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Volume Inequalities for Asymmetric Orlicz Zonotopes

Congli Yang and Fangwei Chen*

Abstract. In this paper, we deal with the asymmetric Orlicz zonotopes by using the

method of shadow system. We establish the volume product inequality and volume

ratio inequality for asymmetric Orlicz zonotopes, along with their equality cases.

1. Introduction

A classical problem in convex geometry is to find the maximizer or minimizer of the volume

product among convex bodies. The celebrated Blaschke-Santaló inequality characterizes

ellipsoids are the maximizers of this function on convex bodies. However, finding the

minimizer of this function is an open problem in convex geometry. Only in two dimensional

case, this problem is solved by Mahler (see, e.g., [38, 39]). Moreover, it is conjectured

by him that simplices are the solutions of this function for all dimensional n, which is

called the Mahler’s conjecture. Although it is extremely difficult to attack, but it attracts

lots of author’s interests, many substantial inroads have been made. One can refer to

e.g., [1, 5, 9, 10,16,19,25–27,40–42] for more about this conjecture.

One aspect of the researches for the Mahler’s conjecture is to induce the study of the

volume product of zonotopes or zonoids, that is the Minkowski sums of origin-symmetric

line segments in Rn, and their limits with respect to the Hausdorff distance (see, e.g.,

[19,41,44]). Although the restriction to zonotopes and zonoids is a regrettable drawback,

but there seems no approach for general convex bodies for this problem. On the other

hand, inequalities for zonoids can be applied to stochastic geometry (see [45]).

In the last century, the volume product inequalities in Euclidean space, Rn, have widely

been generalized with the development of the Lp-Minkowski theory. See, for example,

[7–9,15,29–34,48,49,52] for more details about the volume product inequalities in the Lp-

Minkowski theory. The Lp-volume product inequalities for zonotopes, together with its
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dual volume ratio inequality, were established by Campi and Cronchi [10]. These results

extend the results of Reisner [41]. However, all of these results are restricted to the origin-

symmetric setting. The asymmetric extension of the Lp-volume product inequality and Lp-

volume ratio inequality, along with the characterization of its extremals are established by

Weberndorfer in [51], and the Campi and Cronchi’s results as a special case. The seminal

work in studying the asymmetric geometric inequalities are very important in convex

geometry. For example, in the paper of Ludwig [28], she has obtained a characterization

of the asymmetric Lp-centroid body and asymmetric Lp-projection body, which establishes

the classification of the SL(n) invariant Minkowski valuation on convex set. After that,

the asymmetric geometric inequalities involving the volume and other geometric invariant

have emerged. For instance, the asymmetric Lp-centroid body operator turned out to

be an extension of Lp version of the Blaschke-Santaló inequality for all convex bodies,

whereas established by Lutwak and Zhang [37] for origin-symmetric setting. One can

refer to [22–24,46] for more details.

Beginning with the articles [21, 35, 36] of Haberl, Lutwak, Yang and Zhang, a wider

extension of the Lp-Brunn-Minkowski theory emerged, called the Orlicz Brunn-Minkowski

theory. In these papers, the Orlicz Busemann projection inequality and Orlicz Busemann

centroid inequality were established. Recently, in a paper of Gardner, Hug and Weil [18], a

systematic study is made on the Orlicz Minkowski addition, the Orlicz Brunn-Minkowski

inequality and Orlicz Minkowski inequality are obtained. See, e.g., [2–4,12–14,18,21,53,54]

about the Orlicz Brunn-Minkowski theory.

In view of the importance of the volume product inequality in convex geometry, we

tried to consider the naturally posed problem in the wide interest of the Orlicz Brunn-

Minkowski theory. What is like the volume product inequality or volume ratio inequality

for asymmetric Orlicz zonotopes? In this context, the main goal of this paper is to

establish the volume product inequality and volume ratio inequality for asymmetric Orlicz

zonotopes.

Throughout this paper, let C be the class of convex, strictly increasing functions

ϕ : [0,∞)→ [0,∞) satisfying ϕ(0) = 0 and ϕ(1) = 1.

Suppose that Λ is a finite set of vectors from Rn \{o}, the asymmetric Orlicz zonotope

Z+
ϕ Λ is the unique compact convex set with support function

hZ+
ϕ Λ(u) = inf

{
λ > 0 :

∑
w∈Λ

ϕ

(
〈w, u〉+
λ

)
≤ 1

}
,

where u ∈ Rn and 〈w, u〉+ = max{0, 〈w, u〉} denotes the positive part of the Euclidean

scalar product.

In particular, if we take ϕ(t) = tp, p ≥ 1, then Z+
ϕ Λ is precisely the Lp-asymmetric

zonotope Z+
p Λ defined in [51].
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In this paper, our main results are the volume product inequality and volume ratio

inequality for the asymmetric Orlicz zonotopes.

Let Λ⊥ = {e1, . . . , en} denote the canonical basis of Rn, Z+,∗
ϕ Λ denotes the polar

body of Z+
ϕ Λ with respect to the Santaló point. For the asymmetric Orlicz zonotopes, we

establish the following volume product inequality.

Theorem 1.1. Suppose ϕ ∈ C and Λ is a finite and spanning multiset. Then

(1.1) V (Z+,∗
ϕ Λ)V (Z+

1 Λ) ≥ V (Z+,∗
ϕ Λ⊥)V (Z+

1 Λ⊥).

Equality holds with ϕ 6= Id if and only if Λ is a GL(n) image of the canonical basis Λ⊥.

If ϕ = Id, the identity function, the equality holds if and only if Z+
1 Λ is a parallelepiped.

We follow the notations of paper [51]. A set Λ of vectors from Rn is called obtuse if

every pair of distinct vectors u, v from Λ satisfies

〈u, v〉+ = 0.

Another result concerning to the volume ratio for asymmetric Orlicz zonotopes asso-

ciated with the obtuse sets Λ says that it attains its maximum if Λ is a canonical basis of

Rn.

Theorem 1.2. Suppose ϕ ∈ C and Λ is a finite and spanning set. Then

(1.2)
V (Z+

ϕ Λ)

V (Z+
1 Λ)

≤
V (Z+

ϕ Λ⊥)

V (Z+
1 Λ⊥)

.

Equality holds if and only if Λ is a GL(n) image of an obtuse set.

The paper is organized as follows. In Section 2, we introduce the asymmetric Orlicz

zonotopes and show some of their properties. The shadow system and some results of

them are given in Section 3. Section 4 deals with the equality case of the volume product

inequality and volume ratio inequality for Orlicz zonotopes. The final proofs of the main

theorems are presented in Section 5.

2. Preliminaries

For quick reference we recall some basic definition and notations in convex geometry that

is required for our results. Good references are Gardner [17], Gruber [20], Schneider [43].

