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Construction of Periodic Solutions for Nonlinear Wave Equations by a
Para-differential Method

Bochao Chen, Yixian Gao* and Yong Li

Abstract. This paper is concerned with the existence of families of time-periodic
solutions for the nonlinear wave equations with Hamiltonian perturbations on one-
dimensional tori. We obtain the result by a new method: a para-differential conjuga-
tion together with a classical iteration scheme, which have been used for the nonlinear
Schrodinger equation in [22]. Avoiding the use of KAM theorem and Nash-Moser
iteration method, though a para-differential conjugation, an equivalent form of the
investigated nonlinear wave equations can be obtained, while the frequencies are fixed
in a Cantor-like set whose complement has small measure. Applying the non-resonant
conditions on each finite-dimensional subspaces, solutions can be constructed to the

block diagonal equation on the finite subspace by a classical iteration scheme.

1. Introduction

This paper is devoted to investigate the existence of the time-periodic solutions for the
nonlinear wave equation. A quantity of research has been did concerning the periodic or
quasi-periodic solutions of nonlinear wave equations. In [37], Poschel considered the non-
linear wave equation with cubic, sine-Gordon or sinh-Gordon nonlinearities under Dirichlet

boundary conditions
Utt _uxx+mu+f(u) =0,
u(t,0) =u(t,m) =0, ze€l0,7],te (—o0,+00),

where m > 0, the nonlinearity
fu) = au® + Z fruk with a #0
k>5

is a real analytic, odd function of u. By an abstract KAM theorem, the results on the

existence and stability of periodic and quasi-periodic solutions were obtained for the above
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equation. For the periodic potential function wave equation under periodic boundary
conditions

Ut — Ugg + V(2)u = f(u),

u(t,z) = u(t,x + 2m),

wg(t, ) = wy(t, © + 2m),
where the nonlinearity f is an analytic function vanishing together with derivative at
u = 0, in [20], Chierchia and You arrived at the existence and linear stability of lower-
dimensional tori (composing by quasi-periodic solutions) by an infinite-dimensional KAM
theorem. In [12], using the Lyapunov-Schmidt technique, Bourgain proved the existence

of nontrivial space and time-periodic solutions of the equation
g — Au 4+ mu + 6%ud =0

in a neighborhood of the monochromatic wave on d-dimensional torus, where § > 0 is a
small parameter, m > 0 is the given constant. For completely resonant nonlinear wave
equations, Berti and Bolle [§] studied the existence of cantor families of periodic solutions
of

Ut — Ugz + f(z,u) =0,

u(t,0) = u(t,m) =0,

where the nonlinearity
(1.1) f(z,u) = ap(z)uf + O(WPth), p>2

is analytic in v and H' in z. The proof relies on a Lyapunov-Schmidt decomposition and
a Nash-Moser iteration.

In this paper, using the para-differential technique, we consider the forced oscillations
equation in one-dimensional as [2}38,139], with the nonlinearities depending on the time

and space variables:
(1.2) Ut — Ugg +mu = €0y, F(wt, z,uj€e) + ef (wt,z), =z €T:=R/2rZ.

In (1.2)), m > 0, € > 0 is small enough and w > 0 is a frequency parameter. Moreover f
is 2m-periodic in time and smooth on R x T with value in R; the nonlinearity term F' is

2m-periodic in time and satisfies
(1.3) BF(-, -, z6)|,_,=0 fora<2

If F' is analytic function of u, and f(wt, z) is vanishing in ([1.2)), we can consider the similar

nonlinearities f(t,z,u) = a,(t, z)u? + O(uPT), p > 2 as equation (1.1)). The nonlinearity

terms F' are requested to be infinitely many times differentiable, i.e.,

(1.4) F(t,x,z,e) € C*(R x T xR x [0,1];R).
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Let us recall some known results about this type of problems. The problem of looking
for time-periodic solutions to the nonlinear PDEs has been paid high attention since
the pioneering paper of Rabinowitz [38,39]. He rephrased the problem as a variational
problem and proved the existence of periodic solutions whenever the time period T is a
rational multiple of the length of spatial interval, and the nonlinearity f is monotonic in
u. Subsequently, many authors, such as Bahri, Brézis, Corn, Nirenberg etc., had used and
developed Rabinowitz’s variational methods to prove both perturbative and global results,
see |2L|16-18]. And some recent papers can be found in [1,|31,[32]. Most importantly, their
time period had to be a rational multiple of their space period so that the wave operator
Ot — Oy, acting on the corresponding space of z- and t-periodic functions, had discrete
spectrum. For this reason, they also did not come in Cantor families. The case in which T’
is some irrational multiple of 7 (the space period) had also been investigated by Feckan [25]
and McKenna [36], where the frequencies are essentially the numbers whose continued
fraction expansion is bounded. In other case, it appears the “small divisor” problem.
The Kolmogorov-Arnold-Moser (KAM) method was an efficient tool to deal with this
problem. In the later of 1980’s, an approach via the KAM method was developed from the
viewpoint of infinite-dimensional Hamiltonian partial differential equations by Kuksin [34],
Eliasson [23] and Wayne [40]. This method allowed one to obtain solutions whose periods
are irrational multiples of the length of the spatial interval, and it is also easily extended to
construct quasi-periodic solutions for class of Hamiltonian PDEs, see [5,/7,/19,20,24.26-29,
35,41]. Later, in order to overcome some limitations of the KAM approach, in [11,[13,[15]
21], Craig, Wayne and Bourgain retrieved the Nash-Moser iteration method together with
the Lyapunov-Schmidt reduction which involves the Green’s function analysis and the
control of the inverse of infinite matrices with small eigenvalues, successfully constructed
the periodic and quasi-periodic solutions of PDEs with Dirichlet boundary conditions or
periodic boundary conditions. The advantage of this approach is to require only the “first
order Melnikov’ non-resonance conditions, which are essentially the minimal assumptions.
On the other hand, the main difficulty of this strategy lies in the inversion of the linearized
operators obtained at each step of the iteration, and in achieving suitable estimates for
their inverses in high (analytic) norms. Indeed these operators come from linear PDEs
with non-constant coefficients and are small perturbations of a diagonal operator having
arbitrarily small eigenvalues. Some recent results about Nash-Moser theorems can be
found in [34,9,10] and the references therein. There are actually a few results concerning
existence of periodic solutions which do not appeal to Nash-Moser or KAM methods.
Gentile and Procesi [30] verified the existence of Gevrey smooth periodic solutions. Their
approach is based on a standard Lyapunov-Schmidt decomposition, which decomposes the

original PDEs into two equations, traditionally called the P and ) equations, combined



