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INFINITELY MANY HOMOCLINIC ORBITS OF SECOND-ORDER
p-LAPLACIAN SYSTEMS

Xiaoyan Lin and X. H. Tang

Abstract. In this paper, we give several new sufficient conditions for the existence
of infinitely many homoclinic orbits of the second-order ordinary p-Laplacian
system

d

dt

(|u̇(t)|p−2u̇(t)
) − a(t)|u(t)|p−2u(t) + ∇W (t, u(t)) = 0,

where p > 1, t ∈ R, u ∈ R
N , a ∈ C(R, R) and W ∈ C1(R × R

N , R) are no
periodic in t, which greatly improve the known results due to Rabinowitz and
Willem.

1. INTRODUCTION

Consider the second-order ordinary p-Laplacian system

(1.1)
d

dt

(|u̇(t)|p−2u̇(t)
) − a(t)|u(t)|p−2u(t) + ∇W (t, u(t)) = 0,

where p > 1, t ∈ R, u ∈ R
N , a : R → R and W : R × RN → R. As usual, we say

that a solution u(t) of (1.1) is homoclinic (to 0) if u(t) → 0 as t → ±∞. In addition,
if u(t) �≡ 0 then u(t) is called a nontrivial homoclinic solution.
It is well-known that homoclinic orbits play an important role in analyzing the

chaos of dynamical systems. If a system has the transversely intersected homoclinic
orbits, then it must be chaotic. If it has the smoothly connected homoclinic orbits,
then it cannot stand the perturbation, its perturbed system probably product chaotic.
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Therefore, it is of practical importance and mathematical significance to consider the
existence of homoclinic orbits of (1.1) emanating from 0.
When p = 2, system (1.1) reduces second-order Hamiltonian system

(1.2) ü(t) − a(t)u(t) + ∇W (t, u(t)) = 0.

In recent years, the existence and multiplicity of homoclinic orbits for Hamiltonian
systems have been investigated in many papers via variational methods and many results
were obtained based on various hypotheses on the potential functions, see, e.g., [1, 3-10,
12, 13, 19-23, 25-27, 29-32].
In the last decade there has been an increasing interest in the study of ordinary

differential systems driven by the p-Laplacian (or the generalization of Laplacian), see
[14-18, 28] and the references cited therein. In most of these papers, the well-known
global Ambrosetti-Rabinowitz superquadratic condition was commonly assumed:

(AR) there exists μ > p such that

0 < μW (t, x) ≤ (∇W (t, x), x), ∀ (t, x) ∈ R × (RN \ {0}),

where and in the sequel, (·, ·) denotes the standard inner product in R
N and | · | is the

induced norm.
In the present paper, we are interested in the existence of infinitely many homo-

clinic solutions for system (1.1), where a(t) and W (t, x) are no periodic in t. Under
some weaker assumptions on W (t, x) than (AR), we establish some existence criteria
to guarantee that system (1.1) has infinitely many homoclinic solutions by using the
Symmetric Mountain Pass Theorem.
Our main results are the following theorems.

Theorem 1.1. Assume that a and W satisfy the following assumptions:

(A) a ∈ C(R, (0,∞)) and a(t) → +∞ as |t| → ∞;
(W1) W (t, x) = W1(t, x)− W2(t, x), W1, W2 ∈ C1(R × RN , R), W2(t, 0) ≡ 0, and

there are constants μ > p and � ∈ [p, μ) such that

0 < μW1(t, x) ≤ (∇W1(t, x), x), ∀ (t, x) ∈ R × R
N \ {0},

and

W2(t, x) ≥ 0, (∇W2(t, x), x) ≤ �W2(t, x), ∀ (t, x) ∈ R × R
N ;

(W2) There is a R > 0 such that

1
a(t)

|∇W (t, x)| = o(|x|p−1) as x → 0
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uniformly in t ∈ (−∞,−R] ∪ [R, +∞).

(W3) W (t,−x) = W (t, x), ∀ (t, x) ∈ R × R
N .

Then there exists an unbounded sequence of homoclinic solutions for system (1.1).

Theorem 1.2. Assume that a and W satisfy (A), (W3) and the following assump-
tions:

(W1′) W (t, x) = W1(t, x)−W2(t, x), W1, W2 ∈ C1(R×RN , R), W2(t, 0) ≡ 0, and
there are constants μ > p and � ∈ [p, μ) such that

0 < μW1(t, x) ≤ (∇W1(t, x), x), ∀ (t, x) ∈ R × (RN \ {0}),
and

(∇W2(t, x), x) ≤ �W2(t, x), ∀ (t, x) ∈ R × R
N ;

(W2′) 1
a(t) |∇W (t, x)| = o(|x|p−1) as x → 0 uniformly with respect to t ∈ R.

Then there exists an unbounded sequence of homoclinic solutions for system (1.1).

Theorem 1.3. Assume that a andW satisfy (A), (W2′) and (W3) and the following
assumptions:

(W4) For any r > 0, there exist α, β > 0 and ν < p such that

0≤
(

p+
1

α+β|x|ν
)

W (t, x)≤(∇W (t, x), x), ∀ (t, x)∈R×{x ∈ R
N : |x|≥r};

(W5) For any γ > 0 and ε > 0

lim
s→+∞ s−p

∫ t+ε

t−ε
min
|x|≥1

W (τ, sx)dτ = +∞

uniformly with respect to t ∈ [−γ, γ].

Then there exists an unbounded sequence of homoclinic solutions for system (1.1).

Remark 1.4. If assumption (AR) holds, then (W4) also holds by choosing α >
1/(μ− p), β > 0 and ν ∈ (0, p). In addition, by (AR), we have

W (t, sx) ≥ sμW (t, x) for (t, x) ∈ R × R
N , s ≥ 1.