Let Kn denote the set of convex bodies (compact, convex subsets with nonempty inte-

riors) in Euclidean n-space, Rn. If K is a convex body, denote by V (K) its n-dimensional

volume, and by hK(·) : Sn−1 → R the support function of K; i.e., for u ∈ Sn−1,

hK(u) = max{〈u, x〉 : x ∈ K},
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where 〈u, x〉 denotes the standard inner product in Rn. It is shown that the sublinear

support function characterizes a convex body and, conversely, every sublinear function on

Rn is the support function of a nonempty compact convex set.

Two convex bodies K, L satisfy K ⊆ L if and only if hK(·) ≤ hL(·). By the definition

of the support function, it follows immediately that the support function of the image

gK := {gy : y ∈ K} is given by

hgK(x) = hK(gTx)

for g ∈ GL(n). Here gT denotes the transpose of g.

Let K be a convex body, for every interior point s of K,

Ks = {y ∈ Rn : 〈y, x− s〉 ≤ 1 for all x ∈ K}

defines a convex body that is called the polar body of K with respect to s. A well-known

result of Santaló states that, in every convex body K ∈ Rn, there exists a unique point

s(K) ∈ K, the Santaló point, such that

V (Ks(K)) = min
s∈K

V (Ks).

To shorten the notation, we shall denote Ks(K) by K∗. It is well known that the polariza-

tion with respect to the Santaló point is translation invariant and GL(n) contravariant,

that is,

(K + y)∗ = K∗ and (gK)∗ = g−TK∗,

for y ∈ Rn and g ∈ GL(n).

Suppose Λ is a set in Rn, it is called multiset if its members are allowed to appear

more than once. More precisely, a multiset Λ is identified with its multiplicity function

1Λ : Rn → N ∪ {0}, that generalizes the characteristic function of sets. We say that a

vector is an element of a multiset if the corresponding multiplicity function evaluated at

the vector is greater than zero, and call a multiset finite if it contains only a finite number

of vectors. If these vectors span Rn, then we say that the multiset is spanning.

The operation between multisets can be defined using the multiset function. For

instance, the union Λ1 ] Λ2 of Λ1 and Λ2 is defined as

1Λ1]Λ2(x) = 1Λ1(x) + 1Λ2(x)

and Λ1 − Λ2 is defined as

1Λ1−Λ2(x) = max{0, 1Λ1(x)− 1Λ2(x)}.

We write multisets in usual set notation, that is, Λ = {v1, . . . , vm}.
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The asymmetric Lp-zonotopes associated with finite and spanning multisets Λ =

{v1, . . . , vm} are defined by Weberndorfer [51]. Here we extend the notations to asymmet-

ric Orlicz zonotopes.

Let C be the class of convex, strictly increasing functions ϕ : [0,∞)→ [0,∞) satisfying

ϕ(0) = 0 and ϕ(1) = 1. Here the normalization is a matter of convenience and other

choices are possible. It is not hard to conclude that ϕ ∈ C is continuous on [0,∞).

Asymmetric Orlicz zonotopes associated with finite and spanning multisets Λ = {v1,

. . . , vm} are defined by

(2.1) hZ+
ϕ Λ(u) = inf

{
λ > 0 :

m∑
i=1

ϕ

(
〈vi, u〉+

λ

)
≤ 1

}

for all u ∈ Sn−1. Moreover, if 〈vi, u〉+ = 0 for all i = 1, 2, . . . ,m, we define hZ+
ϕ Λ(u) = 0.

In fact, by the convexity of ϕ and the sub-additivity of 〈v, · 〉+, we have

ϕ

(
〈v, u1 + u2〉+
λ1 + λ2

)
≤ λ1

λ1 + λ2
ϕ

(
〈v, u1〉+
λ1

)
+

λ2

λ1 + λ2
ϕ

(
〈v, u2〉+
λ2

)
,

it follows that the support function defined in (2.1) is sublinear, which grants the existence

of convex body Z+
ϕ Λ.

In particular, if p ≥ 1 and take ϕ(t) = tp, then it turns out that Z+
ϕ Λ = Z+

p Λ.

Note that ϕ ∈ C is strictly convex and increasing on [0,∞), it follows that the function

λ 7→
m∑
i=1

ϕ

(
〈vi, u〉+

λ

)
is strictly decreasing on [0,∞). The next lemma easily follows.

Lemma 2.1. Suppose ϕ ∈ C and Λ = {v1, . . . , vm} spans Rn. For u0 ∈ Sn−1, then

(i)
∑m

i=1 ϕ(〈vi, u0〉+/λ0) = 1 if and only if λ0 = hZ+
ϕ Λ(u0);

(ii)
∑m

i=1 ϕ(〈vi, u0〉+/λ0) > 1 if and only if λ0 < hZ+
ϕ Λ(u0);

(iii)
∑m

i=1 ϕ(〈vi, u0〉+/λ0) < 1 if and only if λ0 > hZ+
ϕ Λ(u0).

A simple observe of definition (2.1) is that the operator Z+
ϕ on finite and spanning

multisets is GL(n) equivariant, that is, Z+
ϕ gΛ = gZ+

ϕ Λ holds for all g ∈ GL(n). In fact,

hZ+
ϕ gΛ

(u) = inf

{
λ > 0 :

m∑
i=1

ϕ

(
〈gvi, u〉+

λ

)
≤ 1

}

= inf

{
λ > 0 :

m∑
i=1

ϕ

(
〈vi, gTu〉+

λ

)
≤ 1

}
= hZ+

ϕ Λ(gTu) = hgZ+
ϕ Λ(u)
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holds for all u ∈ Sn−1. Moreover, the asymmetric Orlicz zonotopes defined by (2.1) are

closely related to the origin symmetric Orlicz zonotopes ZϕΛ defined in [50]. Specially,

ϕ

(
|〈vi, u〉|
λ

)
= ϕ

(
〈vi, u〉+ + 〈−vi, u〉+

λ

)
= ϕ

(
〈vi, u〉+

λ

)
+ ϕ

(
〈−vi, u〉+

λ

)
,

which implies that ZϕΛ = Z+
ϕ (Λ ] −Λ).

In the following, the volume product and volume ratio for Orlicz zonotopes associated

with the multisets Λ always refer to V (Z+,∗
ϕ Λ)V (Z+

1 Λ) and V (Z+
ϕ Λ)/V (Z+

1 Λ), respec-

tively.

3. Shadow system of multiset

The notion of shadow system, introduced by Rogers and Shephard (see [42, 47]), play an

important role in proving geometric inequalities in convex geometry. For example, this

method was used by Campi, Gronchi, Meyer and Reisner (see, e.g., [6–10,40]). A shadow

system Xt of points from Rn is a family of sets which can be defined as follows:

Xt = {xi + tβiv : xi ∈ Rn}

where t ∈ [t1, t2], βi ∈ R and v ∈ Sn−1. Here t can be seen as a time-like parameter and

βi as the speed of the point xi along the direction v.

