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WILLMORE SURFACES AND F-WILLMORE SURFACES
IN SPACE FORMS

Yu-Chung Chang

Abstract. Let M? be a compact F-Willmore surface in the n-dimensional space
form N"(c) of constant curvature c. Denote by ¢7; the trace free part of the
second fundamental form h = (h{;), and by H the mean curvature vector of
M?. Let ® be the square of the length of ¢¢; and H = [H|. If F'(®) > 0, then
S {F"@)[$IVOP-5, ., 65@; HE |+ F (@) H?+ F/()(2c— K (n)®)® }dv
0. The constant function K(n) = 1 when n = 3 and K(n) = 2 when n > 4.
Similarty, [, { F"(®)[§]VO2 = 5, ;650 HE| + F(O)H? + F'(@)(2c
K(n)(b)(b}dv > 0, if F/(®) < 0. We also prove the following: If M?
is a compact Willmore surface in the n-dimensional space form N™(c). Then
[ ®(Cn)(c+ B2y — @) <0, where C(n) = 2 when n = 3 and C(n) = 4
whenn > 4. If0 < ® < C(n)(c+ HT), then either ® = 0 and M is totally um-

bilical sphere, or ® = C'(n)(c + H72) In the latter case, either M is the Clifford
torus in S® of N"(c), or M is the Veronese surface in S* of N"(c).

IN

1. INTRODUCTION

Let N"(c) be an n-dimensional space form of constant curvature ¢, namely,
S*(c) = {z e R"™ : (z,2) = 1}, if ¢>0,

N"(¢) =4 R7, if ¢=0,
H"(¢) = {z € R¥™ : (z,2); = L, 2" >0}, if ¢ <0,

c?

where (-, ) is the standard inner product on R"*! and

<$;y>1 = [L‘lyl I +xnyn o [L’n+1yn+1
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is the standard Lorentzian inner product on R?“. When ¢ = 1,0, -1, N*(¢) is the
standard unit sphere S™(1), the Euclidean space R™ and the hyperbolic space H"(—1),
respectively. Let M2 be a compact surface in the n-dimensional space form N"(¢) and
h be the second fundamental form of M2. If S denotes the square of the length of the
second fundamental form, H denotes the mean curvature vector, and H denotes the
mean curvature of M2, then we have

1
SZ‘h‘2:Z(h%>2a H:ZHaeom Ha=§Zh%, H:‘H‘v
i j o i

where e, 3 < a < n, are orthonormal vector fields of M? in N*(c). Denote by o5
the tensor h7; — Hd;; of the trace free part of the second fundamental form A and ®

the square of the length of (¢;).
The Willmore functional is defined by

W(z) = /M Bav.

This functional is invariant under conformal transformations of N"(c). The critical
surfaces of W are called Willmore surface. More precisely, M? is a Willmore surface
if and only if

ARH 4+ RGRHP —2H?HY =0, 3<a<n,
ﬁ7i7j

where A1 is the Laplacian in the normal bundle NM (see [1, 11, 15] and Theorem
3.5). In other words, M? is a Willmore surface if and only if

ARH+3 " ool HP =0, 3<a<n.
ﬁ7i7j

In the theory of Willmore surfaces in S™(c), the following integral inequality is
well known.

Theorem 1.1. ([9]). Let M? be a compact Willmore surface in an n-dimensional

unit sphere S™(1). Then
/ @(C(n) — <I>>dv <0,
M

where C(n) = 2 when n = 3 and C(n) = § when n > 4. In particular, if
0<®<C(n),

then either ® = 0 and M is totally umbilical sphere, or ® = C(n). In the latter case,
either M is the Clifford torus or M is the Veronese surface.
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Chang and Hsu improved the integral inequality and extended the above result, they
proved the following theorem.

Theorem 1.2. ([5]). Let M? be a compact Willmore surface in an n-dimensional
unit sphere S™(1). Then

H?
il <
/M<I>(C(n)(1 +5) @)dv <0,
where C(n) = 2 when n = 3 and C(n) = § when n > 4. In particular, if

H2
then either ® = 0 and M is totally umbilical sphere, or ® = C(n)(c + %2) In the
latter case, either n = 3 and M is the Clifford torus, or n = 4 and M is the Veronese
surface.

The first main result of this paper, we shall extend Chang and Hsu’s result to space
forms and prove the following theorem:

Theorem 1.3. Let M? be a compact Willmore surface in the n-dimensional space
form N"(c) of constant curvature c. Then

2

H
il <
/M<I>(C'(n)(c+ )~ ®)dv <0,
where C(n) = 2 when n = 3 and C(n) = § when n > 4. In particular, if
H2

0<®<C(n)(c+ 7),

then either ® = 0 and M is totally umbilical sphere, or ® = C(n)(c + %2) In the
latter case, either M is the Clifford torus in S3(c) of N"(c), or M is the Veronese
surface in S*(c) of N"(c).