It follows that for any γ > 0 and ε > 0

s−p

∫ t+ε

t−ε
min
|x|≥1

W (τ, sx)dτ ≥ sμ−p

∫ t+ε

t−ε
min
|x|≥1

W (τ, x)dτ

≥ 2εsμ−p min
−γ−ε≤τ≤γ+ε,|x|≥1

W (τ, x)

→ +∞, s → +∞
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uniformly with respect to t ∈ [−γ, γ]. This shows that (AR) implies (W5).

The rest of the this paper is organized as follows: In Section 2, we introduce some
notations and preliminary results, and establish an interesting imbedding inequality from
W 1,p(R, RN) into L∞(R, RN), moreover, the constant in the imbedding inequality is
the best possible. In Section 3, we complete the proofs of Theorems 1.1-1.3. In Section
4, we give some examples to to illustrate our results.
Throughout this paper, we let q ∈ (0,∞) such that 1/p + 1/q = 1.

2. PRELIMINARIES

Let

E =
{

u ∈ W 1,p(R, R
N) :

∫
R

[|u̇(t)|p + a(t)|u(t)|p] dt < +∞
}

and for u ∈ E , let

‖u‖ =
{∫

R

[|u̇(t)|p + a(t)|u(t)|p] dt

}1/p

.

Then E is a uniform convex Banach space with this norm, see [11].
Let I : E → R be defined by

(2.1) I(u) =
1
p
‖u‖p −

∫
R

W (t, u(t))dt.

If (A), (W1) and (W2) or (W1′) and (W2′) hold, then I ∈ C1(E, R) and one can easily
check that
(2.2)

〈I ′(u), v〉 =
∫

R

[|u̇(t)|p−2(u̇(t), v̇(t)) + a(t)|u(t)|p−2(u(t), v(t))− (∇W (t, u(t)), v(t))
]
dt.

Furthermore, the critical points of I in E are classical solutions of (1.1) with u(±∞) =
0.

We will obtain the critical points of I by using the Symmetric Mountain Pass
Theorem. Since the minimax characterisation provides the critical value it is important
for what follows. Therefore, we state this theorem precisely.

Lemma 2.1. ([24]). Let E be a real Banach space and I ∈ C1(E, R) with I
even. Suppose that I satisfies (PS)-condition and the following conditions:

(i) I(0) = 0;
(ii) there exist constants ρ, α > 0 such that I |tialBρ(0) ≥ α;
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(iii) for each finite dimensional subspace E ′ ⊂ E , there is r = r(E ′) > 0 such that
I(u) ≤ 0 for u ∈ E ′ \ Br(0), where Br(0) is an open ball in E of radius r
centered at 0.

Then I possesses an unbounded sequence of critical values.

Remark 2.2. As shown in [2], a deformation lemma can be proved with condition
(C) replacing the usual (PS)-condition, and it turns out that Lemmas 2.1 holds true under
condition (C). We say I satisfies condition (C), i.e., for every sequence {uk} ⊂ E ,
{uk} has a convergent subsequence if I(uk) is bounded and (1 + ‖uk‖)‖I ′(uk)‖ → 0
as k → ∞.
Lemma 2.3. For u ∈ W 1,p(R, RN)

(2.3) ‖u‖L∞(R) ≤
(

p − 1
2q

)1/pq [∫
R

(|u̇(s)|p + |u(s)|p) ds

]1/p

;

and for u ∈ E

(2.4) ‖u‖L∞(R) ≤
(

p − 1
2qa∗

)1/pq

‖u‖,

(2.5) |u(t)| ≤ (p− 1)1/pq

{∫ ∞

t
[a(s)]−1/q [|u̇(s)|p + a(s)|u(s)|p] ds

}1/p

, t ∈ R,

and

(2.6) |u(t)| ≤ (p− 1)1/pq

{∫ t

−∞
[a(s)]−1/q [|u̇(s)|p + a(s)|u(s)|p] ds

}1/p

, t ∈ R,

where a∗ = min{a(t) : t ∈ R}.

Proof. Since u ∈ W 1,p(R, R
N), it follows that∫

R

(|u̇(t)|p + |u(t)|p) dt < ∞,

and so
lim

r→∞

∫
|t|≥r

(|u̇(t)|p + |u(t)|p) dt = 0.

It is not difficulty to show that lim|t|→∞ |u(t)| = 0, see, e.g. [(2.10), 28]. Hence, if
u ∈ W 1,p(R, R

N), then there exists t∗ ∈ (−∞,∞) such that

(2.7) |u(t∗)| = max
t∈R

|u(t)| = ‖u‖L∞(R).

Choose two sequences {tk} and {t−k} such that
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· · · < t−3 < t−2 < t−1 < t∗ < t1 < t2 < t3 < · · · ,

lim
k→∞

tk = +∞, lim
k→∞

t−k = −∞,

and
lim

k→∞
|u(tk)| = lim

k→∞
|u(t−k)| = 0.

Observe that

(2.8) |u(t∗)|p = |u(tk)|p − p

∫ tk

t∗
|u(s)|p−2(u(s), u̇(s))ds,

and

(2.9) |u(t∗)|p = |u(t−k)|p + p

∫ t∗

t−k

|u(s)|p−2(u(s), u̇(s))ds.

From (2.8), (2.9) and Young’s inequality, we have

|u(t∗)|p =
1
2

(|u(tk)|p + |u(t−k)|p) − p

2

∫ tk

t∗
|u(s)|p−2(u(s), u̇(s))ds

+
p

2

∫ t∗

t−k

|u(s)|p−2(u(s), u̇(s))ds

≤ 1
2

(|u(tk)|p + |u(t−k)|p) +
p

2

∫ tk

t−k

|u(s)|p−1|u̇(s)|ds

≤ 1
2

(|u(tk)|p + |u(t−k)|p) +
(p − 1)1/q

2

∫ tk

t−k

(|u̇(s)|p + |u(s)|p) ds, k ∈ N.