1060 Bochao Chen, Yixian Gao and Yong Li

with renormalized expansions of Lindstedt series to handle the “small divisor problem”.
Bambusi and Paleari [6] constructed such solutions without making use of Nash-Moser
or KAM methods, by a combination of the Lyapunov-Schmidt approach and an implicit
function theorem, but only for a family of frequency parameters of measure zero (instead of
a set of parameters whose complement has small measure). In the present paper, inspired
by the technique of [22], avoiding the use of Nash-Moser theorems and KAM methods, by
the para-differential method together with a standard iteration scheme, we establish an
existence result about periodic solutions of with nonlinearities 0, F'(wt, x, u, €), which
is infinitely many times differentiable and can rely on space and time variables. In [22],
Delort proposed that this method does not seem to be adapted to find periodic solutions of
nonlinear wave equations in high-dimensional spaces, since the specific separation property
does not hold. However, for the nonlinear wave equation on one-dimensional tori, we can
obtain the separation property of the eigenvalues of \/—8,, +m. The properties of the
operator in this paper is different from the Schordinger operator [22], and we will meet
some similar difficulties in diagonalization of the equation. In a Nash-Moser iteration
scheme, ones have to consider the treatment of losses of derivative coming from small
divisors and the convergence of the sequence of approximations at the same time. Using
para-differential approach, since such losses of derivative coming from small divisors will
be compensated by the smoothing properties of the operator in the right-hand side of the
equation, we don’t worry about the convergence of the sequence of approximations of the
solution when we treat small divisors. This approach allows one to separate on the one
hand the treatment of losses of derivatives coming from small divisors, and on the other
hand the question of convergence of the sequence of approximations.

This paper is organized as follows: in Section [2] we state the main theorem. We devote
Section [3] to perform the first reduction of the equation applying the fixed point theorem
with parameters. Then the equation on H is equivalent to the one on H?, where 7:2",
H? are, respectively, defined in , . The aim of Section 4| is to describe the
para-linearization of the equation. We first define classes of convenient para-differential
operators which can be used in the following; then we para-linearize the equation, and
reduce it into

(w28tt — Opze + m+ €V)u = eRu + €f,

where V' is a para-differential operator of order zero depending on u, w, €, self-adjoint,
and R is a smoothing operator depending on u, w, €. The fifth section is the core of this
paper. For a new unknown w, owing to a para-differential conjugation, we transform the

equation on H? into a new form as follows:
(wzf)tt — Opz + m+ €Vp)w = eRw + €f,

where Vp depends on u, w, €. The operator Vp is block diagonal corresponding to an
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orthogonal decomposition of L?(T), which is in a sum of finite-dimensional subspaces
introduced by Bourgain [14]. The operator R is still smoothing. In Section [6] our main
goal is to construct the solution of the block diagonal equation by a standard iteration
scheme. Combining with the non-resonant conditions , we show that w20y — Opy +
m + €Vp is invertible on each block when w outside a subset. To guarantee that the
measure of excluded w remains small, we have to allow small divisors when inverting
w20y — Ope +m + €Vp. While, such losses of derivatives coming from small divisors may
be compensated by the smoothing operator R on the right-hand side of the equation. At
the same time, we can construct an approximate sequence of the solution. We conclude

the paper with some remarks in Section

2. Main results

2.1. Statement of the main theorem

To fix ideas, we shall take w inside a fixed compact sub-interval of (0,00), such as w €

[1,2] (in fact any compact interval [a,b] C (0,00) is also true). After a time rescaling,
equation ([1.2)) is changed into

(2.1) (W20 — Oy + m)u = €0, F(t,z,u,€) +ef(t,x), xeT.

In this paper, our goal is to present the existence of 2w-periodic solutions in time of
for small enough € and for w outside a subset of small measure. Denote by D'(T x T) the
space of generalized functions on T x T. Let us look for the solutions defined on T x T in
the Sobolev space H° with 0 € R

(2.2)  H7=H(T x T;R) = {u € D(T x T); |Jul| 7, < +00 with T = u_jn},

where

1 o
HUH%U = Z Z(l + 52 +n?)? |uj7n|2 y o Ui = 2/ e Iy (¢, x) dt d
JEZ e T JTxT
for (j,n) € Z x Z.

We now state the main theorem as follows:

Theorem 2.1. For m > 0, there exists a constant B > 0, a subset O C [1,2] x (0,1] and
a constant &y € (0, 1] small enough such that for any § € (0, 0], any € € (0,6%], and any
w e [l1,2],

o when (w,€) & O, equation (2.1) has a solution u € H*(T xT;R) with Jul| 7, < Bed™!.
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o the excluded measure of w satisfies

(2.3) meas {w € [1,2]; (w,e) € O} < B4.
The proof of the above theorem are given at the end of Section [6]

2.2. Spaces of functions and notations

In this subsection, we first give some spaces and notations which will be used in the

following. First, we consider the “separation property” of the spectrum. The spectrum of

operator \/—0g, + m is

A =Vn2+4+m, neZ.

Then for any ny € {—n,n}, na € {—n',n’'} with n # n/, n,n’ € Z, we have

|71 ] + |nal) (Jna| — |nal)|
Vni4+m+/n3+m

’/\nl_)‘m’:‘\/n%"i_m_ n%_'_ml:
where {—n,n} denotes the two points set about n and —n. Obviously, it has

— |na|| > when 0 <m <1,

(2.4) Dy = Ang| > vz llmal 7
ﬁ [[n1] = |nal| = ﬁ when m > 1,
which shows that the eigenvalues of the wave equation on one-dimensional space have
a nice separation property. This is similar to geometric properties of the spectrum of
operator —A on T¢ given by Bourgain in [14]. Considering t as a parameter, we denote
by II,, for any n € Z the spectral projector
elzn citi+izn

Iyu = un(t)i = Zuj,n

——, u(t,z) e D'(T x T).
Vo ) 2

Let us set ﬁo = Iy, ﬁn = II,, + II_,,. Define a closed subspace H? of HC by
H? :=H(T x T;R)

(2.5) :ﬂ{ue’}-{"(TXTR) /—Oforn € {—n,n} with n € Z,
neN

Vj with |j| > Ko (n) or |j] < Kj <n>},

where K is large enough, (n) = (1 + |n|*)"/2 for n € N. In other words, for n’ € {—n,n}
with n € N, non-vanishing terms u; ,,» have to satisfy K, ' (n) < |5| < Ko (n) when u € H7.
This implies that the restriction to H° of the H’-norm given by (2.2)) is equivalent to the

square root of

(2.6) D

JEZ nEZ
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and the the square root of
2 2
(2.7) Z (n)™ [Mnullz2 (rerim) »
nez
and the the square root of

(2.8) > ()

neN

2

L2(TxT;R)

n

Furthermore, we denote by F7 the orthogonal complement of H? in HE. By ([2.5)), when
u € F7,if for n' € {—n,n} withn € N, u;, # 0, then it has || > Ko (n) or [j| < K;' (n).
In addition, we have to fix some real number oy > 3/2. For o > 0y, H° is a Banach algebra

with respect to multiplication of functions, i.e.,
up,ug € H? = |luruzllg, < Clluillgo [uallgs -

In the remainder of this subsection, we set some new notations. Let us denote by B, (H7)
for o € R, ¢ > 0 the open ball with center 0, radius ¢ in H?, and denote by L(H7*, H2)
for 01 € R, 09 € R the space of continuous linear operators from H%! to H%2. Specially,
L(H, H) is written as L(H7'). Moreover Lo(H7 x H?2,H7%) stands for the space of
continuous bilinear operators from H! x H?2 to H? for o1 € R, 09 € R, 03 € R. If the
operator T' € L(H,H°?), then the transport operator T € L(H2, H).

