epif∗ + epi δ∗A)

= cl

(
epif∗ + cl

(
cone

(⋃
t∈T

epi h∗
t

)
+ epi δ∗C

))

= cl

(
epif∗ + cone

(⋃
t∈T

epi h∗
t

)
+ epi δ∗C

)

= epif∗ + cone

(⋃
t∈T

epi h∗
t

)
+ epi δ∗C .

Thus,

(0,−α) + epi g∗ ⊆ epi f∗ + cone

(⋃
t∈T

epi h∗
t

)
+ epi δ∗C ,

and (ii) holds.
(ii)⇒ (iii). Suppose that (ii) holds. As (x∗, g∗(x∗)) ∈ epi g∗, by (ii), we have

(x∗, g∗(x∗) − α) ∈ epi f∗ + cone

(⋃
t∈T

epi h∗
t

)
+ epi δ∗C ,

Then, there exist λ ∈ R
(T )
+ , (u∗, α1) ∈ epi f∗, (w∗, α2) ∈ epi δ∗C and (v∗t , βt) ∈ epi h∗

t

with t ∈ supp λ such that

(x∗, g∗(x∗) − α) = (u∗, α1) +
∑

t∈supp λ

λt(v∗t , βt) + (w∗, α2),

which means that

(6) x∗ = u∗ +
∑

t∈supp λ

λtv
∗
t + w∗

and

(7) g∗(x∗) − α = α1 +
∑

t∈supp λ

λtβt + α2.

Since f∗(u∗) ≤ α1, h∗
t (v

∗
t ) ≤ βt and δ∗C(w∗) ≤ α2, it follows from (6) and (7) that

g∗(x∗)− α ≥ f∗(u∗) +
∑

t∈supp λ

λth
∗
t (v

∗
t ) + δ∗C(w∗)

= f∗(u∗) +
∑

t∈supp λ

λth
∗
t (v

∗
t ) + δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠ .
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Thus,

g∗(x∗)− f∗(u∗) −
∑

t∈supp λ

λth
∗
t (v

∗
t )− δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠ ≥ α,

and (iii) holds.
(iii) ⇒ (i). Suppose that (iii) holds. Then, for any x∗ ∈ X∗, there exist λ ∈

R
(T )
+ , u∗, v∗t ∈ X∗ and t ∈ supp λ such that

g∗(x∗)− f∗(u∗) −
∑

t∈supp λ

λth
∗
t (v

∗
t )− δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠ ≥ α,

which implies that

sup
λ∈R

(T )
+ , u∗ ,v∗t ∈X∗,

t∈supp λ

{g∗(x∗) − f∗(u∗)

−
∑

t∈supp λ

λth
∗
t (v

∗
t ) − δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭ ≥ α.

Therefore, it comes that

inf
x∗∈X∗ sup

λ∈R
(T )
+ , u∗,v∗t ∈X∗,

t∈supp λ

{g∗(x∗) − f∗(u∗)

−
∑

t∈supp λ

λth
∗
t (v

∗
t ) − δ∗C

⎛
⎝x∗ − u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭ ≥ α.

Then,
val(D) ≥ α.

By Theorem 3.1, we obtain that

val(P ) ≥ α,

and the proof is complete.

Finally, in this section, we consider a particular case of the DC problem (P ) with
g(x) = 0 when (P ) reduces to the following convex programming involving infinite
constraints:

(P0)
{

inf f(x)
s.t. ht(x) ≤ 0, t ∈ T, and x ∈ C.
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In this case, the dual problem of (P0) becomes:

(D0) sup
λ∈R

(T )
+

, u∗ ,v∗t ∈X∗,

t∈supp λ

⎧⎨
⎩−f∗(u∗)−

∑
t∈supp λ

λth
∗
t (v

∗
t )−δ∗C

⎛
⎝−u∗−

∑
t∈supp λ

λtv
∗
t

⎞
⎠
⎫⎬
⎭ .

Since g = 0, it follows that dom g∗ = {0}. Hence, Theorems 3.4 (resp. 3.5, 3.6)
follows from Theorems 3.1 (resp. 3.2, 3.3) directly.

Theorem 3.4. The weak duality between (P0) and (D0) is fulfilled, namely,
val(P0) ≥ val(D0).

Theorem 3.5. If the condition (CQC) is fulfilled, then the strong duality between
(P0) and (D0) holds, namely, val(P0) = val(D0) and the dual problem (D0) has an
optimal solution.

