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Hypersurfaces of Randers Spaces with Constant Mean Curvature

Jintang Li

Abstract. Let (Mnﬂ , F) be a complete simply connected Randers space with F(x,Y")

= a(z,Y) + b(z,Y), where a(z,Y) = /a;(x)YY7 and b(z,Y) = bi(z)Y" are a
Riemannian metric and a 1-form on the smooth (n + 1)-dimensional manifold M
respectively. Assume the 1-form b is parallel with respect to @ and the sectional
curvature K7 of M with respect to @ satisfies 6(n) < K37 < 1. In this paper, we
study the compact hypersurface (M, F') of the Randers space (Mnﬂ , F) with constant
mean curvature |H| and prove that if the norm square S of the second fundamental
form of (M, F) with respect to the Finsler metric F satisfies a certain inequality, then
S = n|H|? and M is the unit sphere or equality holds. In that case, we describe all
M that satisfy this equality, which generalizes the result of [§] from the Riemannian

case to the Randers space.

1. Introduction

Let M be an n-dimensional smooth manifold and 7: TM — M be the natural projection
from the tangent bundle. Let (x,Y") be a point of TM with x € M, Y € T, M and let
(%, Y"?) be the local coordinate on TM with Y = Y* aii. A Finsler metric on M is a
function F': TM — [0, 4+00) satisfying the following properties:

(i) Regularity: F(z,Y) is smooth in TM \ 0;
(ii) Positive homogeneity: F'(x,\Y) = AF(z,Y’) for A\ > 0;

(iii) Strong convexity: The fundamental quadratic form g = g;j(z,Y) dz’ ® da’ is posi-
tively definite, where g;; = 20%(F?)/(0Y'0Y7).

Recent studies on Finsler manifolds have taken on a new look and Finsler manifolds
can be also applied to biology and physics, etc. In these researches, people find that there
is a quite important metric constructed from a Riemannian metric ¢ and a 1-form b on

the smooth manifold M. We call this metric a Randers metric which is firstly studied
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by G. Randers and be applied in studying the navigation problems, etc. In [7], Z. Shen
studied the projectively flat Randers metrics and have classified projectively flat Randers
metrics with constant flag curvature. In 2], D. Bao, C. Robles and Z. Shen have completed
classification of strongly convex Randers metrics with constant flag curvature.

The Riemannian submanifolds are important in modern differential geometry. There
has been a long history for the study of Riemannian submanifolds. Many researches
have been done and improved in the field of the classification theorems for Riemannian
submanifolds.

For the Randers space (M, a+0b), where a and b are a Riemannian metric and a 1-form

on M respectively, there are many the Randers spaces (M,a + b) with b parallel with
respect to a, which isn’t Riemannian. See the example below:
Example 1.1. Let M be a 6-dimensional real vector space with the Cartesian coordinates
b 2?23, 2%, 25, 25, For the Euclidean metric @ = dz' @ do! + da? ® da? + da® @ dad +
dz* @ dz* + dz® @ da® + d2® ® dab and a 1-form b = Adz® on M, where A < 1 is
some positive constant, then 1-form b is parallel with respect to the Riemannian metric
@. The Randers space (M, F) constructed from @ and b isn’t Riemannian. Let M =
S'(1/3) x 52%(2/3) C M be an H-torus, where S'(1/3) = {(2',2?) : (z')? + (2?)? = 1/3}
and 52(2/3) = {(2?,2%,2°) : (2®)* + (2*)? + (#°)? = 2/3}. When the Euclidean metric @
is pulled back to M, it yields a Riemannian metric a. Since when 1-form dz® is pulled
back to M, the pull-back 1-form vanishes, the pull-back 1-form b of b to M gives b = 0.
Therefore we have that the Finsler metric F induces a Riemannian metric F = a on M,
i.e., the M with respect to the induced metric F' = a is a Riemannian submanifold of
Randers space (M, F).

Motivated by the example above, we study the submanifolds of Randers space. In this
paper, by the Gauss formula of Chern connection for Finsler submanifolds, we study the
hypersurfaces of Randers space (WH, @+ b) with b parallel with respect to @ and obtain
the following classification theorem:.

Theorem 1.2 (Main Theorem). Let (Mnﬂ,f) be a complete simply connected Randers

space constructed from a Riemannian metric @ and a 1-form b, where b is parallel with
respect to a. Assume M s a d(n)-pinching Riemannian manifold with respect to the
Riemannian metric a, i.e., the sectional curvature FM of M with respect to the Rieman-
nian metric a satisfies 6(n) < Kq; < 1. If M™ is a compact hypersurface of (WH,F)
with constant mean curvature |H| and the norm square S of the second fundamental form
of (M, F) with respect to the Finsler metric F satisfies o(1—08) < S —n|H|* < By, where
a = &+/n(n—1)(52n — 50) and By is the positive solution of the following equation
n(n — 2)

—— ————_|H|2"? +nd — <a+7) (1-9)=0,
n(n—1) 2




Hypersurfaces of Randers Spaces 981

then either M is the unit sphere or S —n ]H]Q = By and one of the following cases occurs:

(1) H=0and M = S*(\/k/n)xS"*(\/(n — k)/n) is a minimal Clifford hypersurface,

(2) H#0,n >3 and M = S'(r1) x S" Y(re) is an H-torus, where r? + 12 = 1 and
T% < (Tl - 1)/27

(3) H#0,n=2and M = S'(r1) x SY(ry) is an H-torus, where r? +r3 = 1 and
r? #£1/2.