Let k → ∞ in the above, we obtain

|u(t∗)|p ≤ (p− 1)1/q

2

∫ ∞

−∞
(|u̇(s)|p + |u(s)|p) ds,

which, together with (2.7), implies that (2.3) holds.
For u ∈ E , we have by (2.8), (2.9) and Young’s inequality,

|u(t∗)|p

≤ 1
2

(|u(tk)|p + |u(t−k)|p) +
p

2

∫ tk

t−k

|u(s)|p−1|u̇(s)|ds

≤ 1
2

(|u(tk)|p + |u(t−k)|p) +
(p − 1)1/q

2

∫ tk

t−k

[a(s)]−1/q (|u̇(s)|p + a(s)|u(s)|p) ds

≤ 1
2

(|u(tk)|p + |u(t−k)|p) +
(

p − 1
2qa∗

)1/q ∫ tk

t−k

(|u̇(s)|p + a(s)|u(s)|p) ds, k ∈ N.
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Let k → ∞ in the above, we obtain

|u(t∗)|p ≤
(

p − 1
2qa∗

)1/q ∫ ∞

−∞
[|u̇(s)|p + a(s)|u(s)|p] ds,

which, together with (2.7), implies that (2.4) holds.
For any t ∈ R, choose k ∈ N such that t−k < t < tk . Then we have

(2.10) |u(t)|p = |u(tk)|p − p

∫ tk

t
|u(s)|p−2(u(s), u̇(s))ds,

and

(2.11) |u(t)|p = |u(t−k)|p + 2
∫ t

t−k

|u(s)|p−2(u(s), u̇(s))ds.

By (2.10) and Young’s inequality, we have

|u(t)|p ≤ |u(tk)|p + p

∫ tk

t
|u(s)|p−1|u̇(s)|ds

≤ |u(tk)|p + (p − 1)1/q

∫ tk

t
[a(s)]−1/q (|u̇(s)|p + a(s)|u(s)|p) ds, k ∈ N.

Let k → ∞ in the above, we obtain

|u(t)|p ≤ (p − 1)1/q

∫ ∞

t
[a(s)]−1/q [|u̇(s)|p + a(s)|u(s)|p] ds,

which implies that (2.5) holds.
Similarly, (2.6) can be proved by using (2.11) insteads of (2.10). The proof is

complete.

Remark 2.4. The constant
(

p−1
2q

)1/pq
in (2.3) is the best possible. For example,

let
u(t) =

(
e−|t|/(p−1)1/p

, 0, · · · , 0
)	 ∈ R

N .

Then
‖u‖L∞(R) = |u(0)| = 1,

and ∫
R

[|u̇(s)|p + |u(s)|p] ds =
2p

p − 1

∫ ∞

0
e−pt/(p−1)1/p

dt =
2

(p − 1)1/q
.

This shows that the constant
(

p−1
2q

)1/pq
in (2.3) is the best possible.
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Lemma 2.5. Assume that (W1) or (W1′) hold. Then for every (t, x) ∈ R × R
N ,

(i) s−μW1(t, sx) is nondecreasing on (0, +∞);
(ii) s−�W2(t, sx) is nonincreasing on (0, +∞).
The proof of Lemma 2.5 is routine and so we omit it.

3. PROOFS OF THEOREMS

Proof of Theorem 1.1. It is clear that I(0) = 0 and (W3) implies that I is even.
We first show that I satisfies the (PS)-condition. Assume that {uk}k∈N ⊂ E is a
sequence such that {I(uk)}k∈N is bounded and I ′(uk) → 0 as k → +∞. Then there
exists a constant c > 0 such that

(3.1) |I(uk)| ≤ c, ‖I ′(uk)‖E∗ ≤ μc for k ∈ N.

From (2.1), (2.2), (3.1) and (W1), we obtain

pc + pc‖uk‖
≥ pI(uk) − p

μ
〈I ′(uk), uk〉

=
μ − p

μ
‖uk‖p + p

∫
R

[
W2(t, uk(t)) − 1

μ
(∇W2(t, uk(t)), uk(t))

]
dt

−p

∫
R

[
W1(t, uk(t)) − 1

μ
(∇W1(t, uk(t)), uk(t))

]
dt

≥ μ − p

μ
‖uk‖p, k ∈ N.

It follows that there exists a constant A > 0 such that

(3.2) ‖uk‖ ≤ A for k ∈ N.

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E . For
any given number ε > 0, by (W2), we can choose ξ > 0 such that

(3.3) |∇W (t, x)| ≤ εa(t)|x|p−1 for |t| ≥ R, and |x| ≤ ξ.

Since a(t) → +∞ as t → ±∞ , we can also choose T > R such that

(3.4) a(t) ≥ (p − 1)Apq

ξpq
, |t| ≥ T.

By (2.5), (3.2) and (3.4), we have

(3.5)

|uk(t)|p ≤ (p − 1)1/q

∫ ∞

t
[a(s)]−1/q [|u̇k(s)|p + a(s)|uk(s)|p] ds

≤ ξp

Ap

∫ ∞

t
[|u̇k(s)|p + a(s)|uk(s)|p] ds

≤ ξp

Ap
‖uk‖p ≤ ξp for t ≥ T, k ∈ N.
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Similarly, we have

(3.6) |uk(t)|p ≤ ξp for t ≤ −T, k ∈ N.