Recently, many other types of Willmore functional are studied. In [2], Cai studied
the following p-Willmore functional

W, (x) = /M S,

Liu and Jian (see [10]) introduced the F'-Willmore functional of submanifold in space
forms, which is defined as

Wi(z) = /M F(®)dv,
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where F' is a given function satisfying
FeC? F:[0,00) — R.

Obviously, the Willmore functional W (z) and p-Willmore functional W), (z) are two
special cases of F-Willmore functional Wr(z).

The critical point of Wg(x) is called F-Willmore submanifold. For F-Willmore
submanifold in space forms, Liu and Jian proved the following main result.

Theorem 1.4. ([10]). Let M be an m-dimensional compact F-Willmore subman-
ifold in space form N"(c). Set

bk = infucio,c)F'™ (u), k=12,
where C' is the positive constant such that 0 < ® < C on M. Ifby > 0, k= 1,2, then

1

n—m

/ [mQHQF(CD) — 2mOH?F'(®) 4 2mc®F' (D) — 2(2 — JO2F' (@) |dv < 0.

Remark. If M is a compact F-Willmore surface in the unit sphere S™(1) and
F(®) = @, the integral inequality implies that

/M @(C(n) — <I>>dv <0,

i.e., Theorem 1.1 is a corollary of Theorem 1.4. But note that Theorem 1.4 can not
imply Theorem 1.2. So the integral inequality of Theorem 1.4 maybe can be improved.

In this paper, we shall consider a compact F-Willmore surface M in the space
form N"(c¢) and improve some result of Theorem 1.4. The second main result of this
paper will improve the integral inequality of Theorem 1.4 in the case of F-Willmore
surface and imply the Theorem 1.2 and Theorem 1.3. More precisely, the second main
result is the following theorem.

Theorem 1.5. Let M? be a compact F-Willmore surface in the n-dimensional
space form N"™(c) of constant curvature c. If F'(®) > 0, then

/M {P(@ )[ V2 — 7 6@ HY | + F(@)H? + F'(®)(2c — K (n)®)® fdv < 0,

« ’L,]

If F'(®) <0, then

[ @ [limer - X sgo] - rovms oz woiehn o

« ’L,]

The constant function K (n) =1 when n =3 and K(n) = 3 when n > 4.
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Remark. If ® # 0, the equality holds if and only if either M? is minimal when
n > 4 or ¢111 = ¢122 = % and ¢222 = ¢211 = % when n = 3.

Corollary 1.6. Let M? be a compact F-Willmore surface in the n-dimensional
space form N"™(c) of constant curvature c.

(1) Assume that F'(®) > 0.; If F"(®) = 0 or F"(®) and 5|V®|*=Y" , , ; ¢ ®; H?
have the same sign, then

/ {F(cb)fﬂ +F(®)(2¢ — K(n)cb)@}dv <0.

(2) Assume that F'(®) < 0. If F"(®) = 0 or F"(®) and 5|V®|* =Y, , ; ¢ ®; H?
have different signs, then

/ {F(@)H?+ F(@)(2c - K(n)cb)@}dv > 0.

Remark. If M is a compact F-Willmore surface in the space form N"(¢) and
F(®) = @, the integral inequality can be written by

/ (2¢+ H? — K(n)®)®dv < 0.

This implies that

1.e., Theorem 1.3 and Theorem 1.2 hold.

2. NOTATIONS AND AUXILIARY LEMMAS

Throughout this paper, let M? be a compact surface isometrically immersed in
the n-dimensional complete and simply connected space form N"(c) with constant
curvature c. We shall use the following ranges of indices

1§A,B,C,"'S’I’L, 1317]7]{7327 33@,,8,’}’,"'3”.

Choose a local orthonormal frame field {e4} in N™(c) such that, restricted to M, {e;}
are tangent to M. Let {wa} and {wap} be the dual frame field and the connection
1—forms of NP (c) respectively. Then the structure equations are given by

dwy = E waB N\ wg, wap +wpa =0,
B

1 .
dwap = Z wac NweB — 3 Z Rapcpwe ANwp,
C C.D
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where R4 pep are the components of the Riemannian curvature tensor of N™(c). We
restrict to a neighborhood of x : M? < N"(c). Let 64, 045 be the restriction of {w}
and {wap} to M. Then we have 0, = 0. Taking its exterior derivative, we get

Zeai/\ei:().