Remark 1.3. Theorem generalizes the result of [8] from the Riemannian case to the

Randers space.

2. Preliminaries

Let (M™ F) be an n-dimensional Finsler manifold. F' inherits the Hilbert form, the

fundamental tensor and the Cartan tensor as follows:

F . . FOg;;
4 dz', gy = gij(x,Y) de' @ di?, Ay = Ajjrdr' ® do’ ® dz*, Ajji = Jij

YT oy 207+
It is well known that there exists uniquely the Chern connection V on 7*T'M with
v aaﬂ = wf % and w] = F] dz® satisfying that
d(dz") — da? A wé = —dzI A w§ =0 and dg;; — gzkw gjkw =24 &F/k

where §Y? = dY" + N]lf dx?, NJZ: = fyji.kYk Alk’yStYsY and ’y]k are the formal Christoffel
symbols of the second kind for g;;.

The curvature 2-forms of the Chern connection V are

) ) : 1
dw;-—w?/\w}c:Q; 3 ]kld:c A da! —I—FPZkld:E ASY!,

where R! kil and P! ikl are the components of the hh-curvature tensor and hwv-curvature
tensor of the Chern connection, respectlvely

i 57 } with e, = £ for each fibre of 7*TM and {w’}
is its dual coframe, where w: TM — M denotes the natural projection. The collection
{w',w!} forms an orthonormal basis for T*(TM \ {0}) with respect to the Sasakitype
metric g;; dz' ® dz/ + g;; Y ® Y 7. The pull-back of the Sasaki metric from T'M \ {0} to
the sphere bundle SM is a Riemannian metric g = gy dz'@dzd +64p wl ®wb The collection

Take a g-orthonormal frame {el = u!

{eH en+>\} forms an orthonormal basis on the sphere bundle SM, where eH = uf 6;; =
w) (@ - Njk 8&) denotes the horizontal part of e; and €, = uf\;;?] A=1,2,....,n—1.

Thus the volume element dVg; of SM may be defined as

dVsy = dv Awh A= AWt = Qdx Adr,
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where dv = \/det(g;;) dz, Q = det(g;;/F), dr = >_,(—1)"1YdYI A - - ANAYPA--- ANdY™,
dr =dz* A Adz™.

The volume form dV); of an n-dimensional Finsler manifold (M, F) can be defined by

_ 1
Cn-1 Sz M

dVy = o(z)dx, o(z) Qdr,

where S; M ={Y € T, M : F(Y) = 1} is the fibre of SM at point  and C,,_; denotes the

volume of the unit Euclidean sphere ™71 .

o: (M™ F) — (Mnﬂo , F) is called an isometric immersion from a Finsler manifold to

a Finsler manifold if F(Y) = F(¢«(Y)). We have that (see, [6])

gy (U, V) = §¢*(Y)((P*(U>7 (p*(V)),

(2.1)
AY(U7 v, W) = Aap*(Y) (90*<U)7 90*<V)7 QO*(W)),
where Y,U,V,W € TM, g and A are the fundamental tensor and the Cartan tensor of
M, respectively.
It can be seen from (2.1) that ¢*(w) = w, where w is the Hilbert form of M.

In the following we simplify Ay and gy to A and g, respectively. Any vector field
U € T(TM) will be identified with the corresponding vector field dp(U) € T'(T'M). We

will use the following convention:

1<id,j,...<my n+l1<ap,...<n+p;
1< A\p,...<n-—1; 1<AB,...<n+p.

Let ¢: (M™, F) — (Mnﬂ), F') be an isometric immersion. Take a g-orthonormal frame

form {ea} for each fibre of m*TM and {w?} is its local dual coframe, such that {e;} is
a frame field for each fibre of 7*T'M and w™ is the Hilbert form, where w: TM — M
denotes the natural projection. Let 9§ and wé denote the Chern connection 1-form of F
and F, respectively, i.e., Vey = 0563 and Ve; = w!e;, where V and V are the Chern
connection of M and M, respectively. We obtain that A(e;,e;,e,) = A(ea,ep,en) = 0,

where e, = % 821' is the natural dual of the Hilbert form w™.