3. An equivalent formulation on H?

3.1. Functional setting

We now give some definitions of function space that will be used in the following. For

brevity, let us denote by H7,j=1,2 any one of the spaces H?, F7, He.

Definition 3.1. For any ¢ > o¢ and any open subset X of H{, k € Z, denote the
space of C® maps G: X — HJ ¥ by ®>k(X,H3*), such that for any u € X N H;
with s > o, G(u) € Hj . Furthermore, the linear map D, G(u) € L(HS,HS*) extends
as an element of L(HS ,H3 %) for any u € X N'H$ with s > ¢ and any ¢’ € [—s, 5.
Moreover, u — D,, G(u) is smooth from X N H; to the preceding space. In addition, for
any u € X N'H; with s > o, the bilinear map D2 G(u) € Lo(H] x H], HS ) extends as
an element of Lo(HT' x H2, Hy %™ F) for any {o1,09,03} = {0/, —0’, max(0g,0’)} with
o’ € [0,s]. In the same way, u — D2 G(u) is smooth from X NH; to the preceding space.

Definition 3.2. For any ¢ > 0g and any open subset X of H{, k € Z, let us denote the
space of C! functions ®: X — R by C°*(X, R), such that for any u € X NH§ with s > o,
Vu®(u) € Hi™ and u — V,®(u) belongs to ®>F(X, HI ).
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Remark 3.3. For n € N, D, G(u) denotes by the n-th order Frechet derivative of G(u)

with respect to u.

In the remainder of this paper, we shall consider elements G(u,w,€), ®(u,w, €) of the
preceding spaces depending on (w, €), where (w, €) stays in a bounded domain of R?. If G,
0wG, 0G (resp. ¥, 0,P, 0.P) satisfy the conditions of Deﬁnition (resp. Deﬁnition,
we shall say that G, ® are C! in (w,¢).

The following two lemmas and a corollary are applied to analyze the properties of the
functionals ®1, ®9 which are given by and respectively, and the proofs can be
found in the appendix in [22].

Lemma 3.4. If s > 3/2, then H*(TxT;C) C L*. Furthermore, if F is a smooth function
defined on T x T x C satisfying F(t,z,0) = 0, there is some continuous function T — C(1),
such that for any u € H¥, F(-,u) € H with ||F(- s llge < Cllull poo) lull g -

Lemma 3.5. If s > 3/2, when u € H, v € HO, then wv € H® with o' € [—s,s].
Moreover, for any o € R, any o9 > 3/2, Ho . H—o C H—max(0,00)

Corollary 3.6. If F: T x T x C — C is a smooth function with F(t,z,0) =0, then for
any o > 3/2, u— F(-,u) is a smooth map from H° to HC.

Define the following map for all ¢ > 0g, 0/ > 0
G:H°NH" - H”

U — F(t,z,u,€),
where F satisfies the conditions (1.3))—(L.4).
Lemma 3.7. The map G is C? with respect to u and satisfies for all h € H° N HY
D, G(u)[h] = 0, F(t,z,u,e)h, D?2G(u)[h,h] = O2F(t,x,u,e)h?.

Proof. Corollary implies that G is C? respect to u. Noting that by the continuity
property of u +— 0, F(t, z,u,¢€), it has

|E(t,x,u+ h,e) — F(t,x,u,e) — O, F(t,x,u, e)hHﬁa/

1
= Hh/ (OuF (t,z,u+ Th,€) — O F(t, z,u,€))dr
0

Ho'
<C(d) ”h”gmax(d’o/) Urg[%ui] |0WF (t,x,u + Th,€) — O, F(t, x,u, e)HﬁmaX (:07) -

Therefore for all h € H° N H "/, we have

D, G(u)[h] = OuF(t,x,u,e)h
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and u — D, G(u) is continuous. Furthermore, it also has
OuF (t,z,u+ Th,€)h — O, F(t,z,u,e)h — O>F(t, x, u, €)h?

1
_ hz/ (O2F(t, 2, u + th, €) — O2F(t, z,u, €)) dr.
0

Similarly, we can obtain that G is twice differentiable with respect to u and u + D2 G(u)

is continuous. O]

Lemma 3.8. Let 0 > 09, k € N, X and Y be the open subsets of H] and Hg+k respec-
tively. If G € ®>~F(X,HS™), & € C°F(Y,R), and G(X) C Y, then ®oG € C®(X,R).

Proof. We restrict our attention to w € X N'HJ with s > o. This reads G(u) € Y N H§+k.
Definitions I3.1H3.2 indicate that

(3.1) D, G(u) € L(H] ,H3 ) € LM, HS) for |o’| < s
and that V,®(G(u)) € Hj for s > 0. Consequently, we have for any o’ with |o’| < s,
(3.2) Dy (Vu®(G(w))) € LIHS ™ HT).

Owing to formula (3.1]) together with the fact that V,(® o G)(u) is equal to 'D,G(u) -
(Vu@(G(u))), we deduce
Vu(® o G)(u) € Hi.

Let us check V(® o G) € ®°9(X,H]). Write Dy,(Vy(® o G)(u)) - h as the sum of the

following two terms

(3.3) DG (1) - (Dy Vu®)(G(u)) - Dy Gu) - h),
(3'3b) (Du(tauG) (u) ’ h) ' VUQ)(G(U))

Formulae and show that belongs to 7—[‘1’/ with ¢’ € [0, s]. According to
integrating against h' € Hy 7' it yields that
(3.4)

/ (Du('DuG)(u) - h) - VO, (G(u))) k' dtdz = /VuCD(G(u)) D2 G(u) - (h, 1) dtdz.

Definition [3.1 gives that D2 G(u) - (h, k') € H, max(o0.0")+k Combining this with the fact
that V,®(G(u)) is in H5 which is contained in H;nax(ag’a/), we get that the right-hand side
of is a continuous linear form with b’ € Hy o

Next, from integrating D2 (V,(® o G)(u)) - (h1, ha) with (h1, h) € H]* x H]® against
hs € HT®, it follows that
(3.5)

/ (D2(Vu(® o G)(u)) - (h1,h2)) hgdtdz = D}, / (Vu®(G(u))) (Dy G(u) - hy) dt da,
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where {04, 05,06} = {0, —0’,max(09,0’)} with o’ € [0, s]. The right-hand side of (3.5]) is

the sum of the following four terms

(3.6a) / (Vu(G(w))) (D2 G(u) - (ha, ho, hs)) dt da,

(3.6b) /(Du(vu@(a(u))) -h1) (D2 G(u) - (ha, hs)) dt dz,

(3.6¢) (G(w)) - DZ G(u) - (h1,h2)) (Dy G(u) - hg) dt dz,

(3.6d) /(D2 V®)(G(u)) - (Dy G(u) - b1, Dy G(u) - hs)) (Dy G(u) - hy) dt dz,

where (1, ha) € HJ x HI5. We just consider hy € HY', hy € Hy® and hg € H™707)
with o' € [0,5]. In (3.6a), since u — D} G(u) is C' on X N /Hinax(ao’g) with values in
52(7'[‘1’/ X 7—[1_0/;7-[2_ maX(UO’U,Hk), we obtain