Since uk ⇀ u0 in E , it is easy to verify that uk(t) converses to u0(t) pointwise for all
t ∈ R. Hence, we have by (3.5) and (3.6)

(3.7) |u0(t)| ≤ ξ for t ∈ (−∞,−T ] ∪ [T, +∞).

Since a(t) ≥ a∗ > 0 on [−T, T ] = J , the operator defined by S : E → W 1,p(J) :
u → u|J is a linear continuous map. So uk ⇀ u0 in W 1,p(J). Sobolev’s theorem (see
e.g. [19]) implies that uk → u0 uniformly on J , so there is k0 ∈ N such that

(3.8)
∫ T

−T
|∇W (t, uk(t))−∇W (t, u0(t))||uk(t) − u0(t)|dt < ε for k ≥ k0.

On the other hand, it follows from (3.2), (3.3), (3.5), (3.6) and (3.7) that

(3.9)

∫
R\[−T,T ]

|∇W (t, uk(t)) −∇W (t, u0(t))||uk(t) − u0(t)|dt

≤
∫

R\[−T,T ]

(|∇W (t, uk(t))|+ |∇W (t, u0(t))|)(|uk(t)| + |u0(t)|)dt

≤ ε

∫
R\[−T,T ]

a(t)(|uk(t)|p−1 + |u0(t)|p−1)(|uk(t)|+ |u0(t)|)dt

≤ 2ε

∫
R\[−T,T ]

a(t)(|uk(t)|p + |u0(t)|p)dt

≤ 2ε(‖uk‖p + ‖u0‖p)

≤ 2ε(Ap + ‖u0‖p), k ∈ N.

Combining (3.8) with (3.9) we get

(3.10)
∫

R

|∇W (t, uk(t)) −∇W (t, u0(t))| |uk(t) − u0(t)|dt → 0 as k → ∞.

It follows from (2.2) and the Hölder’s inequality that

(3.11)

〈I ′(uk) − I ′(u0), uk − u0〉

=
∫

R

|u̇k(t)|p−2(u̇k(t), u̇k(t) − u̇0(t))dt

+
∫

R

a(t)|uk(t)|p−2(uk(t), uk(t) − u0(t))dt

−
∫

R

|u̇0(t)|p−2(u̇0(t), u̇k(t) − u̇0(t))dt



1380 Xiaoyan Lin and X. H. Tang

−
∫

R

a(t)|u0(t)|p−2(u0(t), uk(t) − u0(t))dt

−
∫

R

(∇W (t, uk(t)) −∇W (t, u0(t)), uk(t) − u0(t))dt

= ‖uk‖p + ‖u0‖p −
∫

R

|u̇k(t)|p−2(u̇k(t), u̇0(t))dt

−
∫

R

a(t)|uk(t)|p−2(uk(t), u0(t))dt

−
∫

R

|u̇0(t)|p−2(u̇0(t), u̇k(t))dt−
∫

R

a(t)|u0(t)|p−2(u0(t), uk(t))dt

−
∫

R

(∇W (t, uk(t)) −∇W (t, u0(t)), uk(t) − u0(t))dt

≥ ‖uk‖p + ‖u0‖p −
∫

R

|u̇k(t)|p−1|u̇0(t)|dt−
∫

R

a(t)|uk(t)|p−1|u0(t)|dt

−
∫

R

|u̇0(t)|p−1|u̇k(t)|dt−
∫

R

a(t)|u0(t)|p−1|uk(t)|dt

−
∫

R

(∇W (t, uk(t)) −∇W (t, u0(t)), uk(t) − u0(t))dt

≥ ‖uk‖p + ‖u0‖p −
(∫

R

|u̇0(t)|pdt

)1/p (∫
R

|u̇k(t)|pdt

)1/q

−
(∫

R

a(t)|u0(t)|pdt

)1/p (∫
R

a(t)|uk(t)|pdt

)1/q

−
(∫

R

|u̇k(t)|pdt

)1/p (∫
R

|u̇0(t)|pdt

)1/q

−
(∫

R

a(t)|uk(t)|pdt

)1/p (∫
R

a(t)|u0(t)|pdt

)1/q

−
∫

R

(∇W (t, uk(t)) −∇W (t, u0(t)), uk(t) − u0(t))dt

≥ ‖uk‖p + ‖u0‖p −
(∫

R

[|u̇0(t)|p + a(t)|u0(t)|p] dt

)1/p

(∫
R

[|u̇k(t)|p + a(t)|uk(t)|pdt] dt

)1/q

−
(∫

R

[|u̇k(t)|p + a(t)|uk(t)|p] dt

)1/p

(∫
R

[|u̇0(t)|p + a(t)|u0(t)|p] dt

)1/q
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−
∫

R

(∇W (t, uk(t))−∇W (t, u0(t)), uk(t) − u0(t))dt

= ‖uk‖p + ‖u0‖p − ‖u0‖‖uk‖p−1 − ‖uk‖‖u0‖p−1

−
∫

R

(∇W (t, uk(t))−∇W (t, u0(t)), uk(t) − u0(t))dt

=
(‖uk‖p−1 − ‖u0‖p−1

)
(‖uk‖ − ‖u0‖)

−
∫

R

(∇W (t, uk(t))−∇W (t, u0(t)), uk(t) − u0(t))dt.

Since I ′(uk) → 0 as k → +∞ and uk ⇀ u0 in E , it follows from (3.2) that

〈I ′(uk) − I ′(u0), uk − u0〉 → 0 as k → ∞,

which, together with (3.10) and (3.11), yields ‖uk‖ → ‖u‖ as k → +∞. By the
uniform convexity of E and the fact that uk ⇀ u0 in E , it follows from the Kadec-
Klee property [11] that uk → u0 in E . Hence, I satisfies (PS)-condition.
We now show that there exist constants ρ, α > 0 such that I satisfies assumption

(ii) of Lemma 2.1 with these constants. By (W2), there exists η ∈ (0, 1) such that

(3.12) |∇W (t, x)| ≤ 1
2
a(t)|x|p−1 for |t| ≥ R, |x| ≤ η.