Let Λ = {v1, . . . , vm} be a finite multiset such that Λ \{v1} is spanning. Following the

ideas of Campi and Gronchi [10], define Λat = {w1(t), . . . , wm(t)}, where

(3.1) wi(t) =

(1 + ta)v1 i = 1,

vi − t 〈v1,vi〉‖v1‖2 v1 otherwise.

Here t varies in [−a−1, 1], and

(3.2) a =

∑
2≤i1<···<in≤m

∣∣[vi1 , . . . , vin ]
∣∣∑

2≤i2<···<in≤m
∣∣[v1, vi2 , . . . , vn]

∣∣ ,
here [vi1 , . . . , vin ] denotes the determinant of the matrix whose rows are vi1 , . . . , vin . From

the definition we have Λa0 = Λ, and w1(1) is orthogonal to the remaining vectors in Λa1,

while w1(−a−1) = o. Moreover, by the construction (3.1), Λat , t ∈ [−a−1, 1], is a shadow

system of multisets along the direction v = v1/‖v1‖ ∈ Sn−1.

The important result of Campi and Gronchi is that for t ∈ [−a−1, 1], the asymmetric

L1-zonotopes associated to Λat preserve the volume, and then was extended to asymmetric

Lp-zonotopes by Weberndorfer. From now on, we use Λt to denote Λat , the orthogonaliza-

tion of Λ with respect to v1 if a is determined by (3.2).

In the following, we will show that the asymmetric Orlicz zonotopes associated to the

shadow system of a multiset along direction v is independent of t.
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Lemma 3.1. Suppose that Λt, t ∈ [−a−1, 1] is a shadow system of multisets along the

direction v ∈ Sn−1. Then the orthogonal projection of Z+
ϕ Λt onto v⊥ is independent of t.

Proof. By the definition of Λt, for x ∈ v⊥ we have

hZ+
ϕ Λt

(x) = inf

{
λ > 0 :

m∑
i=1

ϕ

(
〈vi + tβiv, x〉+

λ

)
≤ 1

}

= inf

{
λ > 0 :

m∑
i=1

ϕ

(
〈vi, x〉+

λ

)
≤ 1

}
= hZ+

ϕ Λ(x),

which shows the result.

Before characterizing the shadow system of convex bodies along with direction v dis-

tinguish with others, we introduce the uppergraph function gv(K, · ) and the lowergraph

function g
v
(K, · ) of a convex body K by

gv(K,x) := sup{λ ∈ R : x+ λv ∈ K},

g
v
(K,x) := inf{λ ∈ R : x+ λv ∈ K}.

An alternative representation of the above formulas are obtained by Weberndorfer [51].

Let w ∈ v⊥, then

gv(K,x) = inf
w∈v⊥

{hK(v + w)− 〈x,w〉},

g
v
(K,x) = − inf

w∈v⊥
{hK(−v − w) + 〈x,w〉}

(3.3)

for all x ∈ v⊥.

Now we present the characterization of a shadow system obtained by Campi and

Gronchi.

Proposition 3.2. [7] Let Kt, t ∈ [−a−1, 1], be one parameter family of convex bodies

such that Kt|v⊥ is independent of t. Then Kt, t ∈ [−a−1, 1], is a shadow system of convex

bodies along the direction v if and only if for every x ∈ K0|v⊥, the functions t→ gv(Kt, x)

and t→ −g
v
(Kt, x) are convex and

(3.4) g
v
(Kλs+µt, x) ≤ λgv(Ks, x) + µg

v
(Kt, x) ≤ gv(Kλs+µt, x)

for every s, t ∈ [−a−1, 1] and λ, µ ∈ (0, 1) such that λ+ µ = 1.

A remarkable result about the volume of a shadow system is due to Shephard.
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Lemma 3.3. [47] Every mixed volume involving n shadow systems along the same di-

rection is a convex function of the parameter. In particular, the volume V (Kt) and all

quermassintegrals Wi(Kt), i = 1, 2, . . . , n, of a shadow system are convex functions of t.

This result was largely used by Campi and Gronchi [7–10] and Chen [11, 14]. In the

following, we show that the support function of asymmetric Orlicz zonotopes associated

with a shadow system of multisets Λt, t ∈ [−a−1, 1], is a Lipschitz function of t.

Let f = (f1, . . . , fn) : Rn → Rn be a real-valued function, v = (v1, . . . , vn), β =

(β1, . . . , βn) and v(t) = (v1(t), . . . , vn(t)) are vectors in Rn, where vi(t) = vi + tβiv for

i = 1, 2, . . . , n, as defined before. For notational convenience we define

(3.5) ‖f(t)‖ϕ := inf

{
λ > 0 :

m∑
i=1

ϕ

(
|fi(t)|
λ

)
≤ 1

}

for real-valued functions f on Rn, and [ · ]+ := max{ · , 0}. By Lemma 2.1, if c > 0, we

have ‖cf‖ϕ = |c|‖f‖ϕ. Moreover, if f ≤ g for all t ∈ R, we have

‖f‖ϕ ≤ ‖g‖ϕ.

Lemma 3.4. Suppose ϕ ∈ C and Λt, t ∈ [−a−1, 1], is a shadow system of multiset

Λ = {v1, . . . , vm} along the direction v and speed function β. If t1, t2 ∈ [−a−1, 1] and

x ∈ Rn, then ∣∣∣hZ+
ϕ Λt1

(x)− hZ+
ϕ Λt2

(x)
∣∣∣ ≤ ‖β〈v, x〉‖ϕ|t1 − t2|.

Proof. From definition (3.5) and Lemma 2.1, we have

‖f(t)‖ϕ = λ1 ⇐⇒
m∑
i=1

ϕ

(
|fi(t)|
λ1

)
= 1,

‖g(t)‖ϕ = λ2 ⇐⇒
m∑
i=1

ϕ

(
|gi(t)|
λ2

)
= 1.

The convexity of ϕ shows

(3.6) ϕ

(
|fi(t) + gi(t)|
λ1 + λ2

)
≤ λ1

λ1 + λ2
ϕ

(
|fi(t)|
λ1

)
+

λ2

λ1 + λ2
ϕ

(
|gi(t)|
λ2

)
.

Summing both sides of (3.6) with respect to i = 1, 2, . . . ,m, gives

m∑
i=1

ϕ

(
|fi(t) + gi(t)|
λ1 + λ2

)
≤ 1.

By Lemma 2.1 again we have

(3.7) ‖f(t) + g(t)‖ϕ ≤ ‖f(t)‖ϕ + ‖g(t)‖ϕ.
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If we take f = f − g + g, we have

‖f(t)‖ϕ − ‖g(t)‖ϕ ≤ ‖f(t)− g(t)‖ϕ,

which means

(3.8)
∣∣‖f(t)‖ϕ − ‖g(t)‖ϕ

∣∣ ≤ ‖f(t)− g(t)‖ϕ.