D3 G(u) . (I’Ll, hQ, h3) = H; maX(Uo,U’)—&—k.

u
Combing this with V,®(G(u)) € H5 C HmaX(UOU) for s > ¢/ > 0 and s > o, the two
factors in (3.6a]) are integrable. In (3.6D]), Definitions verify
D} G(uw) - (k. hs) € Hy ™07 C Ay 7L DUV (G ) -y € M

Consequently, the two factors in (3.6b)) are integrable. In (3.6¢|), formula (3.1)) and Defi-
nitions B.IH3.2l lead to
Dy, G(u) - hy € Hy ™70,
and
(Du Vu)(G () - D2 G(u) - (hy, hz) € My "7,
which implies that the two factors in (3.6¢) are integrable. In (3.6d)), from D, G(u) - hy €
HF c HS and D, G(u) - hy € Hy7 TF C #57, it follows that

(Di V(I))(G(U)) ’ (Du G(U) h1, Dy G(U) : hz) S 7‘[2_ maX(UO’U’)_k.

As a result, the two factors in (3.6d) are integrable. This completes the proof of the

lemma. O

3.2. An equivalent form

Since u is real-valued, we define the functionals @4 (u, f,w,€), ®2(u,€) by

1 ~
D (u, fyw, €) := / (Lyu(t,z))u(t, z) dt dx
2 JrxT
(3.7) N
+€ ft, 2)u(t,z)dtde, ue H,
TxT

Dy (u,€) ::/T TF(t,:):,u(t, x),e)dtdr, wue€ H,
X
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where

(3-8) L, = _(w2att — Oz + m)7

Then

Vu®i(u, fyw,€) = Lyu+e€f, V,Po(u,€) = 0, F(u,e).

By the definition of 7:2", L., is a bounded operator from H° to Ho~2. This shows ®; €
C°2(H7,R) for 0 > 0. Moreover, we also deduce ®3 € C°(H? R) for ¢ > o from the

condition (1.3) and Lemmas Corollary [3.6] Then equation (2.1) may be written

as
(39) vu((pl(u7 f7w76) + 6@2('11/, 6)) =0.
Since m > 0, there exist some constants c¢(m) > 0 such that

n2 +m > ¢(m) (n)?, forn' € {—n,n} withn € N.

By the definition of F? and w € [1,2], if Ky is chosen large enough, then there exists a
constant ¢ > 0, for n’ € {—n,n} with n € N, such that the eigenvalues of L., satisfy

|—w?i% + 02 +m| > c(lj]* + (n)?), j €L

It is seen that for all w € [1,2], the restriction of Zw on F7 is an invertible operator from
F° to F°2. Let us decompose any u € H as u = u1 + ug, where u; € H? and ug € F°.
We decompose also any f € H as f = fi+ fo, where fi € H? and fy € F?. Then we
will reduce to an equivalent form on H°.

Proposition 3.9. Set 0 > 09, ¢ > 0, fi € By(H?), Wy := By(H?) x By(F?). There
exist vo € (0,1] small enough, an element (u1, f2) — Wa(u1, fa,w,€) of CV(Wy;R) and
an element (u1, fo) — G(uy, fa,w,€) of ®>2(Wy; Fo+2), are C! in (w,e) € [1,2] x
[0,70], such that for any given subset A C [1,2] x [0,7], the following two conditions are

equivalent, i.e.,

(i) For any (w,€) € A, the function u = (u1, G(u1, f2,w,€)) satisfies
(3.10) Lou+ef + eV Pa(u,€) = 0;
(ii) For any (w,€) € A, the function uy satisfies

(311) qul + efl + EVule(ula fQ,OJ, 6) =0.
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Proof. Equation (3.10) may be written as the following system

(3.12&) Lour + 6f1 + evul%(ul, ug, 6) =0,

(3.12b) szQ + 6f2 + EVW@g(ul, ug, 6) =0.

Since the restriction of L, on F7 is an invertible operator, a solution of (3.12b)) may be
expressed in terms of the form uy = —GE; Ly + ews, where

(3.13) Wy = —E;lqu)g(ul, —ez;1f2 + €Wy, 6).

For any (u1,h) € Bq(H7) X By(F7), any (w,€) € [1,2] x [0, 1], we have
P!

Fotz = 2

|22 9 usa(un, o)

for some constant ¢; > 0. By means of the fixed point theorem with parameters, there
exists yp € (0,1], such that for any (ui, f2) € Wy, any € € (0,70], equation (3.13) has a

unique solution wy € By, (F°12), which is denoted by G(u1, fa,w,€). As a consequence
(3.14) uy = —eL; ' fo + €G.

Let us check that G € ®>~2(W,; F72). Formula (3.13) indicates that G is a smooth
function of u; with C! dependence on (w, €) and that G belongs to F*+2 for all (uy, fo) €
Wyn H* with s > o. Furthermore

Du1 G(’U,l,fQ,w,G) = _zu_)l(ld _€M2(u17f27w76)E;1)_1M1(u1a f27w76)7
Df2 G(uy, fo,w,€) = Ezal(ld —GMg(ul, fo,w, E)E(Zl)flMQ(ul, fo,w, 6)5‘:1,
where
Ml(Ul, f?awa 6) = (Dul VUQCDZ)(’LLI’ _6L51f2 + €G> 6)7
MQ(UL f27w7 6) = _(Du2 VU2CI)2)(U17 _Ezujlfé + EGv 6)'
We restrict ourselves to (u1, f2) € Wy N H* for s > o. The fact of &y € C*9(W,,R)
gives that M;(u1, fo,w,€) (vesp. My(ui, fa,w,€)) sends H? (resp. F7') to F° for any

o' € [—s,s]. We have to choose g small enough to ensure

~ 1
Ms(uq, fg,w,E)L:JlH < for € € [0,’}’0].

L(FoFo) — 2

d

This gives rise to
(Id —eMy L)t e L(F7, FO),

which then leads to that D,, G can be written as the sum of the following two terms

2N—-1
(3.15a) — > LN (eMyLg ey,
k=0

(3.15h) — LY (eMyL ;Y)Y (1d —eMy L)~ (eMo L )N M.
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If N is chosen large enough relatively to s, then (EMQEJI)NMl sends H? to F for any
o' € [—s,s]. Then belongs to F*t2 ¢ Fo'+2. Moreover, is bounded from
H' to F7'*2 for any o’ € [—s, s]. Therefore Dy, G extends as an element of £(H7 , F7'+2)
for any o’ € [—s, s]. The discussion on Dy, G, D? G is similar to the one as above and so
is omitted. Clearly, DG, D?G are smooth with C'! dependence on (w,¢). Consequently,
G is in ®>72(W,; FoT2). Owing to and (3.2)), it follows that

1 [ ~
Dy (ug, u,w, €) + ePo(uy, ug, €) = 3 /(qul)ul dtdz + €/f1U1 dtdz

1 ~
+ 5 /(LwUQ)UQ dtdx + €/f2u2 dtdz + 6(132(11,1, ug, 6).