The collection {efl ,€n+>\} forms an orthonormal basis on the projectivized tangent

bundle PT M and {wi, wf‘z} is its local dual coframe, where efl = ug% =ul (% —Nf%)
: - R N N - o B ST S A SV
denotes the horizontal part of e;, €,4\ = Uy 57 = wy 577, W' = vj dz’) and w; = v; oY,

we have w® = 0 on the projectivized tangent bundle PT'M. By the structure equations of
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M, we have that 0]9‘ A wl =0, which implies that 9;?‘ = hf‘jwi, hg"j = h;"z Let

VV =VV +u' ® B(V,e;)
+Z{ (Vi e;, Blei, en)) — Ales, er, BV, en))

_A‘/aeia e7en A67V€ €x; €y €n, En
2.9 ( gren)) = 3 S Aler, Vs exVAlen, e Blens en)

+ ZZ(€]7 €, eA)Z(e)\a V7 B(ena en))
A

+ ZZ(V, eiex)Alen, e;, B(en, en))}wj ® e;,
A

where V = vie; € T(n*TM), B(V,e;) = 02(V)eq = vjh%ea.

If the V is the Chern connection of M, then we obtain in [3] that the V is the induced
Chern connection of M.

We obtain from that (see, [3])

wzj = 9{ — W,
where
Uik = W5y Aria — hign Ajia — ", Akja — P Aiks Asjo + iy Aijs Aska + Py Ajs Asia
In particular,
wi' =0 — h%nﬁkiawk.
Using the almost g-compatibility, we have

,9& = (7ha 2h5 A]ag + 2hnnAj)\aAz)\,3) w' — 2AJ04/\W

In particular, 07, = —hJ,w*

We quote the following propositions.

Proposition 2.1. (Gauss equations, [3]|) Let p: (M", F) — (Mner,F) be an isometric

immersion from a Finsler manifold to a Finsler manifold, then we have that
Py = Pl + Wjikn — 2V Ajor — 205 Aja,
Ry = Riyy — i+ WS + Wi — Vs + Vair ¥ — U W
— 2hzkh 1Ajap + 2R hnkA]ag + 2h) h AMZ,SB 2hj) s nAjsaArsp
— 1 Aga Pl + B Ao Py + B P — B P

ils ila

[13 2

where “; 7 and

“‘

7 denote the vertical and the horizontal covariant differentials with

respect to the Chern connection V respectively.
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Proposition 2.2. (Codazzi equations, [3]) Let ¢: (M", F) — (Hnﬂ’,?) be an isometric

immersion from a Finsler manifold to a Finsler manifold, then we have that

a _ Do
TN T _Pij)n

_ ¢ B pY B P
ik — hikly = —Rige + hPirg — hy Pijg
— P Wiij + b Vi — hQnlegﬁil + hﬁnZlkﬁﬁfﬂ.

Proposition 2.3. [3] An isometric immersion ¢: (M, F) — (M, F) is minimal if and
only if
/ <VaB(€men)> dVsy =0,
SM

or

/ <V7 7’LH> dVsy =0,
SM

or any vector V. € T(TM)L, where B = h% eq @ W' @ w,
ij

H= %Z {B(ei,ei) + Z [26(ea,ei,ve?(Fen))
(2.3) 7 —

+ (ﬁFeffé)(eiv €i, ea) + 26(§Fe{§ei7 €i) 604)} €a},

) denotes the horizontal part of e; = uf%

and C = a j(i—]\ﬂ-"’i

» € = Ui\ By j ayF

Rl

[}

Definition 2.4. H is called the mean curvature vector and the length |H| of it is called

the mean curvature.

Let (MnﬂD,F) be a Randers space with F' = @ + b, where @ = \/EAB?A?B is a
Riemannian metric and b = by dz4 is a 1-form.
In (1], we know that
Ua=1l4+ Bas

_ —B
CIABY

_ _ B -
WherefA:%andﬁA: =

Proposition 2.5. Let (Mmrl,ﬁ) be a Randers space constructed from a Riemannian met-

ric @ and 1-form b. If M™ is a hypersurface of (MnH,F), then Ajiny1 = Aptinging1 =0
and \Ilijk: =0.

Proof. For the Randers space (WH,F), in [1] we have that

/98 & 8 1 - b~ b~ — b~
(24) A (85‘4’ 78’ M) =5 {WAB <bc - agc) +nBC (bA - a€A> +Nca (bB - afs)] )

where nap = gap — Lalp.
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For the 1-form b = b; dz* on M, define a 1-form b~ on the projectivized tangent bundle
PTM asb = (b; o ) dx'. By the fact that 1-form 8 = B, dz’ is globally defined on M,
we have that 1-form b" is globally defined on PTM.