Moreover, together with the definition of the support function hZ+
ϕ Λt

(x) and (3.5), we

have

hZ+
ϕ Λt

(x) = ‖〈v(t), x〉+‖ϕ.

Then, by (3.8) we have∣∣∣hZ+
ϕ Λt1

(x)− hZ+
ϕ Λt2

(x)
∣∣∣ =

∣∣‖〈v(t1), x〉+‖ϕ − ‖〈v(t2), x〉+‖ϕ
∣∣

≤ ‖〈v(t1), x〉+ − 〈v(t2), x〉+‖ϕ
≤ ‖β〈x, v〉+(t1 − t2)‖ϕ = ‖β〈x, v〉+‖ϕ|t1 − t2|.

We complete the proof.

Theorem 3.5. Suppose ϕ ∈ C, Λt, t ∈ [−a−1, 1], is a shadow system of multisets along

the direction v ∈ Sn−1. Then Z+
ϕ Λt, t ∈ [−a−1, 1], is a shadow system of convex bodies

along the direction v.

Proof. Let x be a point in Z+
ϕ Λ0|v⊥ , and ν, µ ∈ (0, 1) satisfy ν + µ = 1. By Lemma 3.1,

it is remains to show that the hypotheses of Proposition 3.2 on properties of the graph

functions are satisfied.

By assumption, the shadow system Λt is equal to, say, {v1(t), . . . , vm(t)} where vi(t) =

vi + tβiv. With these definitions, the support function of Z+
ϕ Λt can be written as

hZ+
ϕ Λt

(u) = inf

{
λ > 0 :

m∑
i=1

ϕ

(
〈vi(t), u〉+

λ

)
≤ 1

}
= ‖〈v(t), u〉+‖ϕ.

To establish the convexity of the uppergraph and lowergraph function as functions of

t, we first prove the uppergraph function is a convex function of t. Notice that Λt is

also a shadow system in direction −v. Then the vector v can be replaced by −v and

by application of the identity g−v( · , x) = −g
v
( · , x), we can obtain that the lowergraph

function is a convex function of t.

By the definition of gv(Z
+
ϕ Λt, x), we have

gv(Z
+
ϕ Λνs+µt, x) = inf

w1,w2∈v⊥

{
hZ+

ϕ Λνs+µt
(v + νw1 + µw2)− 〈x, νw1 + µw2〉

}
= inf

w1,w2∈v⊥
{‖〈v(νs+ µt), v + νw1 + µw2〉+‖ϕ − 〈x, νw1 + µw2〉} .
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By the inequality max{u+ v, 0} ≤ max{u, 0}+ max{v, 0} and definition (3.5), we have

‖〈v(νs+ µt), v + νw1 + µw2〉+‖ϕ

= inf

{
λ > 0 :

m∑
i=1

ϕ

(
〈vi + (νs+ µt)βiv, v + νw1 + µw2〉+

λ

)
≤ 1

}
.

The convexity of ϕ and (3.7) imply that

(3.9) ‖〈v(νs+ µt), v + νw1 + µw2〉+‖ϕ ≤ ν‖〈v(s), v + w1〉+‖ϕ + µ‖〈v(t), v + w2〉+‖ϕ.

Thus, together with (3.9) and the expression of gv(K,x) we have

inf
w1,w2∈v⊥

{‖〈v(νs+ µt), v + νw1 + µw2〉+‖ϕ − 〈x, νw1 + µw2〉}

≤ inf
w1∈v⊥

{ν‖〈v(s), v + w1〉+‖ϕ − ν〈x,w1〉}

+ inf
w2∈v⊥

{µ‖〈v(t), v + w2〉+‖ϕ − µ〈x,w2〉} ,

which means

gv(Z
+
ϕ Λνs+µt, x) ≤ νgv(Z+

ϕ Λs, x) + µgv(Z
+
ϕ Λt, x).

Hence t→ gv(Z
+
ϕ Λt, x) is convex.

Next we verify the inequalities (3.4) of Proposition 3.2. First we show

(3.10) νgv(Z
+
ϕ Λs, x) + µg

v
(Z+

ϕ Λt, x) ≤ gv(Z+
ϕ Λνs+µt, x).

To see this, let w ∈ v⊥,

(3.11) νgv(Z
+
ϕ Λs, x) = inf

w∈v⊥
{‖ν〈v(s), v + w〉+‖ϕ − ν〈x,w〉} .

Let w = ν−1(w1 − µw2), w1, w2 ∈ v⊥, in (3.11), we have

νgv(Z
+
ϕ Λs, x) = inf

w1,w2∈v⊥
{‖〈v(s), νv + w1 − µw2〉+‖ϕ − 〈x,w1 − µw2〉} ,

where

〈v(s), νv + w1 − µw2〉+ = 〈vi + sβiv, (1− µ)v + w1 − µw2〉+
= µ〈vi + tβiv,−v − w2〉+ + 〈vi + (νs+ µt)βiv, v + w1〉+.

By (3.7) we have,

νgv(Z
+
ϕ Λs, x)

= inf
w1,w2∈v⊥

{‖〈v(s), νv + w1 − µw2〉+‖ϕ − 〈x,w1 − µw2〉}

= inf
w1,w2∈v⊥

{‖µ〈vi + tβiv,−v − w2〉+ + 〈vi + (νs+ µt)βiv, v + w1〉+‖ϕ − 〈x,w1 − µw2〉}

≤ µ inf
w∈v⊥

{‖〈v(t),−v − w2〉+‖ϕ − 〈x,−w2〉}+ inf
w∈v⊥

{‖〈v(νs+ µt), v + w1〉+‖ϕ − 〈x,w1〉}

= −µg
v
(Z+

ϕ Λt, x) + gv(Z
+
ϕ Λνs+µt, x),
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which implies the inequality (3.10).

The left-hand of inequality (3.4) can be derived from inequality (3.10) by replacing v

by −v, and using the following facts

g−v( · , x) = −gv( · , x) and g−v( · , x) = −g
v
( · , x).

Now we complete the proof.

Now Theorem 3.5 together with Lemma 3.1 imply the following theorem.

Theorem 3.6. Suppose ϕ ∈ C and Λ is a finite and spanning multiset. If Λt, t ∈ [−a−1, 1],

is an orthogonalization of Λ defined by (3.1), then

(i) The volume V (Z+,∗
ϕ Λt)

−1 is a convex function of t. In particular, the inverse volume

product for asymmetric Orlicz zonotopes associated with Λt is a convex function of

t.

(ii) The volume V (Z+
ϕ Λt)

−1 is a convex function of t. In particular, the volume ratio

for asymmetric Orlicz zonotopes associated with Λt is a convex function of t.