Substituting (3.14]) into the above expression, we can get a new functional about (u1, fa,w,
€), which is denoted by ¥(uy, fa,w,€). A simple calculation yields

1 [ ~
U(uy, fo,w,€) = B /(qul)ul dtdz + 6/f1u1 dtdz

62 ~
- 5 /(LwlfQ)fQ dtdx + €¢2(U1,f2,w76),
where

(3.16) dalun, fo ) = 5 /G(EwG) dtde + Bo(u, —eL t fo + €G, ).

The first term on the right-hand side of (3.16) belongs to C°2(F°+2) thanks to that L, is
a bounded operator from F°+2 to F7. It follows from Lemma that 1y € C°0(W,, R).

Moreover

vul‘l/(ulvf%wve)[h]
== Vu1q)0(u17u27w7 6)[h] + t[Du1 UQ('LLl, f27w7 6)[}7‘]] : VU2¢0<U’17U’27W7 6)
= Vulq)g(ul,ug(ul,fg,w,e),w,e)[h]

== /(qul + ffl + 6Vu1¢2(U1,f2,w,6))hdtdx,

where ®g := &1 4+ e®5. Hence wuy is a critical point of ¥ if and only if it is a solution of

equation (3.11]). O

4. Para-linearization of the equation

Propositionshows that we just look for families of solutions u; € H? to equation (3.11)).
To simplify this problem, we fix the force term f = fi + fo, i.e., we take no account of

(defined in (3.16))) depends in the fa. We now turn to study equation

(4.1) Lou+ef +eVya(u,w, ) =0,
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where u € By(H?), f € H?, o € C®Y(By(H),R) for some o € [0g,s], ¢ > 0 and
€ € [0,7)] with 79 € (0,1] small enough. The goal of this section is to reduce (4.1)) into
a para-differential equation using the equivalent norm (2.6)—(2.8) in H?. We first define

classes of operators.

4.1. Spaces of operators

Define the spaces ﬁf{: .= H°(T x T; C), HZ :=H(T x T; C) for complex valued functions.
Other notations are defined in the similar way as in Section

Definition 4.1. Let m € R, ¢ > 0 with u € B4(HZ), N € N, 0 € R, with o > 0¢g+2N +2.
Denote the space of maps v — A(u) defined on By(HZ) by X™(N,0,q), with values in
the space of linear maps from C°°(T x T;C) to D/(T x T;C). And there exists a constant
C > 0, such that for any n,n’ € Z, u — I, A(u)Il,/ is smooth with values in L£(H).
And for any M € N with 2 < M < 0 — 09 — 2N, any u € By(HZ), any j € N, any
wi,...,w; € HE, any n,n’ € Z, the following holds:

(i) For j > 1, it has

(4.2) y j
[\m I\ —
< O fn| + )™ (0= ") X Lyt gy L llwellygo+2av4ar -
1=1

(ii) For j =0, it has
-M
Remark 4.2. In ([£.2), the term (n —n')"™ reflects the available z-smoothness of the

symbol of a pseudo-differential operator, and the term ]l|n_n,‘< L (jn|+n']) reflects the cut-
— 10
off.

Remark 4.3. By Definition if A € ¥™(N,o0,q), then 04(A(u)) € ¥"(N + 1,0,q),

where
(4.3) Ot A(u) = Oy Alu) - (9u)* 4 9, A(u) - dypu.

In fact, formulae (4.2) and (4.3)) indicate for j > 1

10020 A () - (w0 | 30

M
< C+fnl+ /)™ (n =) L <t g
J

x (HatuHiLEOﬂLW\“rM + l10wully g0 +2nar) zH1 lwrll o200
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J
—M 2
< Ci(1+ [n| + |0/ |)™ (n —n') L i< L g (1l + llellgg) H le”Hgo+2N+M
=1
o J
< Co(1+ |n|+ ‘n’})m <n — n’> ﬂ\n—n’\ﬁflo(|n|+\n’|) H le|’Hgo+z(N+1)+1\/1
=1

if we assume M < o —2(N +1) —0g and v € By(HZ). In the same way, the case of j =0
is argued. This checks that 0y (A(u)) € ¥™(N +1,0,q).

Lemma 4.4. Let o, m, N, q satisfy the conditions of Definition 4.1 Then for any
u € By(HZ), any s € R, the operator A(u) is bounded from HE to HE ™. Moreover,
u — A(u) is a smooth map from By(HE) to the space L(HE, HE ™). And for any j € N,
any u € Bq(HZ), any wy, ..., wj € HE, we have

‘ J
(4.4) |09 A(w) - (w1, ... ,wj)y\ﬁ(%ﬂé_,n) <C lUl lwnllyyzovarsa

for some constant C > 0.

Proof. Applying (4.2)) with M = 2 and H{-norm defined by , we may get the conclu-

sion. O

Definition 4.5. Let 0 € Rwith o > 094+2N+2, N € N,v € N, ¢ > 0, r > 0. One denotes
by R, (N,o,q) the space of smooth maps v — R(u) defined on B,(HZ), with values in
L(HE, HET) for any s > og + v, satisfying for any j, any s > o + v, any u € By(HZ),
Wiy .oy Wy GH(%

J
(4.5) |09 R(u) - (w,... ,wj)HE(H%,HEM) <c]] [ P
=1

for some constant C' > 0. When j = 0, we have HR(U)HL(H@HE“) < C.
Remark 4.6. Lemmaimplies that X" (N,0,q) C R{(N,0,q) forr >0, 0 > op+2N+2.
Proposition 4.7. (i) Letoc > o9g+2N+2. If A € ¥"(N,0,q), then A* € ¥™(N,0,q).
(ii) Let mi,mg € R and assume o > o9 + 2N + 2 + max(m + mg,0). Put
(4.6) r=o0—o09— 2N — 2 —max(m; +ms,0) > 0.

If A€ ¥™(N,0,q9), B € ¥(N,0,q), then there exists D € ¥™*™2(N,0,q) and
R e R{(N,0,q) such that

A(u) o B(u) = D(u) + R(u).
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Proof. (i) It follows from Definition
(ii) Define

D(u) =, > Tn(A(w) 0 B) ML, i< 1 g o)

R(u) =Y My(A(u)o Bu) MLy, s &)

When 5 = 0, we get the upper bound

||HnD(U)Hn’||£(Hg) < C(1+|n|+ ‘n/‘)(ml-&-rm) <n _ n/>—M

Similarly, the estimates of HHn&{D(u) (wi, . wi) Iy for 7 > 1 are obtained.

Formula (4.2)) also infers for j =0

L(HO)

HH”R(U)H”/HL(H(%) < C(l + |7”L| 4 ‘n/})(mﬁ-mz) Z (n _ k‘>_M <k _ n/>fM
k

X L i<l ) Lo < 25 (k1) > 25 (Il
Clearly, either |n—k| > %(|n —n’|) or [0’ — k| > 3(|n —n’|) should be satisfied. This
gives rise to
1
In—n'| < §(|n| + |n’|).