Theorem 3.6. If the condition (CQC) is satisfied, then, for any α ∈ R, the
following statements are equivalent:
(i) x ∈ C, ht(x) ≤ 0, t ∈ T =⇒ f(x) ≥ α.
(ii) (0,−α) ⊆ epi f∗ + cone (

⋃
t∈T epi h∗

t ) + epi δ∗C .

(iii) There exist λ ∈ R
(T )
+ , u∗, v∗t ∈ X∗ and t ∈ supp λ such that

−f∗(u∗) −
∑

t∈supp λ

λth
∗
t (v

∗
t ) − δ∗C

⎛
⎝−u∗ −

∑
t∈supp λ

λtv
∗
t

⎞
⎠ ≥ α.

4. APPLICATIONS

Throughout this section, let X and Y be real locally convex Hausdorff topological
vector spaces, C ⊆ X be a nonempty convex set. Let S ⊆ Y be a nonempty closed
convex cone which defined the partial order of Y , namely: y1 ≤S y2 ⇐⇒ y2−y1 ∈ S,

for any y1, y2 ∈ Y. We attach an element +∞ �∈ Y which is a greatest element with
respect to “ ≤S” and let Y • = Y ∪ {+∞}. The following operations are defined on
Y •: y + (+∞) = (+∞) + y = +∞ and t(+∞) = +∞, for any y ∈ Y and t ≥ 0.
Let f, g : X → R̄ be two proper convex, and lower semicontinuous functions, and
h : X → Y • be a proper S-convex function. Moreover, we assume that h is star
S-lower semicontinuous function, that is, the function (λh) is a lower semicontinuous
function for any λ ∈ K∗. Consider the following conic programming problem:

(P1)
{

inf f(x)− g(x)
s.t. h(x) ∈ −S, and x ∈ C.

This problem has been studied extensively under various degrees of restrictions
imposed on f , g and h, or on the underlying space, see [15, 16, 23, 24] and the
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references therein. As in [7, 25], for each λ ∈ K∗, the function (λh) : X → R̄ is
defined by

(λh)(x) =
{ 〈λ, h(x)〉, if x ∈ dom h,

+∞, otherwise.

It is easy to see that h is S-convex if and only if (λh) is a convex function for each
λ ∈ K∗. Moreover, the problem (P )1 can be viewed as an example of (P ) by setting

T = S∗, hλ = λh for any λ ∈ T = S∗.

As before, we use A to denote the solution set:

A := {x ∈ C : (λh)(x) ≤ 0, ∀λ ∈ S∗} = {x ∈ C : h(x) ∈ −S}.

Moreover, since
⋃

λ∈S∗ epi (λh)∗ is a convex cone (see [37]),

cone

( ⋃
λ∈S∗

epi (λh)∗
)

=
⋃

λ∈S∗
epi (λh)∗,

and the closedness qualification conditions (CQC) introduced in Section 3 becomes

(CQC)1 epi f∗ +
⋃

λ∈S∗
epi (λh)∗ + epi δ∗C is weak

∗ closed in X∗ × R.

Note that the regularity condition (CQC)1 was renamed as (CCCQ) or C1(f ; A) or
(CC) in other papers, see [9, 15, 16].
Now, we establish necessary and sufficient conditions for this closedness quali-

fication condition (CQC)1. This condition will be crucial in the sequel and it also
deserves some attention for its independent interest.

Lemma 4.1. (See [16]). The following statements are equivalent:
(i) Condition (CQC)1 holds.

(ii) For any x∗ ∈ X∗,

(8) (f + δA)∗(x∗) = min
λ∈S∗,u∗,v∗∈X∗

{f∗(u∗) + (λh)∗(v∗) + δ∗C(x∗ − u∗ − v∗)}.

(iii) For any x̄ ∈ A ∩ dom f and ε ≥ 0, we have the equality

(9) ∂ε(f+δA)(x̄) =
⋃

λ∈S∗

⋃
ε1,ε2,ε3,≥0,

ε1+ε2+ε3=ε+(λh)(x̄)

{∂ε1f(x̄)+∂ε2(λh)(x̄)+Nε3(C, x̄)} .
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By the Similar methods of Section 3, we can conduct construct the dual problem
of (P1) as follows:

(D1) inf
x∗∈X∗ sup

λ∈S∗, u∗ ,v∗∈X∗
{g∗(x∗) − f∗(u∗)− (λh)∗(v∗) − δ∗C(x∗ − u∗ − v∗)}.