Theorem 3.6 shows that the inverse volume product and the volume ratio for asym-

metric Orlicz zonotopes are nondecreasing if Λ is replaced by either Λ−a−1 or Λ1, because

convex functions attain global maxima at the boundary of compact intervals.

4. The equality condition

The following lemma is crucial for the proof of our main results.

Lemma 4.1. Suppose ϕ ∈ C, and Λ is a finite and spanning multiset. Replace all vectors

in Λ that point in the same direction by their sum, and denote this new multiset by Λ.

Then the following inequalities

V (Z+
ϕ Λ)

V (Z+
1 Λ)

≤
V (Z+

ϕ Λ)

V (Z+
1 Λ)

,

V (Z+,∗
ϕ Λ)V (Z+

1 Λ) ≥ (V +,∗
ϕ Λ)(V (Z+

1 Λ)

(4.1)

hold. Equality holds, when ϕ 6= Id, if and only if Λ = Λ.

Proof. Let multiset Λ = {v1, . . . , vm} and Λ = {w1, . . . , wk}. By the construction of Λ we

have

wj =
∑
i∈Ij

vi,
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where Ij , j = 1, 2, . . . , k, is a partition of {1, 2, . . . ,m} and the vectors in every {vi : i ∈ Ij}
point in the same direction. If ϕ = Id, this means ϕ(t) = t, here we write Z+

IdΛ = Z+
1 Λ.

It is easy to know that

(4.2) Z+
1 Λ = Z+

1 Λ.

Now assume that ϕ 6= Id. Let u ∈ Sn−1, and set

hZ+
ϕ Λ(u) = λ and hZ+

ϕ Λ(u) = λ.

By the definition of Z+
ϕ Λ, and note that all vi point in the same direction for i ∈ Ij , then

we have 〈∑
i∈Ij

vi, u

〉
+

=
∑
i∈Ij

〈vi, u〉+.

It follows that

k∑
j=1

ϕ


〈∑

i∈Ij vi, u
〉

+

λ

 =
k∑
j=1

ϕ

(∑
i∈Ij 〈vi, u〉+

λ

)
= 1.

Since the fact that ϕ is convex and increasing, we have that if x1, . . . , xl ∈ [0,∞), then

ϕ(x1 + · · ·+ xl) ≥ ϕ(x1) + · · ·+ ϕ(xl).

Equality holds if and only if ϕ is a linear function. So we obtain

(4.3) 1 =
k∑
j=1

ϕ

(∑
i∈Ij 〈vi, u〉+

λ

)
≥

m∑
i=1

ϕ

(
〈vi, u〉+

λ

)
.

Since hZ+
ϕ Λ(u) = λ, by Lemma 2.1, we obtain λ ≤ λ. Since ϕ 6= Id, equality holds only

if all sum over i ∈ Ij contain at most one positive summand, that means Λ = Λ. In

fact, if Λ 6= Λ, say v1 and v2 point in the same direction, by the convexity of ϕ, then

hZ+
ϕ Λ(v1) > hZ+

ϕ Λ(v1). Hence we obtain Z+
ϕ Λ ⊂ Z+

ϕ Λ.

On the other hand, if Λ 6= Λ, equality holds in (4.3) if and only if

k∑
j=1

ϕ(xj) = ϕ

(
k∑
i=1

xi

)

holds for arbitrary k and xi ∈ R. Combining with the convexity and the normalization of

ϕ, and solving this functional equation we know that ϕ(t) = t. Then

Z+
ϕ Λ = Z+

1 Λ = Z+
1 Λ.
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The first inequality of (4.1) now follows immediately. To the second inequality of (4.1), if

ϕ 6= Id, note that

Z+,∗
ϕ Λ = (Z+

ϕ Λ− s(Z+
ϕ Λ))o ⊇ (Z+

ϕ Λ− s(Z+
ϕ Λ))o,

equality holds if and only if Λ = Λ. Thus

V (Z+,∗
ϕ Λ) ≥ V ((Z+

ϕ Λ− s(Z+
ϕ Λ))o) ≥ V (Z+,∗

ϕ Λ).

Together with (4.2) show the second inequality of (4.1).

In the following, we observe that a set that can be written as a disjoint union Λ⊥ ∪
{v1, . . . , vl} is obtuse if and only if there are disjoint nonempty subset I1, . . . , Il of {1, 2, . . .,
n} and positive numbers µi such that, for every j ∈ {1, 2, . . . , l},

vj =
∑
i∈Ij

−µiei.

The following lemma shows that every spanning obtuse set has a linear image of above

type.

Lemma 4.2. [51] Suppose Λ is a spanning obtuse set, then the following three statements

hold:

(i) If B ⊂ Λ is a basis, then the vectors in Λ \ B are pairwise orthogonal and have

nonpositive components with respect to the basis B.

(ii) Every GL(n) image of Λ that contains the canonical basis Λ⊥ is obtuse.

(iii) Suppose in addition that Λ contains the canonical basis. For every y ∈ Z+
ϕ Λ there is

a g ∈ GL(n) such that gy has nonnegative coordinates with respect to the canonical

basis and Λ⊥ ⊂ gΛ.

This lemma is established by Weberndorfer in [51].

One of the immediate implications of the above lemma is that a spanning obtuse set

contains at least n and not more than 2n vectors. Now we give the equality condition of

our main results.

Lemma 4.3. Suppose ϕ ∈ C and Λ is a spanning obtuse set. Then

V (Z+
ϕ Λ)

V (Z+
1 Λ)

=
V (Z+

ϕ Λ⊥)

V (Z+
1 Λ⊥)

.
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Proof. Let Λ be a spanning obtuse set. By GL(n) invariance of the volume ratio for

asymmetric Orlicz zonotopes and Lemma 4.2, we may assume that Λ = {w1, . . . , wm},
where n ≤ m ≤ 2n, contains the canonical basis Λ⊥ = {e1, . . . , en}. In the following, if we

can establish the dissection formula

(4.4) Z+
ϕ Λ =

⋃
1≤i1<···<in≤m

Z+
ϕ {wi1 , . . . , win}.

Then, we have

(4.5) V (Z+
ϕ Λ) =

∑
1≤i1<···<in≤m

V
(
Z+
ϕ {vi1 , . . . , vin}

)
.

The GL(n) equivariance of Z+
ϕ together with (4.5) for ϕ(t) = t, we have

V (Z+
ϕ Λ)

V (Z+
1 Λ)

=

∑
1≤i1<···<in≤m V

(
Z+
ϕ {vi1 , . . . , vin}

)∑
1≤i1<···<in≤m V

(
Z+

1 {vi1 , . . . , vin}
) =

V (Z+
ϕ Λ⊥)

V (Z+
1 Λ⊥)

.