According to the fact and taking M = o — o9 — 2N, we have

mi+mo)—(M— -2
L R(u) T | g0y < C(L+ [n| + |n|) () =2 () L ()

which gives that R(u) sends Hg to Het" for any s, where r is given by (£.6). An argument

similar to the one as above yields the estimates of H&ﬂR(u) (W, ey W])H s qstry fOT
LOHE M)

J =1 O

In the rest of this paper, we use those operators A(u) (resp. R(u)) of ¥™(N,0o,q)

(resp. Ry, (N, 0,q)) sending real valued functions to real valued functions, i.e., A(u) = A(u)

(resp. R(u) = R(u)). Furthermore, we shall consider operators A(u,w,¢€), R(u,w,¢€) de-
pending on (w, €), where (w, €) stays in a bounded domain of R?. If (w, €) — II,, A(u, w, €)IL,
(resp. (w,€) = R(u,w,e€)) is Ct in (w,€) with values in £L(H°) (resp. L£(H*, H*T")) and
if 9,4, 0.A (resp. O, R, O.R) satisfy (resp. ), then we shall say that operators
A(u,w, €) (resp. R(u,w,¢)) are C! in (w, ).

4.2. Reduce to a para-differential equation

Denote by Z((X*)";k,7 € N%) the space of polynomials in indeterminate X*, which

are the sum of those of monomials whose weights are equal. According to the fact, if
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(Xk)m ... (X*)7 is a monomial, then we define its weight as 71k + - -+ + 7k;. Let U be
an open subset of 1%, 1 belong to C°*Y(X,R). For any u € U NHT>®, wy,wy € HFT,

we set
(4.7) L(u; wi,we) = D2p(u) - (wy, ws).

This is a continuous bilinear form in (w1, ws) € H° x H®. By Riesz theorem, (4.7)) can be

written as

L(u; w, wa) = / (W (w)w )ws dt dz
TxT

for some symmetric #%-bounded operator W (u). Definition infers that u — D21 (u)
is a smooth map defined on U with values in the space of continuous bilinear forms on
HY x HO. This shows that u — W (u) is smooth with values in £(H°,H), which then
gives for any u € U NHT®, wy,wy € HT

(4.8) L(u; Oywy, we) + L(u; wy, Opwy) = —(0y L) (u; wi, w) - (Opu).

Lemma 4.8. Let ¢ > 0. Forl € N, N € N, N' € N, there are polynomials Qﬂ\, €
R((XF)T: k,7 € NN, of weight equal to N, a constant C > 0, depending only on I, q, N’,
such that for any u € By(H°)NU NHT™®, any hy,...,hy € HT, any n,n’ € Z, the
following holds:

HﬂnaiWOL) ’ (hla e 7hl>Hn’

L(H°)
(4.9) o
S ¢ <n - n/> Z QN()( HakuH'HUO H “hl"‘HGO+Nl’ )
No++N=N =1
where Qévo((H@];uHHao)T) is the polynomial composed by these monomials like
(18F0llge0)™ - - ([0 70| 3470)
with kit + - -+ + kp7, = No.
Proof. Using 'II,, = II_,, and (4.8), for [ = 0, we deduce for any u € By(H)NU NHT>,
any wi, wy € HT
(n—n') / (I, W (u)Il,ywy) we dt dz = (n — n') / (W (u)Iwq) - pwsy dt dz
= i(L(u; O 1w, H_nwg) + L(u; 1L, w1, 823H_nw2))
= —1(0y L) (w; Iywy, II_pws) - (Opu).
Iterating the above computation, it yields that

(n =)™

(TL, W (u) I, w1 )wy dt dz
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is bounded from above by finite sum of
(4.10) |(04L) (w; ywy, T _pws) (05w, . ..., 0p" )|

with k1 +- -4+ x; = N'. According to the properties of the operator L, the term in ([4.10)

is bounded from above by

j
C T wi |0 T -nwallyo T
=1

K1
0z’ u‘

Hoo

The remainder of the discussion on [ > 1 is analogous to the case of [ = 0, we have (4.9))
for any [ > 1. O

Put for p € N, u € H°

Apu = Z 1I,u, p>1, Agu = Ilu,

neL
2P~1<|n|<2P

(4.11) p—1
Spu = Z Apu = Z 1I,u, p>1, Syu=0.
p'=0 nez
In|<2P—t
Lemma 4.9. Let ¢ > 0, 0 € R with 0 > 09 + 2, v € (0,1] with vo small enough. There
exists a map (u,w,€) — W (u,w, €) on By(H) x [1,2] x [0,70] with values in L(H®), which

is symmetric and is C* in u with C' in (w,€), such that for any (u,w,€)
(4.12) o (u, w, €) :/ (W (u,w, €)u) udtde
TxT

and satisfies the following estimate: for 1 € N, N € N, N' € N, there are polynomials
QY € Z(X*);k, 7 € NU), of weight equal to N, and a constant C, depending on 1, q,
N', such that for any u € By(H%), any € € [0,70], any w € [1,2], any (ag,a1) € N? with
ap+ar <1, any (hy,...,h) € (H°)!, any n,n’ € Z

|T,0% 08 DLW (w,w, €) - (ha, ..., )y Lo0)
(4.13) ) .

-N T T
<C{n—n) S Qv (1078, Yull o)) T IS (Yl ygoov
No+-+N;=N' =1

where S(n,n') = Z|n”\§2(1+min(|n|,\n’|)) Hpr, nyn' € Z.

Proof. We just consider that W depends on u. By definition (3.16)), we obtain that 01
is continuous with x < 2. Definition (4.11]) gives rises to

HO'
Spu —> u as p — +o0.
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This reads

“+oo

Pa(v) = Y (2(Spy 410) — ¥2(Sp,v))

p1=0

+o00 1

-y / (Do) (Syy 0 + 1A, 0) d6y - Ay, v
p1=0 0
400 +oo

1 p1
=> > / / (D2452) (Qpy o (61, 02)0) dB - (Apy (Spy + 018, Jv, Apyv) A6,
0J0

p1=0p2=0

where Qp, p, (01, 02) = IIZ_, (Sp, + 0,2p,). According to the argument before Lemma
there exists a symmetric operator W(Qphm(&l, 02)u) satisfying (4.9), such that

D22y 5 (01, 02)u) - (w1, wo) = / (W(Qphln(gla 92)U)w1) wy dt dz.

Thus we can get (4.12]), where

1 11 .
W = 5505 [ 0 (W00 01000805, +013,)) 6y 00

p1 P2

1 1,1 .
+ 9 Z Z/O /0 Apz (Spl + HlAPI) (W(QPLPZ (913 02)U)AP1) dfy dbs,

P1 P2

which is also a symmetric operator. Furthermore, the definition of S(n,n’) infers
L, W (u)IL,, = I, W (S(n,n" )u)IL,.