By Cartan’s lemma we have
Oio = D_B50; by =1
J

from which we can defined the second fundamental form A and the mean curvature
vector H of 2 : M? — N"(c) as following

1
h=> h6; ®0; @ eq, H:§Zh§§ea:ZH%a.
aaimj Oé,i «

Let R;ji; denote the Riemannian curvature tensor of M, the Gauss equations are

(2.1) Rijkr = c(6ixdji — dudjr) + Z(h?k ?l - hﬁh?k)’
(2.2) Rk = cdir +2 Z Hhiy — Z hij e

(2.3) 2K = 2c+4H?* - S, -

(2.4) Ragr = > _(hfshly — hihi)),

i

were K is the Gaussian curvature of M2. Since M2 is a two-dimensional surface, we
have

(2.5) Rijkl = K(dikdjl — 5il5jk>;
(2.6) R = K.
The covariant derivative of h7; with components h%k is defined by
> h 0k = dh + > b0k + > hOk + D 1 0pa.
k k k B

The second covariant derivative of h7; with components hf‘jkl is defined by

l l I ] 3 J
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Then the Codazzi equations and the Ricci identities are given by

(2.8) h?jkl zylk Z hm]lekl + Z hszkal + Z h”R,@akl

B

The Laplacian of hf; is defined by Ath‘j = > hf‘]kk Using (2.1), (2.7) and
(2.8), we obtain

SThE ARG =23 hHG +20S —2cH*+2 Y HPhGHS, ho

i7" im’ “myj

a,i,] a,,j a,B,,J,m
B 1B B 1B
- Z hz hkm hz] Z hz hm] hzk
a ﬁ7i7j7k m a’ﬁ7i7j7k7m
— > hghg R L+ DT hEh Rk
a ﬁ7 7]7k m a’ﬁ7i7j7k

Let ¢7; denote the tensor h¢; — H*;; and @ = 3° . .(¢f ®)? the square of the
length of the trace free tensor qﬁf‘] It is easy to check that ® = S 2H?. The Codazzi
equations and the Ricci identities can be written as

(2.9 b — ik = Hj ik — H 04,

(2.10) ¢?jkl zylk Z ¢m]lekl + Z ¢szm]kl + Z ¢”R,8akl

Lemma 2.1. Let M? be a surface in the n-dimensional space form N"(c) of
constant curvature c. Then

1 2 2
SO0 = S (@) 2> S HS + 0(2c+2H? — @) = Y Rl

a,i, g,k L,

Proof. Using (2.9) and (2.10), we obtain
N DI
k

= Z By + 2H = ATHS; + D 3t Rnige + Y Sovi Rk

k,m k,m

+ Z H Rgaji+ Y &R gasn
Gk
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Since ), ¢, = 0 and Ryjiy = K (6051 — dudjr), we get
At = 2HG — AHS; + 2K % + > HRpaji+ Y ¢ Rpaji,
B B,k
where AL is the Laplacian in the normal bundle N M. Thus

1
§A(I) = Z zyk + Z ¢1]AL¢1]

a,i,j,k a,i,j

= ) (¢5R)2 +2D) GNH +2KD+ > ¢FH Rgagi+ Y 655 i Roh-

o5k Qi,] o, B,i,] o,B,i,5,k

From (2.3) and ® = S — 2H?,

1 o7 3 go' 2
500 = > (@5 +2>  $SHS + (2c+ 2H? — 3)d

a,i,j,k a,i,j
+>  HO(¢35Rpan1 + 031 Rpara) + > (650, — o 5 01;) Rpata.
(67 ﬁ « ﬁv

By a direct computation, we have
Ragii = ) (hiihy — hiihiy) = Y (R — dhidy,)-
i i
This implies that Rap1o = 3, (63,65 — ¢360)). Thus
1
SO0 = D (@57 +2>  GEHE +(2c+2H? — )2~ RZ5,. -
a,i, g,k a,i,j
Lemma 2.2. Let M? be a surface in the n-dimensional space form N"(c) of

constant curvature c. Then ), ; . ¢5: H = 2 where |V+H|? = D i (HP)2.

Proof. 1t is an immediate consequence of the fact that

Z¢%] Z¢]l] Z ¢]]z + Hi'0j; — qu(sjﬂ = H}". n
J

J

Lemma 2.3. Let M? be a surface in the n-dimensional space form N"(c) of
constant curvature c. Then

Z ( zyk) = ‘VLHP
a,t,j,k

The equality holds if and only if $31, = ¢y = o and ¢Sy = ¢, = 2
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Proof.  Since 0 = Y, ¢ = ¢4 + ¢5,, we therefore have ¢y, = —¢$,; and
¢?12 = _¢%22, which 1mp11es

> (e =3 [(6810)2 + (6512)% + 2(8821) + 2(0522)° + (6821)% + (9520)?

a’i7j7k

Z [ $111)% + (9922)° + (6511)° + (¢?22)2}
> Z [ (611 + ¢522)° + (0522 + ¢311)2}
= > [H)? + (H9)?| = |vHHP

The equality holds if and only if ¢, = ¢%y = 5= and ¢Sy, = ¢3); = 2. n

Lemma 2.4. Let M? be a surface in the n-dimensional space form N"(c) of
constant curvature c.