Since the collection {eH €nt ,\} forms an orthonormal basis on the projectivized tan-

AOY?

gent bundle PT'M and {w w’\} is its dual coframe, where w® = =v; dx] and w) = = v} g

dY*—N*dxI .
vl-)‘ <F7x>, so 1-form b can be written as b = b; da’ = Bw' on PTM. Then
5*(en+1) = biw'(eny1) = 0, which implies ungZ = 0, where e,11 = un+18 - is the
unit normal vector with respect to the Finsler metric F. This, together with uf_¢; =
G(eni1,en) = 0 and the fact £; = E + b;, implies that uﬁLHE = %E(enﬂ, en) = 0. Then

by ugugncp =04 — dacdpp and (2.4), we obtain that

An-‘,—lzy = uﬁ+1ulusA <a g a) = 07

oz!’ oxk’ oT*
and R
Anpinging = Uit A ((%cl’ ok’ 338) -
This completes the proof of Proposition O

Let 7,;;, and 7;jx are the formal Christoffel symbols of the Finsler metric F and the

Riemannian metric @ respectively. In [1], we have that

(2.5) Vijk = Ij%]k: ;;ka (bz o — Z%m> - %(&zjk + doikj)s
where

&= %Th‘j (bl,xkﬁ - Z%m) + Cibj o — Ui + Cib; 4
(2.6)

+ E@ (?jnk + %gk) - Zj (ﬁknz + &/nkz) + gk (%w + :?nij)
- Ez’gj%nnk + gﬂ/ﬁnm - Ekgzﬁnnj

z _7 Fy 7 b, Fi Y =~
and {Z = ez - ﬁgiv bi,xf = 9zl 0= = Injk = € Vijks ’Y]nk = e Vjik-

Proposition 2.6. Let (MH—H,F) be a Randers space constructed from a Riemannian

metric @ and 1-form b, where b is parallel with respect to a. If M™ is a hypersurface of
(MnH,F), then

N
=l ik 0 ~1 ik 0
Touwu w)uy —
{]kn)\al Yik Al
_ o _ e
= {Anﬂnﬂwmj%%H — Antint1aljil U%Uhlasi} €n+1,

where XN denotes the normal component of X .
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Proof. Using the fact mjuﬁlﬂu% = nijuéu% =0 and mkuiuﬁ = 0xu, we have that

(2.7) a b ZS_EN .._‘_E A .ZS‘_EN N | wd k*ili N_O
. 7 s,zk a’}/nnk Tij o 5,27 af)’nnj Nik | UpU)g Ol = U

When b is parallel with respect to @, we have b; i b]"xi = 0. Since Zku’; = 0 and Zju% =1,
we obtain that
(2.8) (5, o — T3 + Tubias + G s — Tubyi + 15D A

: Y5 xk 7Vk,i kY4 2 Wkai — tkYj J zxk] u)\g o a1 = Y.
From uﬁfj =0 and u’j\gk = —%Zkulf\, we obtain that

{ ik + Fngi) — & Gins + Foks) + & Fing + Trnig)

_ B _ » _ - 0
(2.9) — & (kg + Tnkj) — ETgni + Fngi) + & Fink + Tni) |udurg" 57 9l }
*ggkuA(%nJ ’ani)unun+16n+1~

a’nd %/TLTL’L 7’7anun, we See that

o~ o~ o~ o~ o~ . R
{ |:7€z€j7nnk + fjek'}/nnz - gkei'Ynnj - é.igk’Ynnj + Ekngnni - gjglwnnk} uilulf\g lal}
(2.10) *
F~
= _EgkuAvjnlununJrle?H*l

Substituting (2.7 - into ([2.6)) implies that

1 e 07
(2.11) 5(*ijk+‘?’ikj)9 UpUo T (=

a

QF&CUA’YWJ ununJrl €n+1-

Since Gij = g(&ij — EZZ) +¢;¢; and E = ¢; — b;, we obtain that

_~s i k— ) ~3 ik ~3 i kT F~s i ko1 —
= YU UNG s Upt1€n+1 + (Vipuhuxls — Yjpuduxbs)en + Efyjkuﬁlu,\uuasieu

_ ) 0 _ . 0 _ S
(2.12) = <7]Skuflu§asa €n+1> €nt1 + <<7]Sku£zul§\asa €n> €n — ijuﬁzulf\bs> €n
* g t g

T
+ 'yjkuj u)\u {gm bl; + a&&;} ey

. P F . o~ ~
~s k ~s k =s k, i
= ’ngu%ukﬁ — ’YJkU‘%UAbsen + g'}/ij'gLu/\U’ugsgielu.
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Using n]ku%ulj = 0, we have that —3 (BS $,ZS Jynm)njkunuﬁj‘l 57 = 0. It follows from

iU n+1u)\ = 0 and . ) that A, 1pi1) = liuljgk. Substituting this, and (| -
into , we obtain that