Here we used the GL(n) equivariance of Z+
ϕ and the fact V (Z+

ϕ {vi1 , . . . , vin}) = 0, if

{vi1 , . . . , vin} is not a GL(n) image of canonical basis Λ⊥. Hence we have

V (Z+
ϕ Λ)

V (Z+
1 Λ)

=
V (Z+

ϕ Λ⊥)

V (Z+
1 Λ⊥)

.

In the following, we will show that the dissection formula (4.4) holds. Let y ∈⋃
1≤i1<···<in≤m Z

+
ϕ {wi1 , . . . , win}, then it must belong to, say, Z+

ϕ {w1, . . . , wn}. In order

to prove y ∈ Z+
ϕ Λ. Let

hZ+
ϕ {w1,...,wn}(u) = λ0 and hZ+

ϕ Λ(u) = λ1.

By the definition of the support function, we have

n∑
i=1

ϕ

(
〈wi, u〉+
λ0

)
= 1 and

m∑
j=1

ϕ

(
〈wj , u〉+
λ1

)
= 1.

Since ϕ is increasing,

n∑
i=1

ϕ

(
〈wi, u〉+
λ1

)
≤

m∑
j=1

ϕ

(
〈wj , u〉+
λ1

)
.

By Lemma 2.1 we have λ1 ≥ λ0. This means

Z+
ϕ {w1, . . . , wn} ⊆ Z+

ϕ Λ.

We prove Z+
ϕ Λ contains the right-hand side of (4.4). Now it remains to prove that Z+

ϕ Λ

is a subset of the right-hand side of (4.4). Let y ∈ Z+
ϕ Λ, it is sufficient to show that
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there is a g ∈ GL(n) such that y ∈ Z+
ϕ g
−1Λ⊥ and g−1Λ⊥ ⊆ Λ. By Lemma 4.2, there is a

g ∈ GL(n) such that gy has nonnegative coordinates with respect to the canonical basis

and Λ⊥ ⊆ gΛ. Moreover, gΛ is obtuse, then we can write

gΛ = Λ⊥ ∪ {w1, . . . , wm−n},

and there are disjoint subsets I1, . . . , Im−n of {1, 2, . . . , n}, and positive number µ′i such

that, for 1 ≤ j ≤ m− n,

wj =
∑
i∈Ij

−µ′iei.

Let hZ+
ϕ gΛ

= λ0. Then we have

n∑
i=1

ϕ

(
〈ei, u〉+
λ0

)
+

m−n∑
i=j

ϕ

(
〈wj , u〉+
λ0

)
= 1.

Note that the convexity and strict monotonicity of ϕ imply that, there exists a constant

ν > 0 such that
n∑
j=1

ϕ

(
ν〈−µ′jej , u〉+

λ0

)
≥

m−n∑
j=1

ϕ

(
〈wj , u〉+
λ0

)
.

We write µj = νµ′j , j = 1, 2, . . . , n, and define the set Λ̃ = {e1, . . . , en,−µ1e1, . . . ,−µnen}.
Obviously, Λ̃ is an obtuse set. Moreover, we have

n∑
i=1

ϕ

(
〈ei, u〉+
λ0

)
+

n∑
j=1

ϕ

(
〈−µjej , u〉+

λ0

)
≥ 1.

Then by Lemma 2.1 we have λ0 ≤ hZ+
ϕ Λ̃

(u). Then

(4.6) Z+
ϕ gΛ ⊆ Z+

ϕ Λ̃ = Z+
ϕ {e1, . . . , en,−µ1e1, . . . ,−µnen}.

It remains to show that Z+
ϕ gΛ ⊆ Z+

ϕ Λ⊥. First note that Λ is obtuse, wi has negative

coordinates with respect to the canonical basis Λ⊥. In order to simplify the computation,

we assume that Λ′(µ) = {e1, . . . , en,−µe1}, where µ ≥ 0. For x ∈ e⊥1 ∩ e⊥2 , by (3.3) we

have

(4.7) ge2(Z+
ϕ Λ′(µ), x) = inf

w∈e⊥2

{
hZ+

ϕ Λ′(µ)(e2 + w)− 〈x,w〉
}
.

Here

hZ+
ϕ Λ′(µ)(e2 + w)

= inf

{
λ > 0 : ϕ

(
〈e1, w〉+

λ

)
+ ϕ

(
〈−µe1, w〉+

λ

)
+

n∑
i=2

ϕ

(
〈ei, e2 + w〉+

λ

)
≤ 1

}
.

(4.8)



172 Congli Yang and Fangwei Chen

Note that, for all w ∈ e⊥2 , the scalar product 〈x,w〉 does not dependent on the first

component of w. The monotonicity of ϕ together with the expression of (4.8) show that

it suffices to compute the infimum of (4.7) over all w ∈ e⊥1 ∩ e⊥2 . It is now obvious that

the uppergraph function ge2(Z+
ϕ Λ′(µ), x) is independent of µ for every x ∈ e⊥ ∩ e⊥2 . The

same argument applied to the lowergraph function leads to the same conclusion, so we

infer that

Z+
ϕ Λ′(µ) ∩ e⊥1

is independent of µ. Moreover, the support function of Z+
ϕ Λ′(µ) evaluated at vectors

w ∈ e⊥1 ,

hZ+
ϕ Λ′(µ)(w) = inf

{
λ > 0 :

n∑
i=2

ϕ

(
〈e2, w〉+

λ

)
≤ 1

}
is a constant function of µ. Equivalently,

Z+
ϕ Λ′(µ)|e⊥1

is independent of µ.

If µ = 1, the convex body Z+
ϕ Λ′(1) is symmetric with respect to reflections in the

hyperplane e⊥1 . For y ∈ Z+
ϕ Λ′(µ), since Z+

ϕ Λ′(µ) ∩ e⊥1 and Z+
ϕ Λ′(µ)|e⊥1 are independent of

µ, then we have

y|e⊥1 ∈ Z
+
ϕ Λ′(µ)|e⊥1 = Z+

ϕ Λ′(1)|e⊥1 = Z+
ϕ Λ′(1) ∩ e⊥1 = Z+

ϕ Λ′(µ) ∩ e⊥1

for all µ. In particular, g
e1

(Z+
ϕ Λ′(µ), y|e⊥1 ) is negative for all µ. Moreover, the uppergraph

function ge1(Z+
ϕ Λ′(µ), y|e⊥1 ) is independent of µ. As hZ+

ϕ Λ′(µ)(e1 +w) is independent of µ,

for w ∈ e⊥1 , we have

y ∈
{
y|e⊥1 + re1 : 0 ≤ r ≤ ge1(Z+

ϕ Λ′(µ), y|e⊥1 )
}

=
{
y|e⊥1 + re1 : 0 ≤ r ≤ ge1(Z+

ϕ Λ′(0), y|e⊥1 )
}
⊂ Z+

ϕ Λ′(0).