(1) If n=3 then ZRi,@m:Q
o,f

P2
(2) If n>4 then ZRaﬁH < -5 Equality holds if and only if Zqﬁf‘lqﬁm =0
a,B

and Z 11) :Z 12)2~

a

Proof. In the case of n = 3, since Rop12 = R3312 = 0, we have Za”@ Ri,@m =0.
Forn > 4,

> Fom = 3 [ Sty - s = > [ S0ty - o30)]
| = 42 61075 — 91195)” |
- 42 (652 (62)? + (65)2(60:)” — 26516710707,
= 8Z< 22 Y (o) —8( Y otans)
Since 0 = 37, 62 = ¢, + ¢S, and

O =3 (65)2+ 2D (6%)% + D (682)° =2 D(68)* + D (6)?]

a
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we obtain

> R - 8[ 0?6 - (X otons) |

« «

< 8365?20 (65)°
<2[ Yot + ion?]

«
(I)2
7.
Equality holds if and only if the inequalities become equalities. i.e., ) ¢¢6% =0

and >_,( 4)? = 2l )2, u

Lemma 2.5. Let M? be a surface in the n-dimensional space form N"(c) of
constant curvature c. For n = 3,

, _ |VeP 2
®Y b=y +20|VH]| —2) i Hi®;.
igk ij

Proof-  Since 0 = ¢11 + @20, we therefore have ¢111 = —do01 and @119 = —@299.
By using
Gijj = Pjij = Pjji + Hidjj — Hjdji,
we have
D 0% = 46t + 430, — 4111 Hi — AgognHy + 2| VH,
i7j7k‘
veP _ 4Dp2 | + 4D P2y, — 169750111 H, — 1692 H.
5 = 111 222 120111 H1 Plop220Ho
+16¢12(Pr1¢111Ha + pootoonH1) + 8¢5 VH|?,

Z Gij Hi®; = —4dTod111H1 — 4dTadoooHo + 4¢T 111 H1 + 4¢30¢a20Ho
i3
+8¢12(d110111 Ha + doadaso Hy) + 43,| VH .
By a direct computation, the proof is then straightforward. ]
Lemma 2.6. ([7]). Let M? be a compact minimal surface in the n-dimensional

unit sphere S™. If0 < 5§ < % then either S = 0 and M? is totally geodesic, or S = %,
n =4 and M? is the Veronese surface.
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3. THE FIRST VARIATION OF THE WILLMORE FUNCTIONAL

Let 7 : M? — N"(c) be an isometric immersion, and let
X : M? x (—¢,e) — N"(c)

be a variation of = such that X (-,¢) = z; and 29 = z. Along X : M? x (—¢,¢) —
N"(c), we choose a local orthonormal basis {e4} for TN"(c) with dual basis {wa},
such that {e;(-, )} forms a local orthonormal basis for x; : M? x {t} — N"(c). Since
T*(M? x (—¢,¢)) = T*M? @ T*(—¢, ¢), the pullback of {w} and {wap} on N"(c)
through X : M? x (—¢,¢) — N"(c) have the following decomposition

X*w; = 0; + Vdt, X*wy = O + Vadt = Viodt,

X*wij = 91‘]‘ + Lijdt, X*wm = 0,0 + Ljodt,

X*wa@ = 0up + Lagdt,

where {V;, Vo, Lij, Lia, Los} are local functions on M? x (—¢, ) with L;; + Lj; = 0,
La@ + L/ga =0 and

d
V= %’tzoxt = Z Vidzo(e;) + Za: Vaea,

is the variation vector field of z; : M2 x {t} — N"(c). The differential operator d
on T*(M? x (—¢,¢)) can be written by d = dps + dt%, where d)y is the differential
operator on T*M?2.