9 oV _ o
1 k -
(2.13) {ijufzu,\ 9l — Yt Uxaxl} = Apint10Ying WUy, 1 1€n41-

On the other hand, we have that

N —s —s
1.0 dila(2 9 0NNy 4 (0 9 N
{[ ik %k} “”“Aaxl} { g [ <6x“83:378x5 F 9zF D F
(2.14) —(d 8 9NN, "
Ao 3 007 ) F | N0l
= _Zn+1n+1)\f;kzkugzu;JrlasienJrl~
We get Proposition immediately from and - O

Similarly, we can obtain the following

Proposition 2.7. Let (Hn+1,F) be a Randers space constructed from a Riemannian
metric @ and 1-form b, where b is parallel with respect to @. If M™ is a hypersurface of
(MnH,F), then

0 o\ 1/ ~ b 4
{P]ku U gl VJkUj fbaxl} = 9 (bs,xifz - a%m) UZ+1€n+1'

A direct calculation gives

(2.15) 1(2) = (bt - ) o+ (M) 7
a ’ a a

Since d(%)(en_i'_l) = 0 on the projectivized tangent bundle PT M, we see that (Bs,ziz/i -
. N
—’Ynm) ul, = 0 from Then we get that {I‘jkunuf’; 821 - :y“éku%uﬁ%} = 0 from

_ - .
Proposition Substltutlng this into Proposition H 6| yields that {F j kuﬁlu’j% — 75. ku%u’}\
IR

o = 0. we obtain immediately

n+1 —
)

Proposition 2.8. Let (M F) be a Randers space constructed from a Riemannian

metric @ and 1-form b, where b is parallel with respect to @. If M™ is a hypersurface of

(A" F), then { Ve, ~ Ve, } = 0.

Proposition 2.9. Let (MNH,F) be a Randers space constructed from a Riemannian
metric @ and 1-form b, where b is parallel with respect toa. If M™ is a hypersurface of

(MnH,F), then h%+1zn+1n+1/\ =0 and h”“@gﬁ =



988 Jintang Li

: P . = g,y

Proof. Since u;,_ l; = <en+1,en>§ = 0 and u}, 1 ; = (ent1,€n)g = 0, where /; = g”?,
Y]

;= a”— and ep41 = ul, 881 is the unit normal vector with respect to the Finsler metric

F, together with the fact g,; = g(aw il ;) +€:0;, we obtain that (€41, ent1)y = ? This

implies that €,,1 = @enH is the unit normal vector with respect to the Riemannian
metric a. Then from Proposition we get that

— F la j—a. -
(2.16) ot = (Ven, €n+1>§ == (Ven, €n+1>5 V7 <Va6n, €n+1>a,
where ¢, = £-2. 2 = %i%,

Similarly, we have that

Floal [a_ [a p
(217) = g <v ( Fen-‘rl) ) F6n+1> + (I)lw

D
33
I+
==

|
S
<
3
_l’_
o
)
3
_l’_

—
\/
+
g
&

where ®; = {%(gs,szj — 25,,5) — Alent1, ens1, %Nj @25)} uj and

(2.18) <ﬁ%n+1, 5n>a — <5n+1ﬁagn>a - —\/59:;“.

Let 51‘} denotes the Levi-Civita connection 1-form with respect to the Riemannian met-

o — . —a
ric @, i.e., V 820’ = 928 5 =0, dxt @ 55 and epq1 = un+1a ;. Now exterior differentiate

the right-hand side of (2.16]), we obtaln that from (2.17)) and (2.18)
|0 |=a. ~
d ( f <v €n, 6n+1>a>
d (,/Z) A <§Egmgn+1>ﬁ+ w/;d{d(f’) I a +Ziﬂﬁt+1aﬂ§§}
a — G a . s - ~
_ (,/F> A <v en,en+1>a+ N {aij d@ 1) N d(F) + a0 d(i ) A 6!

1—
o il 0 A A(E) + @l 05 A0 + SR et A

a —a. - a 0 —a 1—
=d (1 / F> A <V €n, e"+1>a+ Hf <V Entls =— 5l >a Adz'(Ve,) + iKn'H"kl WP AW

(2.23)

=l =

&’

a —d 1—
Gﬁﬂ A 9"“ \/?q)l wh A 0:5“ + <V Ent1, el> A wl(Vaen) + QKankl Wk A W

a
F
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=gl aont - /%@l W A G
—a F F_g —a F_—
{<V en+1,en>7/\w" [d <a> en + EV en] + <V en+1,e,\>7/\w’\ (aVen)}

1—
+ EKn-i-lnkl wk A wl

a F F . =a F
- AT T (D) - Ten)  (S0)

[mod (W* Awh)

+

= =

= {egi} AT+ 9”+1 AOIEL — 07T A 92} [mod (w* A wh)],

where the Fgc p is the curvature tensor of M with respect to the Riemannian metric @.
On the other hand, we have that

1—
(224 dontt = —gr i ARt — 0V A0 + 5 Btk wF A w!
’ — 1
+ PZ,M WP A wé + an,—:nﬂ Wk A wﬁ“.