Since W (t, 0) = 0, it follows that

(3.13) |W (t, x)| ≤ 1
2p

a(t)|x|p for |t| ≥ R, |x| ≤ η.

Set

(3.14) M = sup
{

W1(t, x)
a(t)

∣∣∣∣ t ∈ [−R, R], x ∈ R
N , |x| = 1

}
.

Set δ = min{1/(2pM + 1)1/(μ−p), η}. If ‖u‖ =
(

2qa∗
p−1

)1/pq
δ := ρ, then by (2.4),

|u(t)| ≤ δ ≤ η < 1 for t ∈ R. By (3.14) and Lemma 2.5 (i), we have

(3.15)

∫ R
−R W1(t, u(t))dt ≤

∫
{t∈[−R,R] : u(t) 
=0}

W1

(
t,

u(t)
|u(t)|

)
|u(t)|μdt

≤ M

∫ R

−R
a(t)|u(t)|μdt

≤ Mδμ−p

∫ R

−R
a(t)|u(t)|pdt

≤ 1
2p

∫ R

−R
a(t)|u(t)|pdt.
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Set

α =
(

2qa∗
p − 1

)1/q δp

2p
.

Hence, from (2.1), (3.13), (3.15) and (W4), we have

(3.16)

I(u) =
1
p
‖u‖p −

∫
R

W (t, u(t))dt

=
1
p
‖u‖p −

∫
R\[−R,R]

W (t, u(t))dt−
∫ R

−R
W (t, u(t))dt

≥ 1
p
‖u‖p − 1

2p

∫
R\[−R,R]

a(t)|u(t)|pdt −
∫ R

−R
W1(t, u(t))dt

≥ 1
p
‖u‖p − 1

2p

∫
R\[−R,R]

a(t)|u(t)|pdt − 1
2p

∫ R

−R
a(t)|u(t)|pdt

=
1
p

∫
R

|u̇(t)|pdt +
1
2p

∫
R

a(t)|u(t)|pdt

≥ 1
2p

∫
R

[|u̇(t)|p + a(t)|u(t)|p] dt

=
1
2p

‖u‖p

= α.

(3.16) shows that ‖u‖ = ρ implies that I(u) ≥ α, i.e., I satisfies assumption (ii) of
Lemma 2.1.
Finally, it remains to show that I satisfies assumption (iii) of Lemma 2.1. Let E ′

be a finite dimensional subspace of E . Since all norms of a finite dimensional normed
space are equivalent, so there is a constant c > 0 such that

(3.17) ‖u‖ ≤ c‖u‖L∞(R) for u ∈ E ′.

Assume that dim E ′ = m and u1, u2, . . . , um are the base of E ′ such that

(3.18) ‖ui‖ = c, i = 1, 2, . . . , m.

For any u ∈ E ′, there exist λi ∈ R, i = 1, 2, . . . , m such that

(3.19) u(t) =
m∑

i=1

λiui(t) for t ∈ R.

Let

(3.20) ‖u‖∗ =
m∑

i=1

|λi|‖ui‖.
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It is easy to verify that ‖ · ‖∗ defined by (3.20) is a norm of E ′. Hence, there exists a
constants c′ > 0 such that

(3.21) c′‖u‖∗ ≤ ‖u‖ for u ∈ E ′.

Since ui ∈ E , by Lemma 2.3, we can choose R1 > R such that

(3.22) |ui(t)| <
c′η

1 + c′
, |t| > R1, i = 1, 2, . . . , m,

where η is given in (3.13). Set

(3.23)
Θ =

{
m∑

i=1

λiui(t) : λi ∈ R, i = 1, 2, . . . , m;
m∑

i=1

|λi| = 1

}

=
{
u ∈ E ′ : ‖u‖∗ = c

}
.

Hence, for u ∈ Θ, let t0 = t0(u) ∈ R such that

(3.24) |u(t0)| = ‖u‖L∞(R).

Then by (3.17)-(3.21), (3.23) and (3.24), we have

(3.25)

c′c = c′c
m∑

i=1

|λi| = c′
m∑

i=1

|λi|‖ui‖ = c′‖u‖∗

≤ ‖u‖ ≤ c‖u‖L∞(R) = c|u(t0)|

≤ c
m∑

i=1

|λi||ui(t0)|, u ∈ Θ.

This shows that |u(t0)| ≥ c′ and there exists i0 ∈ {1, 2, . . . , m} such that |ui0(t0)| ≥ c′,
which, together with (3.22), implies that |t0| ≤ R1. Set R2 = R1 + 1 and

(3.26) γ = min

{
W1(t, x) : −R2 ≤ t ≤ R2,

c′

2
≤ |x| ≤ c

(
p − 1
2qa∗

)1/pq
}

.

Since W1(t, x) > 0 for all t ∈ R and x ∈ R
N \ {0}, and W1 ∈ C1(R × R

N , R), it
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follows that γ > 0. For any u ∈ E , it follows from (2.4) and Lemma 2.5 (ii) that

(3.27)

∫ R2

−R2

W2(t, u(t))dt

=
∫
{t∈[−R2,R2] : |u(t)|>1}

W2(t, u(t))dt

+
∫
{t∈[−R2,R2] : |u(t)|≤1}

W2(t, u(t))dt

≤
∫
{t∈[−R2,R2] : |u(t)|>1}

W2

(
t,

u(t)
|u(t)|

)
|u(t)|�dt

+
∫ R2

−R2

max
|x|≤1

|W2(t, x)|dt

≤ ‖u‖�
L∞(R)

∫ R2

−R2

max
|x|=1

|W2(t, x)|dt +
∫ R2

−R2

max
|x|≤1

|W2(t, x)|dt

≤
(

p − 1
2qa∗

)�/pq

‖u‖�

∫ R2

−R2

max
|x|=1

|W2(t, x)|dt +
∫ R2

−R2

max
|x|≤1

|W2(t, x)|dt

= M1‖u‖� + M2,

where

M1 =
(

p − 1
2qa∗

)�/pq ∫ R2

−R2

max
|x|=1

|W2(t, x)|dt, M2 =
∫ R2

−R2

max
|x|≤1

|W2(t, x)|dt.