Combining this with (4.9), it leads to (4.13)). If we choose N’ > 2 to guarantee that
oo+ N’ < o, then u, hy are in H?. Consequently, the right-hand side of (4.13]) is bounded
by C (n — n’)_N/, which implies that W (u) is bounded from H° to H°. O

Proposition 4.10. Let ¢ > 0, 0 € R with o > oo + 2, v € (0, 1] with vy small enough.

Denote
(4.14) r=o0—oy—2.

There is a symmetric element Ve ¥2(0,0,q) and an element Re Ry(0,0,q), are Ct in
(w,€), such that for any u € By(H7), any € € [0,70], any w € [1,2]

Vatba(u,w,€) = V(u,w, €)u+ R(u,w, e)u.
Proof. For hy € H**°, it follows from Lemma [4.9) that

(4.15) Dy ¢pa(u,w,€) - hy =2 /(W(u,w, e)u)hy dt dz + /((Du W(u,w,€) - hi)u)udtde.
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Let us verify the first term on the right-hand side of (4.15). Define

Viww, @) =23 L e b ity Tn W (0,0, O,
n,n’

R (u,w,e) = 22 ]l‘nfn,|>%(|n|+‘n,|)HnW(u,w, e)llL,.

n,n’

In (4.13), if |7| < N’ < 0 — 0, then there exists a constant C' > 0 such that

HQQS(TL,TL,)UH,HUO <C HUHH(7 , HS(n,n/)hl/ 2470+Ny/ <C ”hl/|’HgO+M ;

which shows that V satisfies (4.2). Then Ve ¥0(0,0,q). It is obvious to obtain that
R e R4(0,0,q) when |7] < N’ < 0 — 0p. Furthermore, we have for some constant C' > 0

(4.16) HS(n,n/)wHHGOW < C(1+ inf(|n|, n/’))max(ﬂ+00_”’0) |

Wl -

Formulae (4.13) and (4.16) derive that Hnnazoaglagﬁf(u,w,e) “(h1,y . )y for

u € By(H7) is bounded from above by

L(HO)

l
C(L+ |n| + /)= (L + inf(n], [ [)) N+~ TT N lpe
'=1

when N’ > o — 0p. Then we get for any s > oy,
l
I
|omom ol R (w,w,e) - (hl;...,hl)Hﬁ(HS,Hs_m) < C}i[l 1l yge

if N/ is given large enough, which shows R € Ry(0,0,q).
On the other hand, we study the second term on the right-hand side of (4.15). For

any h,w € HT°°, assume there exists an operator R”(u, w, €) with

/((Du W(u,w,€)-h)u)wdtder = / (E"(u,w, e)w) hdt dz.
Decomposing u = X,/I1,yu and w = X, 11,,w, the following estimate
[((Du W (u, w, €) - h)u) w[40
<SS T Dy W (a0, €) - ATl 0y [Tt [Tt o

n n

(4.17)

holds. For [?-sequences (cp)n, (¢,)n/, Wwe may obtain

—S

IMTwllyo < en ()" lwllgye s Mol < cva(n’)™.
In addition, formula (4.13) gives for [ =1 and u € By(H?)

Qo ((197S (0 Yulleo ) IS (0, Yl ggoens < C(L+ inf ([, [ [)) N F790) [[A]|or
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where w € H® and h € H™°7" for s > 0g. Then

1T, Doy W, w, €) - ALy || 2340y [ Tnr]|3g0 [Tl 200
< C{n—n"Y"" (W mt(nl, |0/ )T ()7 0 (077 ey ]l [1Bllp—er
where s > 09, 0 > 0¢+2, r is given by (4.14]). Taking N’ = 2, we may check that the sum
in n, n’ of (4.17)) is convergent, which then leads to that R' € L(H®,H5TT). Similarly,
the estimates of !‘?ﬂoaglail%g(u,w,e) “(hi,. .., hl)Hc(HaHS“) for [ > 1 can be obtained.
Therefore we get R” € R{(0,0,q). O

5. Diagonalization of the problem

5.1. Spaces of diagonal and non diagonal operators

It follows from Proposition that we can decompose the nonlinearity in (4.1)) as the
sum of the action of the para-differential potential V (u,w,€) on u and of a remainder.
Thus equation (4.1) can be reduced to

(5.1) Lou+ eV (u,w, €)u = eR(u,w, €)u + €f,

where L, := —L, V(u,w,€) := —V(u,w,e). Furthermore, V € ¥°(0,0, q) is symmetric,
and R € Ry(0,0,q). Note the symmetric operator V' is also self-adjoint.

Definition 5.1. Let c e R, N € N, with 0 > 09+ 2N +2, m € R, ¢ > 0.

(i) Denote by X{J(N, o, q) the subspace of X™ (N, 0, q) constituted by elements A(u,w,¢)
satisfying II, AIL, = 0 for any n,n’ € N with n # n'.

(ii) Denote by X, (IV, 0, q) the subspace of ¥ (N, o, ¢) constituted by elements A(u,w, €)
satisfying II,, AIL, = 0 for any n € N.

It is straightforward to see that X™ (N, 0,q) = X[}(N,0,q) @ E{p(N, 0, q).

Definition 5.2. Let p/ = 1, one denotes by E;’}(N, 0,q) the subspace of ¥™(N,a,q)

constituted by those elements A(u,w,€) with
(5.2) Alu,w,€) € ™ P (N, 0,q).

Furthermore, one denotes by E;’?(N ,0,q) the subspace of ¥™ (N, o, q) constituted by those
elements A(u,w, €) satisfying (5.2)) and A(u,w,€)* = —A(u,w,¢).

Remark 5.3. Assume o > 09+2N+2+max(mi+ma—2p/,0). By Proposition[d.7[(ii), if A €
EZ,“ (N,o,q), B € E;’?Q (N,o,q), then Ao B is the sum of an element of E;rfﬁmrpl (N,0,q),
and an element of Rj(N,0,q) with r =0 — 09 — 2N — 2 — (m1 + mg — 2¢').
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5.2. A class of sequences

Assume there exists a class of sequences S;(u,w,€), 0 < j < N satisfying that S; is written
as Sj = Sl’j -+ SQJ‘ with

Sl,j S ‘C/;/jp (]7 U?Q)v [azmasl,j] S Z_jp/(ja U?Q)a ] :07"'7N7
(5:3) 8o, € L9 (0.q), [O0ar S2) €SV (jorg),  j=0,... . N-1,
Son = 0.

Let us check some properties of the class of sequences S;j(u,w,¢€), 0 < j < N, satisfying

(5-3)-

Lemma 5.4. Letr, o, N satisfy (N+1)p' >r+2ando > o9+ 2(N+1)+2+r. Set
S(u,w,€) = EéVZOSj(u,w, €),
where S; = S1j + So; and Sy, Saj satisfy (5.3)). The following two facts hold:

(i) One may find, for1 <j < N, A; € E‘jp,(j —1,0,q) depending only on S;, 1 < j—1
and satisfying A7 = Aj, one may find R € R5(N +1,0,q), such that

(5.4) [S*,L,]S + S*[Ly,,S] = AN + R,
where AN = E;-V:OAJ- with Ag =0, [S*, L,] = S*L, — L,S*.