Obviously,
val(D1) = inf

x∗∈X∗ val(Dx∗
1 ),

where (Dx∗
1 ) is defined as

(Dx∗
1 ) sup

λ∈S∗, u∗,v∗∈X∗
{g∗(x∗)− f∗(u∗) − (λh)∗(v∗) − δ∗C(x∗ − u∗ − v∗)}.

Definition 4.1. We say that

(i) the weak duality between (P1) and (D1) holds, if val(P1) ≥ val(D1).

(ii) the strong duality between (P1) and (D1) holds, if val(P1) = val(D1), and for
any x∗ ∈ X∗ satisfying val(Dx∗

1 ) = val(D1), the dual problem (Dx∗
1 ) has an

optimal solution.

Remark 4.1. It is easy to see that the strong duality between (P1) and (D1) holds
if and only if

val(P1) = inf
x∗∈X∗ max

λ∈S∗, u∗ ,v∗∈X∗{g
∗(x∗) − f∗(u∗) − (λh)∗(v∗)− δ∗C(x∗ − u∗ − v∗)}.

Theorem 4.1 (resp. 4.2, 4.3) can be derived from Theorems 3.1 (resp. 3.2, 3.3)
directly. These results were recently established in [15, 16].

Theorem 4.1. The weak duality between (P1) and (D1) is fulfilled, namely,
val(P1) ≥ val(D1).

Theorem 4.2. If the condition (CQC)1 is fulfilled, then the strong duality between
(P1) and (D1) holds, namely, val(P1) = val(D1), and for any x∗ ∈ X∗ satisfying
val(Dx∗

1 ) = val(D1), the dual problem (Dx∗
1 ) has an optimal solution.

Theorem 4.3. If the condition (CQC)1 is satisfied, then, for any α ∈ R, the
following statements are equivalent:

(i) x ∈ C, h(x) ∈ −S =⇒ f(x) − g(x) ≥ α.

(ii) (0,−α) + epi g∗ ⊆ epi f∗ +
⋃

λ∈S∗ epi (λh)∗ + epi δ∗C .

(iii) For any x∗ ∈ X∗, there exist λ ∈ S∗, u∗, v∗ ∈ X∗ such that

g∗(x∗) − f∗(u∗) − (λh)∗(v∗) − δ∗C(x∗ − u∗ − v∗) ≥ α.



Duality and Farkas-type Results for DC Infinite Programming with Inequality Constraints 1241

Finally, in this section, we consider a particular case of the problem (P1) with
g(x) = 0 when (P1) reduces to the following convex programming:

(P2)
{

inf f(x)
s.t. h(x) ∈ −S, and x ∈ C.

In this case, the dual problem of (P0) becomes:

(D2) sup
λ∈S∗, u∗ ,v∗∈X∗

{−f∗(u∗) − (λh)∗(v∗) − δ∗C(−u∗ − v∗)}.

Similarly, we can easily obtain the following theorems. These results were recently
established in [25, 26].

Theorem 4.4. The weak duality between (P2) and (D2) is fulfilled, namely val(P2)
≥ val(D2).

Theorem 4.5. If the condition (CQC)1 is fulfilled, then the strong duality between
(P2) and (D2) holds, namely val(P2) = val(D2) and the dual problem (D2) has an
optimal solution.

Theorem 4.6. If the condition (CQC)1 is satisfied, then, for any α ∈ R, the
following statements are equivalent:
(i) x ∈ C, h(x) ∈ −S =⇒ f(x) ≥ α.
(ii) (0,−α) ⊆ epi f∗ +

⋃
λ∈S∗ epi (λh)∗ + epi δ∗C .

(iii) There exist λ ∈ S∗, u∗, v∗ ∈ X∗ such that

−f∗(u∗) − (λh)∗(v∗) − δ∗C(−u∗ − v∗) ≥ α.

5. CONCLUSION

In this paper, we first introduce some closedness qualification conditions for a
DC infinite programming problem with inequality constraints. We also recall some
characterizations of these closedness qualification conditions. Then, by using these
constraint qualifications, we investigate the duality results and Farkas-type results for
this DC infinite programming problem. Our results generalize and rediscover some
results in cone-convex optimization problems.
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for solvability of systems of infinite convex inequalities, Nonlinear Anal., 68 (2008),
1184-1194.

12. J. E. Martinez-Legaz and M. Volle, Duality in DC programming: The case of several
DC constraints, J. Math. Anal. Appl., 237 (1999), 657-671.
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