Since u̇i ∈ Lp(R), i = 1, 2, . . . , m, it follows that there exists ε ∈ (0, 1) such that

(3.28)

∫ t+ε

t−ε
|u̇i(s)|ds ≤ (2ε)1/q

(∫ t+ε

t−ε
|u̇i(s)|pds

)1/p

≤ (2ε)1/q‖u̇i‖Lp(R)

≤ c′

2p
for t ∈ R, i = 1, 2, . . . , m.

Then for u ∈ Θ with |u(t0)| = ‖u‖L∞(R) and t ∈ [t0 − ε, t0 + ε], it follows from
(3.19), (3.23), (3.24), (3.25) and (3.28) that

(3.29)

|u(t)|p = |u(t0)|p + p

∫ t

t0

|u(s)|p−2(u̇(s), u(s))ds

≥ |u(t0)|p − p

∫ t0+ε

t0−ε
|u̇(s)||u(s)|p−1ds

≥ |u(t0)|p − p|u(t0)|p−1

∫ t0+ε

t0−ε
|u̇(s)|ds
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≥ |u(t0)|p − p|u(t0)|p−1
m∑

i=1

|λi|
∫ t0+ε

t0−ε
|u̇i(s)|ds

≥ c′

2
|u(t0)|p−1 ≥

(
c′

2

)p

.

On the other hand, since ‖u‖ ≤ c for u ∈ Θ, it follows from (2.4) that

(3.30) |u(t)| ≤ c

(
p − 1
2qa∗

)1/pq

for t ∈ R, u ∈ Θ.

Hence, from (3.26), (3.29) and (3.30), we have

(3.31)
∫ R2

−R2

W1(t, u(t))dt ≥
∫ t0+ε

t0−ε
W1(t, u(t))dt ≥ 2εγ for u ∈ Θ.

By (3.22) and (3.23), we have

(3.32) |u(t)| ≤
m∑

i=1

|λi||ui(t)| ≤ η for |t| ≥ R1, u ∈ Θ.

From (3.13), (3.27), (3.31), (3.32) and Lemma 2.5, we have for u ∈ Θ and σ > 1

(3.33)

I(σu)

=
σp

p
‖u‖p −

∫
R

W (t, σu(t))dt

=
σp

p
‖u‖p +

∫
R

W2(t, σu(t))dt−
∫

R

W1(t, σu(t))dt

≤ σp

p
‖u‖p + σ�

∫
R

W2(t, u(t))dt− σμ

∫
R

W1(t, u(t))dt

=
σp

p
‖u‖p+σ�

∫
R\(−R2,R2)

W2(t, u(t))dt−σμ

∫
R\(−R2,R2)

W1(t, u(t))dt

+σ�

∫ R2

−R2

W2(t, u(t))dt− σμ

∫ R2

−R2

W1(t, u(t))dt

≤ σp

p
‖u‖p − σ�

∫
R\(−R2,R2)

W (t, u(t))dt

+σ�

∫ R2

−R2

W2(t, u(t))dt− σμ

∫ R2

−R2

W1(t, u(t))dt

≤ σp

p
‖u‖p +

σ�

2p

∫
R\(−R2,R2)

a(t)|u(t)|pdt + σ�(M1‖u‖� + M2) − 2εγσμ

≤ σp

p
‖u‖p +

σ�

2p
‖u‖p + σ�(M1‖u‖� + M2) − 2εγσμ

≤ (cσ)p

p
+

cpσ�

2p
+ M1(cσ)� + M2σ

� − 2εγσμ.
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Since μ > � ≥ p, we deduce that there is σ0 = σ0(c, c′, M1, M2, R1, R2, ε, γ) =
σ0(E ′) > 1 such that

I(σu) < 0 for u ∈ Θ and σ ≥ σ0.

It follows that
I(u) < 0 for u ∈ E ′ and ‖u‖ ≥ cσ0.

This shows that (iii) of Lemma 2.1 holds. By Lemma 2.1, I possesses an unbounded
sequence {dk}∞k=1 of critical values with dk = I(uk), where uk is such that I ′(uk) = 0
for k = 1, 2, . . .. If {‖uk‖} is bounded, then there exists B > 0 such that

(3.34) ‖uk‖ ≤ B for k ∈ N.

By a similar fashion for the proof of (3.5) and (3.6), for the given η in (3.13), there
exists R3 > R such that

(3.35) |uk(t)| ≤ η for |t| ≥ R3, k ∈ N.

Thus, from (2.1), (2.4), (3.13), (3.34) and (3.35), we have

(3.36)

1
p
‖uk‖p = dk +

∫
R

W (t, uk(t))dt

= dk +
∫

R\[−R3,R3]
W (t, uk(t))dt +

∫ R3

−R3

W (t, uk(t))dt

≥ dk − 1
2p

∫
R\[−R3,R3]

a(t)|uk(t)|p −
∫ R3

−R3

|W (t, uk(t))|dt

≥ dk − 1
2p

‖uk‖p −
∫ R3

−R3

max
|x|≤[(p−1)/2qa∗]1/pqB

|W (t, x)|dt.