Note Hﬁ_ﬂ — A1 Aw from Proposition Now substituting (2.23]) and (2.24]) into
(2.16) yields that
5 —=n+1

(2.25) 2- hnzr Antintin = —Ppgy -

Set k =n in (2.25)), we have that ghg:{lzn+1n+1,\ =0.

(1) In case b # 0. Obviously, A A, 4 1410 = 0.

F 0G4
5*0_

(2) In case b= 0. We have g 5 = aap and Aapc = =

Then these two statements imply that A”F 1An+1n+1>\ = 0. When Al = 0, exterior
differentiate this, we get that hg;r‘;wj + LA 4 h"+1 A = 0. On the other hand,

nn; AWn
when b is parallel with respect to @, we have P By = 0, hence we have that hZ:;lA =0
from the first formula of Proposition The above two formulas yield hZ;\rl and hence
h?nHZanH,\ = 0. It is easy to see that h"Jr1 =0, Vi or Ayi1ni1n = 0, VA. When

h;l;rl =0, Vi, we have that A" w? 4+ hP LA + h"Jrl A = 0. On the other hand, we have

in|j mn; A%n

that ?Z;&l = 0 from ([2.24)), which together with the first formula of Proposmon ﬂ 2| yields
that hZ:r ){ = 0. Then we have hZ")\Jr 1 = 0 and obtain Proposition immediately. O

Proposition 2.10. Let (HnH,F) be a Randers space constructed from a Riemannian
metric @ and a 1-form b, where b is parallel with respect to @. If M™ is a hypersurface of

(MnH,F) with constant mean curvature |H|, then 3, k™ = n |H| is constant.
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Proof. Tt follows from Propositions [2.5 and [2.9] that

0=d (hZ+1ZAn+1n+1>

o n+1 n+14 n+174 n+1 k
= (hlﬂk A)\n+1n+1 + hij A/\n+1n+1|k + hij A/\n+1n+1;n+1hnk ) w
n+17x n+17x
+ (h”’M A)\n+1n+1 + h” A)m—f—ln—&-l;u) LL},"L;',

which gives that

hZ‘JrlAin—i—ln—&-l;)\ =0.
It follows from (2.25)) and ZABC;D = Aapp.c that

(Ve O)(eis €i, eny1) = Cinyinbn(Fell) + Ciinyrn 0 (Fell)
(2.26) = FCiint1mr b’
= 0.

Since we are assuming that |H| is constant, it follows that >, A" = n|H| from (2.3)

and ([2.26)). O

Proposition 2.11. Let (Mnﬂ,f) be a Randers space constructed from a Riemannian
metric @ and a 1-form b, where b is parallel with respect to @. If M™ is a hypersurface of
Randers space (MHH,F), then

n+l _ 1n+l

A T A

n+l _jpnt+l _ gnt+lpp  _ pnt+lpk pntlpp
hij|k;)\_hij;)\|k huj Pik/\ hi,u ij)\ hij;upnk)\7

1 1 1 1 1 pA
Rt = Mgl = sy i + his™ R+ hish Ry,
Proof. Tt follows from Proposition [2.9] that
1,k 1, A 1 1k 1,k
(2.27) hm W+ PR wn = AR — RO — ho Wk
Exterior differentiate the left-hand side of (2.27)), we obtain that

n+1 k n+1 k n+1 A n+1 A
dhmk Aw” + hmk dw” + dhi; Nwpy + by dwy

_ n+1 1 n+1 1 n+1 1 n+1, 1 n+1 1 k n+l |k !
_ {hmk'lw + Ll 4 el 4 Rl 4 wk} Aok + B { W Aw }

ntl L opntl o opndl, Lo pntl L pndl, A
—i—{hij;)\'lw + R Wn o wi £ hyy wj—i-hijmw/\}/\wn

1
(2.28) TN {—wﬁ Awh + §RQZS W Aw® + Py, wh A wg}

1
R B S 29 ka b pntl X
= { hij|k|l + zhzj;)\Rnkl WP AW = h wn Awy

_pntl n+1 n+1 pA k "
+ { hijlk;u + hz’j;,u|k + hz’j;,\ Pnkl} w" A wy

n+1 1 k n+1l 1 k n+1l, 1 A n+1l 1 A
+hlj|k w; Aw +hil\k wj Aw™ + hypwy Awy Ry wi Awp
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Exterior differentiate the right-hand side of (2.27]), we obtain that

— AR A wf = W dusf — AR AW — R dus)
= {h;‘ﬁllwl + hz;riwﬁ + h;";*lwfc + h};‘f“le-} A wk
— thH {—wﬁ Awh+ %RZS wh Aw® 4+ PhL Wl A wé}
(2.29) — {h?,:'rllwl + hfkﬁlw%‘ + hpttol + hZHwIQ} A w;?
ls

1
1 k l k l k l A
— Ryt {wl /\wj+§R W AW + Py w /\wn}

1 1
= {_thfrlRsz - hnHR?kz} WP AW+ {—hgfl i — h?fqpka} W AW

2 18
Coandl Uk pntl, A Ak pntl Lk antl Ak
hkj|l W Awi = hyi wi Awj hz‘k\l W Awj = hyey wy Awy.