Lemma 3.1. ([11]). Under the above notations, we have

(1) % =3V Ly = e

(2) L Va i+ Z hg:
0Wia

(3) ot Z ioj + Laklj, — ZLﬁah + ¢6;5)0;,
Ohg, )
(4) .2 = Vaij + Z (Lih; + Lirhs + h&xVi) + > Laght,

B
+> hf‘kh’ngg + ¢V
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where h’g and the covariant derivatives V; j, Vo ; and L, j are defined on M? x {t}
by
Oio = Y _ hi0;,
J
D Vit = duVi+ > Vibsi,
J

J

D Vaili = duVa + Y Vb,

B
> Liaj0i = daLia + > Ljabji + Y Lig0sa.
J J B

Lemma 3.2. ([11]). With the same notations as above, we have

> Lagh@ihl = > Lijhghi; =0,

a,B,i,] a,i,g,k
> Lijhg =0, > LagH*H’ =0.
i a8

Lemma 3.3. Let M? be a surface in the n-dimensional space form N"(c). Under
the above notations, we have

OH”

(1) S = 50Nk S HRVe+ 3 LapH 4+ 5 S0 Vs + Vo
k B ,B,z,k
——QZh Voii +2 > hShSVi+2 Y hEhGh Ve +4c > HOV,.
a,t,j a,i,j,k a,fB,i,7,k @

Proof. Seti = j in Lemma 3.1, since Z Lijhi; =0, we get

OH® 10
o = 2o 2

— _Aiv +ZH,€V;€+ZLQ@H’8+ > Wk Vs + V.

k B ﬁvlvk
By using Lemma 3.1 and Lemma 3.2,
os 0
o~ a1 2 5t
« 17] « 17]

=2) heVaij+2 Y SRS Ve+2 > hSh hﬁvﬁ+4cZHav. m

Qi,] o5k o,B,i,5,k
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Lemma 3.4. Let M? be a surface in the n-dimensional space form N"(c). Under
the above notations, we have

(1) gt 01 N 2) = (ZVH—QZH V>91A92
_—QZh i QZHaALV +Z<I>kvk+2 ST g hgh

a,i,] a,B,4,4,k

—2 Y hg b H V.
a,fB,i,k

Proof. From Lemma 3.1 and Li; = Los = 0, we have

9 o0, 00,
5(91/\92) = E/\eg—l-el/\ﬁ

=<V11+L11—Zh11 91/\92+<V22+L22—Zh22v 01 A 09

(ZVH QZH V>91/\92

By using Lemma 3.2 and Lemma 3.3, we have

aaH anl «@ B8
Ea H— § HYA V+§kH HkaJr % kh R H® Vﬁ+c§ HV,.
Sinee ) ) oS _O0H* 0S )
d H H
2H? 2= — H
ot 8t(S )= ot ot~ ot 2.

by Lemma 3.3, we get

—QZh i QZH%LV +ZS 2H?). Vi

Oé’L,_]
+2 > hShGRVE—2 Y by hfZHavﬁ
aﬁvlm]v Oéﬁ,l,k‘
=2 h&Vas QZH%LV +Z<I>kvk
Oé’L,_]
+2 > hShGRVE—2 Y by h’,leo‘Vg n
Oéﬁ, 7]7 aﬁ,l,k‘

Now, we calculate the first variation of the Willmore functional W () for a surface
M? in space form N”(c).
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Theorem 3.5. Let M? be a surface in the n-dimensional space form N"(c). Then
M? is a Willmore surface if and only if

AFH+ N RGR)HP — 202 H = 0, 3<a<n
Byisg

Proof. For zy : My = M x {t} — N"(c), we consider the Willmore functional

W(a:t) = / ddv = / D O N 0Os.
M, M,

From Lemma 3.4, we have

OW () 00 / )
= — 6 N0 d—(0, N
T i, OF 1 A\l + » 8t( 1 A ba)
/ [Zh OC’L] ZHaVa u+ Z(I)kvk+ Z hl] ’Lk‘hgjvﬁ
,i,j o) o,B,i,3,k

-3 ng h’gHo‘Vg}Gl/\Gg—i—/ &> Vi — 23 HOV,) 61 A s,
M i e

a,fB,i,k
By Stokes’ theorem, we obtain

ow
G(txt> / [ Zh%JVa’+ZHaV0"+ Z hw ikl

a,i,] a,B,3,4,k

-3 ng hfZHavﬁ @ZH V}Gl/\eg
a,fB,i,k

/ - ZHO‘VM—i— SRR RG Ve — S WK HOV,

a,Bi,j,k a,B,i,k
—‘I’ZHQV }91 A O

19" "1k

=2 [ S [atHO 4 T WGy = 3 Wb HO — ®H| Vi A 6,
My -
« ﬁ7 7]7 ﬁ7l7k‘

From (2.2),
Z b, = o +2 > HB) — Ry,
3

we have
> hghG g =2cH +2 " HORD ey =" Rjhi;
ﬁ7 7]7 ﬁ7j7k“ j
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Since R
R, = 5 03k = Kojg,

by (2.3), we get

> Rjhfy = Kojhy; = 2KH® = (2c+4H” - S)H® = (2c + 2H” — ®)H".
j ]7k
Thus
" hhGhyy =23 HPRG i — 2H?H® + @ H®.
ﬁ7 7]7 ﬁ7j7k