It follows that

dk ≤ 3
2p

‖uk‖p +
∫ R3

−R3

max
|x|≤[(p−1)/2qa∗]1/pqB

|W (t, x)|dt < +∞.

This contradicts to the fact that {dk}∞k=1 is unbounded, and so {‖uk‖} is unbounded.
The proof is complete.

Proof of Theorem 1.2. In the proof of Theorem 1.1, the condition thatW2(t, x) ≥ 0
in (W1) is only used in the proofs of (3.2) and assumption (ii) of Lemma 2.1. Therefore,
we only prove (3.2) and assumption (ii) of Lemma 2.1 still holds use (W1′) instead
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of (W1). We first prove that (3.2) still holds. From (2.1), (2.2), (3.1) and (W1′), we
obtain

pc +
pcμ

�
‖uk‖

≥ pI(uk) − p

�
〈I ′(uk), uk〉

=
� − p

�
‖uk‖p + p

∫
R

[
W2(t, uk(t)) − 1

�
(∇W2(t, uk(t)), uk(t))

]
dt

−p

∫
R

[
W1(t, uk(t)) − 1

�
(∇W1(t, uk(t)), uk(t))

]
dt

≥ � − p

�
‖uk‖p, k ∈ N.

It follows that there exists a constant A > 0 such that (3.2) holds. Next, we prove that
assumption (ii) of Lemma 2.1 still holds. By (W2′), there exists η ∈ (0, 1) such that

(3.37) |∇W (t, x)| ≤ 1
2
a(t)|x|p−1 for t ∈ R, |x| ≤ η.

Since W (t, 0) = 0, it follows that

(3.38) |W (t, x)| ≤ 1
2p

a(t)|x|p for t ∈ R, |x| ≤ η.

If ‖u‖ =
(

2qa∗
p−1

)1/pq
η := ρ, then by (2.4), |u(t)| ≤ η for t ∈ R. Set

α =
(

2qa∗
p − 1

)1/q ηp

2p
.

Hence, from (2.1) and (3.38), we have

(3.39)

I(u) =
1
p
‖u‖p −

∫
R

W (t, u(t))dt

≥ 1
p
‖u‖p − 1

2p

∫
R

a(t)|u(t)|pdt

=
1
p

∫
R

|u̇(t)|pdt +
1
2p

∫
R

a(t)|u(t)|pdt

≥ 1
2p

∫
R

[|u̇(t)|p + a(t)|u(t)|p] dt

=
1
2p

‖u‖p

= α.
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(3.39) shows that ‖u‖ = ρ implies that I(u) ≥ α, i.e., assumption (ii) of Lemma 2.1
holds. The proof of Theorem 1.2 is completed.

Proof of Theorem 1.3. We first show that I satisfies condition (C). Assume
that {uk}k∈N ⊂ E is a (C) sequence of I , that is, {I(uk)} is bounded and (1 +
‖uk‖)‖I ′(uk)‖ → 0 as k → ∞. Then it follows from (2.1) and (2.2) that

(3.40)

C1 ≥ pI(uk) − 〈I ′(uk), uk〉

=
∫

R

[(∇W (t, uk(t)), uk(t)) − pW (t, uk(t))] dt.

It follows from (W2′) that there exists η ∈ (0, 1) such that (3.38) holds. By (W4), we
have

(3.41) (∇W (t, x), x) ≥ pW (t, x) ≥ 0 for (t, x) ∈ R × R
N ,

and

(3.42)
W (t, x) ≤ (α + β|x|ν)[(∇W (t, x), x)

−pW (t, x)] for (t, x) ∈ R × {x ∈ R
N : |x| > η}.

It follows from (2.1), (2.4), (3.38), (3.40), (3.41) and (3.42) that

(3.43)

1
p
‖uk‖p

= I(uk) +
∫

R

W (t, uk(t))dt

= I(uk) +
∫
{t∈R : |uk(t)|≤η}

W (t, uk(t))dt +
∫
{t∈R : |uk(t)|>η}

W (t, uk(t))dt

≤ I(uk) +
1
2p

∫
{t∈R : |uk(t)|≤η}

a(t)|uk(t)|pdt

+
∫
{t∈R : |uk(t)|>η}

(α+β|uk(t)|ν)[(∇W (t, uk(t)), uk(t))−pW (t, uk(t))]dt

≤ C2+
1
2p

‖uk‖p+
∫

R

(α+β|uk(t)|ν)[(∇W (t, uk(t)), uk(t))−pW (t, uk(t))]dt

≤ C2+
1
2p

‖uk‖p+(α +β‖uk‖ν
∞)

∫
R

[(∇W (t, uk(t)), uk(t))−pW (t, uk(t))]dt

≤ C2+
1
2p

‖uk‖p + C1(α + β‖uk‖ν
∞)

≤ C2+
1
2p

‖uk‖p + C1

[
α +

(
p − 1
2qa∗

)ν/pq

β‖uk‖ν

]
.
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Since ν < p, it follows that {‖uk‖} is bounded. Similar to the proof of Theorem
1.1, we can prove that {uk} has a convergent subsequence in E . Hence, I satisfies
condition (C).
It is obvious that I is even and I(0) = 0 and so assumption (i) of Lemma 2.1 holds.