It can be seen from (2.28) and ([2.29) that

1 1 1
+1 A +1 +1 +1 +1 pA k l
1 1 1 1 1 kA A
o { By = B RSP+ P B Pt Aw) = 0.
We obtain Proposition immediately from ([2.30). O
3. Main theorem
Let (WJFI,F) be a Randers space constructed from a Riemannian metric @ and a 1-form

b, where b is parallel with respect to @ and (M™, F) be a hypersurface of (MnH

constant mean curvature. By Proposition we have that
Z hii|jwj + Z hii;jw% = dz hn‘ - Z hjiwg - Z hz’ng
i i i ij ij
(3.1) = —Zhij(wg + wj)
ij

=2 hijAjjpw),

v

, F) with

where h;; = h%“.

It follows from ({3.1)) that

(3.2) Z h”|] =0 and Z hii;j =2 Z hikAikj'
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Exterior differentiate the first formula of (3.2), we obtain that
D hiigew® D hajarws =AY iy = Y hwawf = > hagief =Y hipf
=— Z hag (wf + wf)

ik

I
=2 hipp Ak,
ik

Zhii|j|kz =0 and Z higjse = 22 hi Atk
3 : il

On the other hand, when b is parallel with respect to @, we have PZC)\ = 0, hence
Proposition together with Proposition 2.5 implies that

so we have that

j oI
and Proposition [2.2] together with Proposition [2.5] implies that

—n+1
(3.4) hije =0 and g = hig; — Ry -

The pull-back of the Sasaki metric g;; o’ ® da? + g;; 6Y* @ Y7 from TM \ {0} to the
sphere bundle SM is a Riemannian metric g = g;; dz' @ dz) + 6 we @ wfl. We need the

following lemma.
Lemma 3.1. [5] For X =Y, zw' € D(m*T*M), divg X = >, a; + Do) Ty

Let S = Zij(hij)Q be the norm square of the second fundamental form of (M, F') and
w=dS = S|iwi + S,w!, then w is a global section on 7*T*M. By the first formula of
(13.4), i.e., S;; = 0, the first formula of (3.3) and Lemma we have that

div;,w =div |2 Z hijhiﬂkwk =2 Z hijhij|k
(3.5) i,k irjk "
=23 WL 42> hijhijg
1,5,k 1,5,k

It can be seen from (3.5)), (3.3, (3.4) and Proposition that

divgw = 2 Z h?j|k - 22 hij {EZ;L +§ZZ\11€} +2 Z hij {hsiRlsézjk + hkstjk}

1,5,k 1,3,k 1,3,k,s
. 2 - —=n+1 —=n—+1
(3.6) = 2Zhij|k - 22% {sziku +Rijk\k}
i7j7k i7.j7k

+2 Z hij {hsiﬁijk + hksﬁfjk} + Z 2n |H‘ hz‘jhsihsj — 252.
i7j7k78 i7j78
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Let b;j = hij — |H| 6;5. Then (3.6) becomes that

n+1 n+1
legw - 2me|k 2Zblj {szk|] + Rzgk|k}

1,5,k 1,5,k
(3.7) +2 Z bij {bsiRyjp, + brsRijp b + Z 2n [H| b;jbsibs;
1,5,k,s ©,7,S

—2(S —n|H*)? +2n|H? (S —n|H).

Proposition 3.2. Let (MnH,F) be a Randers space constructed from a Riemannian
metric @ and a 1-form b, where b is parallel with respect to @. If the sectional curvature

Fﬁ of M with respect to the Riemannian metric @ satisfies 6 < Fﬁ <1, then
1) [Rése| <50 -06), for A+ B,
2) ‘EgCD‘ < %(1 —9), for A, B, C, D distinct with each other.

—A = . . . .
Proof. Let Kgcop be the curvature tensor of M with respect to the Riemannian metric
a. If the sectional curvature fﬁ of M with respect to the Riemannian metric @ satisfies
0 < F— <1, then

‘KCBC‘ <l(1-0), for A% B,

2) ‘XECD‘ < 2(1-9), for A, B, C, D distinct with each other.

On the other hand, when 1-form b is parallel with respect to @, we have that fgc =
Y4, which implies that ﬁgc D= Féc p- This proves Proposition O]

Proposition 3.3. Let (H"H,F) be a Randers space constructed from a Riemannian
metric @ and a 1-form b, where b is parallel with respect to @. Assume the sectional
curvature Ff of M with respect to the Riemannian metric @ satisfies § < FM <1. If

(M™, F) is a hypersurface of (M H,F) with constant mean curvature, then

—s —=s 7
> (bijbei Ry + bigbrsRijy,) > nd(S — n|H[?) — 51 =0)(8—n |H|?).