This implies that

‘9W xt — 2/ Z ALHQ + Z Hﬁhﬁ his — 2H2H® Vo1 A 6.
M,

b oa B.j:k
By the definition, M? is a Willmore surface if and only if aw(mt) = 0. That is,
ARHY+Y T HPW by — 2H2H =0, 3<a<n m

ﬁ7j7k
By using ¢7; = h{; — H%J;;, we have the following theorem.

Theorem 3.6. Let M? be a surface in the n-dimensional space form N"(c). Then
M? is a Willmore surface if and only if

ARH+Y " oer HP =0, 3<a<n.
Byi,J

Lemma 3.7. Let M? be a surface in the n-dimensional space form N"(c). Then

/ |VAH|?dv < / dH2dv.
M M
Equality holds if and only if either n = 3 or ¢7; = C;; H® for some functions C;; at
the points where ® #£ 0 and H # 0 when n > 4.
Proof. By use of Theorem 3.6 and the Cauchy-Schwarz inequality, we have

/M\VLH\%: - /MZHQALHQC[U: / > ool HYHP dv

B33
- LSS (S (S [ o

Equality holds if and only if either n = 3 or ¢f; = C;; H* for some functions C;; at
the points where ® # 0 and H # 0 when n > 4. ]
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4. THE PrOOF OF THEOREM 1.3

Now, we prove the Theorem 1.3. Integrating both sides of the Lemma 2.1 over
M?, by Stokes’ theorem, we have

0= / —A®dv

_/M(Z B7+ 23 GGG + B(2e+ 202 — @) = 30 R0 )do
B

a,i,j,k ,i,j
:/ ( Z Uk 22¢%JHQ+(I)26+2H2 >_ZR§<,@‘12>CZU~
M a,i,j,k a,i,] a,B

By using Lemma 2.2 and Lemma 2.3,
0> /M (\VLH\Q — 2|V H|? + &(2¢+ 2H? — @) — ZRimQ)dv
- / ( — |V H2 + ®(2c + 2H? — ®) — ZRgm>dv.
M o
From Lemma 2.4 and Lemma 3.7, if n = 3, we get

02/ [—(I)H2+<I>(20+2H2—<I>)}dv:/ ®(2c + H? — ®)dv,
M M

if n > 4, we get

2 2 (I)2 2 3
0> [—(I)H + B(2c+2H —@)——}dv: B(2c+ H? — 2d)dv.
M 2 M 2

Thus
2

/M @ (Cm)(e+ 1) —@)dv <0,

where C(n) =2 when n = 3 and C(n) = § when n > 4.
(1)For n = 3, if 0 < ® < 2¢ 4+ H?, we have

oz/ [@(2c+ H? - @)]dv>0.

Then either ® = 0 and M? is totally umbilical sphere or ® = 2c + H?. In the latter
case, all the integral inequalities become equalities. If & > 0, it follows from Lemma
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2.1 and Lemma 2.5 that

2 77
/ (2¢ + 2H? — ®)dv :/ (%% - Zi’j£¢ijk - QZi’jﬁ”H”)dv
M M
_/ (1@ _|ve)r  2[vH[? N 25,0 Hi® 23 ¢inij>dv
N 2 @ 202 P P2 i
M
_/ (lAan) _ 2|VH]? N 2>, ¢iHi®; 23 ¢inij>dv
N 2 P P2 P
M
2/VH? 23, ,;¢iHi®; ij
:/ (% T & +2) (g)iHi)dv
M irj
2V H |2 2N b H D P — b P
:/ - \V(I) | n ng;] iPj +22 @3](1)2@] 5 H,)do
M i

2IVH|? 2|VH|?
M

P P
By using ® = 2c + H?, we get

0 :/ (2¢ +2H? — ®)dv :/ H?%dv.
M M

Then M? is a minimal surface in N"(c). Since ® = 2¢ + H? > 0, we have ¢ > 0.
Thus M? is a minimal surface in S3(c) with S = ® = 2¢, we can conclude that M2
is the Clifford torus (see [3]).