The proof of assumption (ii) of Lemma 2.1 is the same as in the proof of Theorem 1.2.
Now, we prove condition (iii) of Lemma 2.1. Let E ′ be a finite dimensional

subspace of E . Since all norms of a finite dimensional normed space are equivalent,
so there is a constants c > 0 such that (3.17) holds. Assume that dimE ′ = m and
u1, u2, . . . , um are the base of E ′ such that (3.18) holds. Let c′, η, ε, R1, R2 and Θ be
the same as in the proof of Theorem 1.1. Then (3.21) and (3.22) hold. For u ∈ Θ,
let t0 = t0(u) ∈ R such (3.24) holds. Then ‖u‖L∞(R) = |u(t0)| ≥ c′, and so (3.29)
holds. For R2 and ε ∈ (0, 1) given in the proof of Theorem 1.1, by (W5), there exists
σ0 = σ0(ε, R2) > 1 such that

(3.44) s−p

∫ t+ε

t−ε
min
|x|≥1

W (τ, sx)dτ ≥
(

2c

c′

)p

for s ≥ c′σ0/2, t ∈ [−R2, R2].

It follows from (2.1), (W4), (3.29), (3.41) and (3.44) that

(3.45)

I(σu) =
σp

p
‖u‖p −

∫
R

W (t, σu(t))dt

≤ σp

p
‖u‖p −

∫ t0+ε

t0−ε
W (t, σu(t))dt

≤ (cσ)p

p
−

∫ t0+ε

t0−ε
min
|x|≥1

W (t, 2−1c′σx)dt

≤ (cσ)p

p
− (cσ)p

= −(p − 1)(cσ)p

p
for u ∈ Θ and σ ≥ σ0.

That is
I(σu) < 0 for u ∈ Θ and σ ≥ σ0,

where σ0 = σ0(ε, R2) = σ0(E ′) > 1. It follows that

I(u) < 0 for u ∈ E ′ and ‖u‖ ≥ cσ0.

This shows that condition (iii) of Lemma 2.1 holds. The rest proof is the same as that
in Theorem 1.1. The proof is complete.
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4. EXAMPLES

In this section, we give three examples to illustrate our results.

Example 4.1. Consider the second-order ordinary p-Laplacian system

(4.1)
d

dt
(|u̇(t)|u̇(t)) − a(t)|u(t)|u(t) + ∇W (t, u(t)) = 0,

where p = 3, t ∈ R, u ∈ R
N , a ∈ C(R, (0,∞)) such that a(t) → +∞ as |t| → ∞.

Let

W (t, x) = a(t)

⎛
⎝ m∑

i=1

ai|x|μi −
n∑

j=1

bj|x|�j

⎞
⎠ ,

where μ1 > μ2 > · · · > μm > �1 > �2 > · · · > �n > 3, ai, bj > 0, i =
1, 2, . . . , m; j = 1, 2, . . . , n. Let μ = μm, � = �1, and

W1(t, x) = a(t)
m∑

i=1

ai|x|μi, W2(t, x) = a(t)
n∑

j=1

bj|x|�j .

Then it is easy to verify that all conditions of Theorem 1.1 are satisfied. By Theorem
1.1, system (4.1) has an unbounded sequence of homoclinic solutions.

Example 4.2. Consider the second-order ordinary p-Laplacian system

(4.2)
d

dt

(|u̇(t)|2u̇(t)
) − a(t)|u(t)|2u(t) + ∇W (t, u(t)) = 0,

where p = 4, t ∈ R, u ∈ R
N , a ∈ C(R, (0,∞)) such that a(t) → +∞ as |t| → ∞.

Let
W (t, x) = a(t) [a1|x|μ1 + a2|x|μ2 − b1(sin t)|x|�1 − b2|x|�2] ,

where μ1 > μ2 > �1 > �2 > 4, a1, a2 > 0, b1, b2 > 0. Let μ = μ2, � = �1, and

W1(t, x) = a(t) (a1|x|μ1 + a2|x|μ2) , W2(t, x) = a(t) [b1(sin t)|x|�1 + b2|x|�2] .

Then it is easy to verify that all conditions of Theorem 1.2 are satisfied. By Theorem
1.2, system (4.2) has an unbounded sequence of homoclinic solutions.

Example 4.3. Consider the second-order ordinary p-Laplacian system

(4.3)
d

dt

(
|u̇(t)|−1/2u̇(t)

)
− a(t)|u(t)|−1/2u(t) + ∇W (t, u(t)) = 0,

where p = 3/2, t ∈ R, u ∈ RN , a ∈ C(R, (0,∞)) such that a(t) → +∞ as |t| → ∞.
Let

W (t, x) = a(t)(1 + sin t)|x|3/2 ln(1 + |x|).
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Since

(∇W (t, x), x) = a(t)(1 + sin t)

[
3
2
|x|3/2 ln(1 + |x|) +

|x|5/2

1 + |x|

]

≥
(

3
2

+
1

1 + |x|
)

W (t, x) ≥ 0

for all t ∈ R and x ∈ RN . This shows that (W4) holds with α = β = ν = 1. In
addition, for any γ > 0 and ε > 0

s−3/2

∫ t+ε

t−ε
min
|x|≥1

W (τ, sx)dτ

= s−3/2

∫ t+ε

t−ε
min
|x|≥1

[
a(τ)(1 + sin τ)|sx|3/2 ln(1 + |sx|)

]
dτ

≥
[

min
τ∈[t−ε,t+ε]

a(τ)
∫ t+ε

t−ε
(1 + sin τ)dτ

]
ln(1 + s)

= 2(ε− sin ε sin t)
[

min
τ∈[t−ε,t+ε]

a(τ)
]

ln(1 + s)

≥ 2(ε− | sinε|)
[

min
τ∈[−γ−ε,γ+ε]

a(τ)
]

ln(1 + s)

→ +∞, s → +∞

uniformly with respect to t ∈ [−γ, γ]. This shows that (W5) also holds. It is easy to
verify that assumptions (A), (W3) and (W2′′) of Theorem 1.3 are satisfied. By Theorem
1.3, system (4.3) has an unbounded sequence of homoclinic solutions.
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