Then we have Z+
ϕ Λ′(µ) ⊆ Z+

ϕ Λ⊥. This together with (4.6) we have Z+
ϕ Λ′(µ) = Z+

ϕ Λ⊥.

Repeating this argument for µ2, . . . , µn, if they are not zero, we obtain that gy is contained

in Z+
ϕ Λ⊥, which shows the equality of (4.4).

Moreover, if we can show that the intersection of any two distinct parts in the dissec-

tion (4.4) has volume zero, we can complete the proof. To see this, let Λ1,Λ2 ∈ Λ, each

contain n vectors and assume that Λ1 6= Λ2. If one of these sets is not spanning, then the

intersection Z+
ϕ Λ1 ∩ Z+

ϕ Λ2 is a set of volume zero contained in a hyperplane. Otherwise,

without loss of generality, Λ1 = Λ⊥ and Λ2 does not contain e1. Then by the definition

of support function (2.1), we have hZ+
ϕ Λ1(−e1) = 0, and hZ+

ϕ Λ2(e1) = 0. Then we obtain

that Z+
ϕ Λ1∩Z+

ϕ Λ2 is a set of volume zero contained in the hyperplane e⊥1 . So we complete

the proof.
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If take ϕ(t) = tp, p ≥ 1, this result reduces to Lp case.

Corollary 4.4. Suppose p ≥ 1 and Λ is a spanning obtuse set. Then

V (Z+
p Λ)

V (Z+
1 Λ)

=
V (Z+

p Λ⊥)

V (Z+
1 Λ⊥)

.

In paper [9], Campi and Gronchi proved that if Kt is a shadow system of origin

symmetric convex bodies in Rn, then V (K∗t )−1 is a convex function of t. This result is

developed by Meyer and Reisner [40] to more general setting.

Proposition 4.5. [40] Suppose Kt, t ∈ [−a−1, 1], is a shadow system of convex bodies

along the direction v = e1 and V (Kt) is independent of t. Then the volume of K∗t is

independent of t if and only if there are a real number α and a vector z ∈ R1×(n−1) such

that

Kt = tαe1 +

1 tz

0 In−1

K0.

Unfortunately, there is no analogue result for volume product of asymmetric Orlicz

zonotopes with equality holds.

Lemma 4.6. Let ϕ ∈ C and Λ = Λ⊥ ∪ {−µe1}. Then

(4.9) V (Z+,∗
ϕ Λ)V (Z+

1 Λ) ≥ V (Z+,∗
ϕ Λ⊥)V (Z+

1 Λ⊥),

equality holds if and only if ϕ = Id.

Proof. If ϕ = Id, this means Z+
ϕ Λ = Z+

1 Λ = Z1Λ. It is an immediate consequence of the

fact that all parallelepipeds have the same volume product.

Now assume that ϕ 6= Id, let Λt, t ∈ [−a−1, 1], denote the orthogonalization of Λ with

respect to e1 defined by (3.1). Theorem 3.6 shows that the inverse volume product of

asymmetric Orlicz zonotopes associate with Λt is a convex function of t. As a convex

function attains its maxima at the boundary of compact intervals, we obtain

1

V (Z+,∗
ϕ Λ)V (Z+

1 Λ)
≤ max

t∈{−a−1,1}

{
1

V (Z+,∗
ϕ Λt)V (Z+

1 Λt)

}
.

By the GL(n) invariance of the volume product of asymmetric Orlicz zonotopes and the

definition of Λt, the right hand side of this inequality is just

1

V (Z+,∗
ϕ Λ⊥)V (Z+

1 Λ⊥)
.

Thus the equality condition of inequality (4.9) means that the V (Z+,∗
ϕ Λt) is a constant

function of t. On the other hand, by the definition of (3.1), we have

Λt = {(1 + ta)e1, µ(t− 1)e1, e2, . . . , en} ,
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here Λt, t ∈ [−a−1, 1], is a spanning obtuse set. Together with Lemma 4.3 and the fact

Z+
1 Λt is independent of t, we obtain that V (Z+

ϕ Λt) is independent of t. Proposition 4.5

implies that Z+
ϕ Λt are affine images of each other, which means there is a number α and

a vector z ∈ R1×(n−1) such that

Z+
ϕ Λt = tαe1 + φtZ

+
ϕ Λ,

where φt =
(

1 tz
0 In−1

)
. Note that as Z+

ϕ is GL(n) equivariant, we can rewrite it as

(4.10) Z+
ϕ Λt = tαe1 + Z+

ϕ φtΛ.

Equivalent, for all u ∈ Rn,

(4.11) hZ+
ϕ Λt

(u) = tα〈e1, u〉+ hZ+
ϕ φtΛ

(u).

Now we determine the constant α. Here t ∈ [a−1, 1], the zonotope Z+
ϕ Λt is symmetric with

respect to permutations of all coordinates except the first. Due to (4.10), this implies that

z has n − 1 equal components, say ξ. Note that the coefficient a has nothing to do with

the ξ, without loss of generality, we may assume ξ ≤ 0, let u = e1 and t = 1 in (4.11),

after a simple computation we obtain

α =
a

ϕ−1(1)
= a.

In order to determine ξ, first, by the normalization of ϕ and together with Lemma 2.1, we

have

hZ+
ϕ Λ1

(ei) = 1, i = 2, . . . , n.

Note that Z+
ϕ Λ1 is convex, specially, let |e2| = 1 = hZ+

ϕ Λ1
(e2), which means that e2 is

contained in a plane intersect with Z+
ϕ Λ1, we say,

(4.12) {e2} = Z+
ϕ Λ1 ∩ (e2 + span{e1}).

On the other hand, by the definition of convex hull conv and the support function of Z+
ϕ Λ,

together with Lemma 2.1, we have Z+
ϕ Λ contains the convex hull of Λ, that is

conv{Λ} ⊆ Z+
ϕ Λ.

Then we have Z+
ϕ φ1Λ contains the convex hull of φ1Λ, conv{φ1Λ}. In particular, it

contains φ1e2 = ξe1 + e2. Combining this observation with (4.10) and (4.12) for t = 1, we

obtain

e2 = (a+ ξ)e1 + e2,

which means ξ = −a.
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Now putting u = e1 + e2 and t = −a−1 in equation (4.11). Let hZ+
ϕ Λ−a−1

(e1 + e2) = λ,

hZ+
ϕ φ−a−1Λ(e1 + e2) = λ′. Note that Λ−a−1 = {µ(−a−1 − 1)e1, e2, . . . , en} and φ−a−1Λ =

{e1, e1 + e2, . . . , e1 + en,−µe1}, then we have

(4.13) λ = 1 and (n− 1)ϕ

(
1

λ′

)
+ ϕ

(
2

λ′

)
= 1.