(2Q)Forn >4,if0 <o < %c—i— %HZ, we have

3
oz/ [(I)(Qc+H2——<I>) dv > 0.
y 2

Then either ® = 0 and M? is totally umbilical or & = %c + %H 2. In the latter case,
all the integral inequalities become equalities. If ® > 0, assume that H(p) # 0 at
some point p € M?, we shall derive a contradiction. Since by assumption H (p) # 0,
®(p) > 0, Lemma 3.7 gives qﬁf‘j = C;;H for some functions C;;. Furthermore,
Lemma 2.4 implies C11(p) = Ci2(p) = 0, and hence Co;(p) = Caa(p) = 0. This
mean that ®(p) = 0, a contradiction. This contradiction shows that A/? is a minimal
surface in N"(c). Since ® = ¢+ 2H? > 0, we have ¢ > 0. Thus M? is a minimal
surface in S™(c), n > 4 with S = %c, we can conclude that n = 4 and M? is the
Veronese surface (see [7]).

5. THE F-WILLMORE SURFACES IN SPACE FORMS

In this section, we shall calculate the first variation of F-Willmore functional on
M? and prove the Theorem 1.5.
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Theorem 5.1. Let M? be a compact surface in the n-dimensional space form
N"™(c) of constant curvature c. Then M is an F-Willmore surface if and only if

N (F(®))i + 2 Z (F'(®));H® — F(®)H®

1,J
) [ALH‘X +HD+ Y qﬁ?jqﬁfjﬂﬂ} —0,
ﬁ7i7j
forevery 3 < a<n.

Proof.  Forz; : My = M?x {t} — N"(c), we consider the F-Willmore functional

Wi (z2) = /M F(®)dv /M F(®) 61 A Os.

From Lemma 3.4, we have

OWr(z2) / 0% / )
-~ = F'(®)— F 0
ot » ( ) ot 01 N 0o + » ( >8 (91/\92)

:/ 2F (@ [Zh i ZHO‘VM,Jr Z‘DkaJr Z hi; ?kh

a,i,] a,B,%,4,k

-3 ng hfZHavﬁ} 61 A o +/ F(@)(Y Vi~ 2 HV,) 01 A b,
a,B,i,k M i @

By Stokes’ theorem, we obtain
OWp(z) / 1o 8,8 B pa B
— _Q/MtF( )Za: [A H +ﬁ; h B by ;:khikhkiH }Vael A 0y

42 /M F'(®));h¢ — Z(F’(cb))iiHo‘ 42 Z(F’(@))iﬂf} V.01 A By

Q@ 7]

—2/ F(®) Y H Vol Ao,
M, >
Thus M? is an F-Willmore surface if and only if

STF(@))jihy — SO (F/(@))H +2 3 (F(@)):Hy
FF(® )[ALHa + 3" hlhbhg =" hfkhgiHﬁ} _ F(®)H" =0,
B,i,3,k Bk
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for every 3 < a < n. By using h{; = ¢f; + H%d;; and Z,@” qﬁquﬁ P = 0, we have
that M? is an F-Willmore surface if and only if
D (F(®))jidy +2 ) (F'(®))iHf — F(®)H
ij i
TF (D) [ALH‘X +HD+ Y qﬁ?jqﬁfjﬂﬂ —0,
ﬁ7i7j
for every 3 < a < n. [ |

Theorem 5.2. Let M? be a compact F-Willmore surface in the n-dimensional
space form N"(c). Then

[ {F@for- v mpe Y opeinen-Y F@ogeHe-r@)? =0

a,fB,i,] a,i,j

Proof. By using Theorem 5.1 and Stokes’ theorem, we have that

0= [ [ oY @) - Fe

a,t,j
+/ [Z HOAYHY + oH + Y 6% HO‘Hﬁ} dv
M a,Bi,j
— / { Z( (@))% H® + Z (F'(®));H*H — F(®)H?>

M a,t,j

LF () [<I>H2 —ViHP + Z qﬁ?jqﬁfjmﬂﬂ}dv
a’ﬁ7i7j
/ { > F(@)¢%0HY — F(®)H? + F'(®) [<I>H2 —|ViH|?
a,t,j

+ Z ¢1]¢/8HaHﬁi|} | ]

a,Bi,j

Proof of Theorem 1.5. Now, we prove the Theorem 1.5. If & = 0, this theorem
holds obviously. We consider the case ® # 0. Since

%AF((I)) = %F”(@)\V(I)\Q - %F’(@)A@,

by Lemma 2.1, we have

%AF((I)) - F’(cb)[ S (@5 +2 Y GHS + (2¢+ 2H — @)@-Z;Rgm}

a,i, g,k 1,

1
+5F(@)| Ve[
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Integrating both sides of this equation over M2, by Stokes’ theorem and Lemma 2.2,
we have