1,5,k

Proof. Tt follows from Proposition [3.2] that

> (bigbsi B + bigbs Ryji) = b3 Riji + i Ry — bisb R,
1,3,k
+ Z bijbsiﬁijk + 2 Z bl]b]kﬁzjk + 2 Z b“hskéfzk
579 i#k sk
-7 1
- Z leJRgf]k’ + b2 szz (bu - b ) Riﬂ
i
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+ ) bigbsiRyp +2> b b]kRZj R T2 bibg Ry
s#£j i#k s#k

> n6(S — n|H|?) - ;(1—5)(S—n]H]2). 0

Proposition 3.4. Let (MnH,F) be a Randers space constructed from a Riemannian
metric @ and a 1-form b, where b is parallel with respect to @. Assume the sectional
curvature Ff of M with respect to the Riemannian metric @ satisfies 6 < FM <1. I

—n+1

M™ is a compact hypersurface of ( , F) with constant mean curvature, then

n 1
/ Z bzg|k (bz]Rkjl_ql] + b’]RUk\k>} dVsy > —/ —n(n—l)(26n—25)(1—5)2 dVsar.
sM i su 72

—=n+1 —=n+1

Proof. Let X = Z” < ikRji; + bij Rijp

i
formula of (3.4) that

—=n+1 —=n+1
> b= 3 (bR + bR

) wk. Tt follows from Lemma and the second

7-7k '7.j k
= Z bz]|k + Z ( ZklkR]z] + b@j|kak ) — legX
7-7 k 7]7
+1 Hn+1 .
(3.8) O IGIRD DY (sz ) ~div, X
7.7 k Z] k

v

2 Z (j’;j) - n(n —1)%(1 = 6)% — divg X

7]7

1
> —in(n —1)(26n — 25)(1 — 6)* — divy X
Integrating (3.8]) yields Proposition O

We can now prove Theorem

Proof of Theorem [1.2] Using the fact ZM’S n|H|bi;jbisbs; > —
substituting Propositions and into (3.7), we have that

e H (s=n [HP),
7
0>/ {—(S—n|H|2)2+n5(5—n|H|2)—5(1—5)(5—”’H’2)
SM

n—2
% H HI%)3/2 —
S (S P~ o

(3.9)
L n = 1)(26m — 25)(1 6)2}dV5M.

From our assumption condition S — n |H|? < By, we can obtain that

(S HP wms — (1) 2 ol HIP2 (] —
(S =n|H[") +nd - 5(1-9) N [H[ (S —n|H|") (1-6) =0,
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which together with S — n |H|* > a(1 — §) yields that

(S~ n[HP) + (S — n|H[) — 5(1—6)(S —n|H])
(3.10) n—29
- n(n—1)

It follows from and (| - ) that all 1nequahtles in are actually equalities.

Then we get that bmk: Rijk, , Vi,5,k and ’7;1’ =

Vi, j, k that EZ—JH = EZ-T = 0. Then it is easy to see that § = 1. This,

together with the parallel 1-form b, implies that M is a Berwald manifold with constant

1
n|H| (S —n|H|*)>3? - —n(n —1)(26n — 25)(1 — §)2 > 0.

, Vi # j. It can be seen
from by, = RZ]k ,
flag curvature K = 1, then M is a complete simply connected Riemannian manifold with

constant curvature 1. Hence we obtain Theorem immediately. O

Using the same way as the proof of Theorem we can also obtain the following

Theorem 3.5. Let (WH,F) be a complete simply connected Randers space constructed
from a Riemannian metric @ and a 1-form b, where b is parallel with respect to @. Assume
the sectional curvature ff of M with respect to the Riemannian metric @ satisfies 6(n) <
K7 < 1. If M™ is a compact hypersurface of( VA
|H| and the norm square S of the second fundamental form of (M, F') with respect to the
Finsler metric F satisfies By < \/S —n |H|2 < By, where By, By (0 < By < Bs) are the

solutions of the following equation

, ) with constant mean curvature

IR e B B
o +[5 o1 5>] 5l = 1)(26n = 25)(1 = 8)” =0,

then either M 1is the unit sphere or S —n \H\Z = By and one of the following cases occurs:

(1) H=0and M = S*(\/k/n)xS"*(\/(n —k)/n) is a minimal Clifford hypersurface,

(2) H#0,n>3and M = S'(r1) x S"Y(rg) is an H-torus, where r? +r3 =1 and
T% < (n - 1)/2’

(3) H#0,n=2and M = S'(r1) x S'(re) is an H-torus, where r3 + 13 = 1 and
r2 £1/2.
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