Note that by equation (4.11), λ and λ′ should satisfy λ = −1 +λ′. On the other hand, by

(4.13), they contradict with equality (4.11). Then Z+
ϕ Λt are not the affine images of each

other. So the equality (4.9) does not hold when ϕ 6= Id . We complete the proof.

If take ϕ(t) = tp, p ≥ 1, it is established in [51].

Corollary 4.7. Let p ≥ 1 and Λ = Λ⊥ ∪ {−µe1}. Then

V (Z+,∗
p Λ)V (Z+

1 Λ) ≥ V (Z+,∗
p Λ⊥)V (Z+

1 Λ⊥),

equality holds if and only if p = 1.

5. Proofs of the main results

Before giving the main results, let us present the following lemma established by Webern-

dorfer, which we will use in the proof of our results.

Lemma 5.1. [51] Suppose Φ is a real-valued GL(n) invariant function on finite and

spanning multisets. Moreover, assume that Φ(Λt) is a convex function of t whenever Λt,

t ∈ [−a−1, 1], is an orthogonalization of a multiset Λ defined by (3.1). Then for every

finite and spanning multiset Λ, there exists a multiset Λe1 of multiples of e1 such that

(5.1) Φ(Λ) ≤ Φ(Λ⊥ ] Λe1).

Moreover,

(i) if Λ is not a GL(n) image of Λ⊥ and equality holds in (5.1), then Λe1 is not the

empty set.

(ii) if Λ is not a GL(n) image of an obtuse set and equality holds in (5.1), then Λe1
contains a positive multiple of e1.

Now we are in a position of proving the main results.

Proof of Theorem 1.1. First, if ϕ = Id, it is established in [51], so we only need to show

the case ϕ 6= Id.
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For ϕ 6= Id, let P(Λ) = 1/[V (Z+,∗
ϕ Λ)V (Z+

1 Λ)] denote the inverse volume product of

the asymmetric Orlicz zonotopes, Λt, t ∈ [−a−1, 1], denotes the orthogonalization of Λ.

First, by the GL(n) invariance of P(Λ), there is nothing to show if Λ is a GL(n) image of

the canonical basis Λ⊥. Otherwise, by Theorem 3.6, we know that P(Λt), t ∈ [−a−1, 1],

satisfies the hypotheses of Lemma 5.1. Then there exists a multiset Λe1 of e1 such that

(5.2) P(Λ) ≤ P(Λ⊥ ] Λe1).

If Λe1 is empty then the inequality (1.1) holds. If Λe1 contains the only positive multiples

of e1, then Λ⊥ ] Λe1 is a GL(n) image of Λ⊥. Then we have

P(Λ) ≤ P(Λ⊥ ] Λe1) = P(Λ⊥).

It remains to show that if Λe1 contains negative multiples, we say, Λe1 = {−µe1}, where

µ > 0. By Lemma 4.6 we have

P(Λ) ≤ P(Λ⊥ ] Λe1) < P(Λ⊥).

Then the inequality of (1.1) holds. Now we deal with the equality condition. Since the

equality holds in (5.2) only if Λe1 is not empty. By Lemma 4.1, we have

P(Λ ] Λe1) ≤ P(Λ⊥ ] Λe1),

equality holds if and only if Λe1 = {−µe1}, where µ ≥ 0. Note that Λe1 is not the empty

set, then µ > 0. So we have

(5.3) P(Λ) = P(Λ⊥ ] Λe1) = P(Λ⊥ ∪ {−µe1}) = P(Λ⊥).

Note that ϕ 6= Id, by Lemma 4.6, we have the equalities of (5.3) hold if and only if Λ,

Λ⊥]Λe1 , Λ⊥ ∪ {−µe1}, and Λ⊥ are GL(n) images of each other. So we obtain the desired

inequality together with its equality conditions. Now we complete the proof.

If ϕ(t) = tp, p ≥ 1, this result reduces to the asymmetric Lp-volume ratio inequality

in [51].

Corollary 5.2. Let p ≥ 1 and Λ be a finite and spanning multiset. Then

V (Z+,∗
p Λ)V (Z+

1 Λ) ≥ V (Z+,∗
p Λ⊥)V (Z+

1 Λ⊥).

If p > 1, equality holds if and only if Λ is a GL(n) image of the canonical basis Λ⊥. If

p = 1, equality holds if and only if Z+
1 Λ is a parallelepiped.
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Proof of Theorem 1.2. Let R(Λ) = V (Z+
ϕ Λ)/V (Z+

1 Λ). Theorem 3.6 implies that R(Λ)

satisfies the hypotheses of Lemma 5.1. Then

(5.4) R(Λ) ≤ R(Λ⊥ ] Λe1),

where Λe1 contains multiples of e1. If Λe1 is empty, then (1.2) holds. If Λe1 contains the

only positive multiples of e1, then Λ⊥ ] Λe1 is a GL(n) image of Λ⊥. Then we have

(5.5) R(Λ⊥ ] Λe1) = R(Λ⊥).

Moreover, by Lemma 4.1,

(5.6) R(Λ⊥ ] Λe1) ≤ R(Λ⊥ ] Λe1).

Together with (5.4), (5.5) and (5.6) we obtain

R(Λ) ≤ R(Λ⊥).

Note that if Λe1 = {−µe1}, where µ > 0, then Λ⊥ ] Λe1 = Λ⊥ ∪ {−µe1} is an obtuse set.

Lemma 4.3 implies that the inequality in (1.2) holds.

Now we deal with the equality case of (1.2). We assume that Λ is not a GL(n) image of

an obtuse set. Note that (5.4) with equality holds only if Λe1 contains a positive multiple

of e1. In this case, then Λ⊥ ] Λe1 is a GL(n) image of Λ⊥. Then we have

R(Λ⊥ ] Λe1) = R(Λ⊥).

By Lemma 4.1, we have

R(Λ⊥ ] Λe1) ≤ R(Λ⊥ ] Λe1).

Equality holds if and only if Λ⊥ ] Λe1 = Λ⊥ ] Λe1 , which means Λe1 must be an negative

multiples of e1, then it contradicts with Λe1 contains positive multiples of e1. We prove

that if the equality hold in (1.2), holds then Λ is a GL(n) image of an obtuse set.

On the other hand, if Λ is a GL(n) image of an obtuse set, by the GL(n) invariance

of the volume ratio for the Orlicz zonotopes and Lemma 4.3, the equality of (1.2) holds.

Together with the above we have the equality of (1.2) hold if and only if Λ is a GL(n)

image of an obtuse set. We complete the proof.

If we take ϕ(t) = tp, p > 1, then it reduces to the following.

Corollary 5.3. Suppose p > 1 and Λ is a finite and spanning multiset. Then

V (Z+
p Λ)

V (Z+
1 Λ)

≤
V (Z+

p Λ⊥)

V (Z+
1 Λ⊥)

,

equality holds if and only if Λ is a GL(n) image of an obtuse set.
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