0—/ —AF(®

- [ {zre@ >\v¢>\2+F'<<I>>[Z B +2 ) O

a,i, g,k a1,

(2 + 2H? — ®)D — ZRgm} }dv
a’ﬁ

= [ {Fr@[gver -2 X sge,m] + P@) X (050 - 20 HE

«,1,] a,i,g,k

(2 + 2H? — ©)D — ZRim} }dv.
a’ﬁ

(1) If F'(®) > 0, by using Lemma 2.3 and Lemma 2.4, we obtain

0> /M{F”( )[ Vol —23 ga; HO‘}

« ’L,]

F (D) [ — |VYH? + (2c+ 2H? — K(n)cb)@} }dv
where K (n) = 1 when n =3 and K (n) = 2 when n > 4. From Theorem 5.2,
/ F(®) [<I>H2 - \viHﬂ dv
M
_ / {3 P (@)s50,82 + F@)H @) " ogefHH bav.
M ()é,i,j « ﬁv 7]
Then

0> /M{F”( [ VeP -3 63 Hﬂ F(®)H?

« ’L,]

+F'(D) [(20+H2 ) — > o, qﬁﬁHaHﬁ”d
a,B,%,]

By Cauchy-Schwarz inequality,

2 SO HH" =3 (3 o)
a,B,i,5
< Z ¢3%)7 > (H*)? = ®H?,

« ’L,] @
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and the equality holds if and only if either n = 3 or n > 4 and ¢f; = C;; H* for some
constant functions Cj;. Hence we can conclude that

oz/M {F(@) [ Ve -3 60, HO‘} (<I>)H2+F’(<I>)(20—K(n)<I>)<I>}dv.

« ’L,]

The equality holds if all the integral inequalities become equalities. If ® # 0, then

o111 = ¢122 = —1 and @220 = @911 = ﬂ when n = 3. If n > 4, we have
Yoa 105 =0 andz (69)% = >, (655)? by Lemma 2.4. Slnce¢ = C;jH* for
some constant functions Cj;, we get 011012['[2 = 0 and C’H = C’2 H?2. Since

® # 0, this implies that H = 0.
(QIf F'(®) < 0, by using Lemma 2.3, Lemma 2.4 and Theorem 5.2, we obtain

0 < /M{F”( )[ VoP -2 ¢, HO‘}

« ’L,]

F (D) [ — [VYH? + (2c+ 2H? — K(n)cb)@} }dv

:/M{Fﬂ( [\v@? 3 6d; HO‘} F(D)H?

« ’L,]

FF(®) |2+ H? = K(n)@)® — Y~ 656 HOH?| Ldv.
,B3,1,

By Cauchy-Schwarz inequality, we can conclude that

og/M{F”( [\vw 3 6 HO‘} (<I>)H2+F’(<I>)(20—K(n)<I>)<I>}dv.

@ Z7]
The equality holds if ¢111 = P10 = % and @222 = P211 = % whenn =3, H=0
when n > 4. This completes the proof. ]

In order to get more information about the F'-Willmore surface in the n-dimensional
space form N"(c). We try to find some suitable functions F'(®) and apply them to the
integral inequalities in Theorem 1.5.

Example 5.3. If M? is a F-Willmore surface and F(®) is a constant function,
then F”/(®) = F' = 0. By the integral inequalities in Theorem 1.5, we have that

0= /M F(®)H?dv.

This implies that M is a minimal surface. The Willmore surface and the p-Willmore
surface are two special cases of the F-Willmore surface in space form N"(c), if we
choose F(®) = ® and F(P) = PP respectively. Thus we can conclude that a F-
Willmore surface in space form is a minimal surface if F'(®) is a constant function, a
Willmore surface if F/(®) = ® and a p-Willmore surface if F'(®) = ®P.
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Example 5.4. Let M? be a constant mean curvature F-Willmore surface in the
n-dimensional space form N"(c). Choose F(®) = e?, by the integral inequality in
Theorem 1.5, we have that

0> / e*{ [%\vw = qﬁ?j@jﬂf} + H? 4 (20— K(n)<1>)<1>}dv.
M

a1,

If @ is constant, then this integral inequality can be written by

oz/ e¢[—K(n)¢2+2¢¢+H2}dv.
M

Assume that 0 < & < K(Cn) +Y CQ};I((X)H{Z. Then we have —K (n)®2+2c®+H? >0
and

/ e{)[—K(n)@Q—l—Qc@—i—Hﬂdv:O.
M

This implies that either ® = 0 or = K(Cn) + 02}'(}((75)71 ) H2. Thus we can conclude that

a constant mean curvature F-Willmore surface in space form with ® = constant and

0<d < K(Cn) + 62;;(;)1{2 is a surface either ® = 0 or & = K(C ) + Y 02;{75)”)1{2.
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