(ii) One may find, for 1 < j < N, A; as above, Bj € E;,(jﬂ)pl(j,a, q),0<j<N-1,
satisfying [Ope, Bj] € X~UTVP(4.0,q), B; depending only on Sy;, | < j, Say, 1 <
j—1and R e RN +1,0,q), such that

S*L,S = AN + (BN YL, + L,BY ' +R,
where BN~1 = E;V:_OIBJ-.
Proof. (i) Since [Ly, S] = w?[0s, S| — [Oxz, ], the left-hand side of (5.4) equals to
—S* [0z, S] — [S*, O] S + w?S* D4, S] + w?[S*, Dt S.

Define A := —S$*[0,z, 5] — [S*, 0zs)S. It is clear to sce that A is self-adjoint. We write
A= E?f{*‘lﬁj, where

(55) A\j = Z ([S;Nal’x]sﬁ + 8;2 [8”5’ Sjl]) :

J1t+je=j—1
0<j1,j2<N
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It follows from (/5.3]) and Proposition (ii) that for 1 < j < N, ﬁj may be written as the
sum A; + R;, where
Aj € S (min(N,j — 1),0,q), R, € R (min(N,j — 1),0,q)

with 7 = 0 — 09 — 2N — 2+ jp' > r. The term in (5.5 implies A; depends only on S,
[ < j—1. Moreover, A; is self-adjoint. For j > N +1, A; € E_NPI(N +1,0,q), hence
in R{(N,o,q) by (N +1)p > r and Remark Define B := w25*[0y, S] + w?[S*, du).
Obviously, it can be obtained that B is self-adjoint. We write also B as Z?ﬁ; 2§j, where
(5.6) Bi=w' 3 (85,104.55,) +[5,.0u)5;)

Ji+j2=j—2

0<j1,j2<N
By (5.3), Remark and Proposition (ii), Ej for 1 < j < N can also be written as the
sum A; + R;, where A; € E*jp/(min(N—i— 1,j—1),0,9), Rj € Ry (min(N +1,j—1),0,q).
The term in (5.6) implies A; depends only on S;, I < j — 2. Furthermore, A; is a self-
adjoint operator. For j > N +1, A; € »-NH+DA(N +1,0,¢), hence in Ry(N +1,0,q).
Set AN = E;VZOAJ' with Ay = 0. This concludes the proof.

(ii) We express S*L,,S in terms of the sum of the following terms
(5.7a) (5L, S +[8%, L]S),
(5.7b) % (S*SL., + LuS"S).
By (i), the term in is written as AV 4+ R. In (5.7b), we write S*S as the sum in j of

(5.8) Yo St D> (SupSan + 825 Sun) + Y, S Sas
Jitje=j Jitje=j—1 Jitje=j—2
0<j1,j2<N 0<j1,j2<N 0<j1,j2<N
The condition (5.3) and Remark shows that for 1 < j < N, (5.8) may be written as
B; + Rj, where
B; € £,V (min(N, j),0.9), R; € Ri?(min(N, j),0,q)
with r =0 — 09 — 2N — 2+ (j +2)p’ > r + 2. The expression in ([5.8) indicates that B,
depends only on Sy, 1 < j, So;, 1 < j — 1. By construction, we also have
(020, Bj] € S0V (min(N, j), 0, ).
Furthermore, we have for j > N + 1

Bj S E_(N+1)p/(N7 g, Q)a

hence in Ry(N + 1,0, q) by inequality (N + 1)p’ > r + 2 and Remark Set BN-1 =
S¥'B;j. Note that for j > N + 1, B;Ly, Ly,B; belong to R5(N +1,0,q). And R;L,,
L,R; for j > 0 belongs to R5(N + 1,0, q). dJ
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Proposition 5.5. Let r, o, N, S(u,w,¢€) satisfy the conditions of Lemma .
(i) There are elements for 0 < j < N —1
Bj(u,w,€) € E;,(jﬂ)pl(j, 0,q)  with [Ops, Bj] € Z_(jﬂ)pl(j, a,q),
where Bj depends only on Sy, | <7, Sa;, 1 <j—1;
(ii) There are elements for 0 < j < N
Vj(u,w,€) € T (j,0,q),
where V" = V;, and V; depends only on Sy, 1 < j —1;

(iii) There is an element R € RE(N + 1,0,q), such that if we set

N N-1 N
VN(uwe:ZVJuwe) BNluwe:ZB]uwe ZSM’ 1=1,2,
7=0 7=0 7=0

then the following equality holds:
(Id+€S)*(Ly, + €V)(Id +€S) = Ly, + VY + e (BN ) Ly, + Lo, (BN 7))
+€(S5 Ly + L, S2) + €R.

Proof. The left-hand side of (5.9) may be expressed in terms of the sum of the following

terms

(5.10a) Ly + €V (u,w, €) + €2S* L, S,

(5.10b) (St (w?0) + (w?0)Sh),

(5.10c) E(S*V +VS) + 5V,

(5.10d) €(51 (= 0z +m) + (= 0ua + m)S1) + €(S3 Ly + LusS2).

In , the term V contributes to the Vj component of VV. Lemma shows that
the A; component of AN contributes to the V; component of VN and that the Bj, 0 <
7 < N — 1 satisfy the condition of Proposition We write as the sum in j of
Sy j—1*(w?0) + (wW?0u)S1 j—1, which is self-adjoint. Remark infers for 1 <j < N

151" (W) + (w?0)Sh -1 € 77 (4,0,q).
Then we get a contribution to Vj; for 1 < j < N. Owing to Remark it yields that

517]\7*((,026“) + (w2att)51,]\[ c RS(N + 1,0, q).
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We write ([5.10c]) as the sum in j of

Sl,j_l*V + VSL]‘_1 + 5273'_2*‘/ + VSQJ'_Q + € Z Sle*VSLJé

(5.11) di+iz=j—2
e Y (2 VS + S V) +e Y a5 VSh,.
tia=i—3 Jitge=i=4

Applying Sy ; € =0tV (5 0,q), So; € X-UDP (j.0,q), V € 2°(0,0,q), we write the
term for 1 < j < N in as V; + Rj, where V; € Y97 (min(N, j — 1), 0,q) and
R; € Ry(min(N,j —1),0,q). Moreover, V; depends only on Sy, 1 < j—1, S, 1 < j—2.
For j > N +1, we have V; € Ry(N +1,0,q) by Remark O

Proposition 5.6. Let A(u,w,e) € X5(N,0,q) be self-adjoint. There is an element
B(u,w,€) of EZP(N, 0,q) such that

B(u,w, €)*(—0gz + m) + (—0py + m)B(u,w, €) = A(u,w, €).
Moreover, [0y, B] € ¥™(N,0,q).

Proof. Let A(u,w,€) € E{p(N,0,q) with A" = A. Assume B(u,w,€) € LT}(N,0,q) with
B* = —B satisfying B*(—0yz +m) + (=0 +m)B = A, i.e., we have to solve the equation

(5.12) (B, 0zz] = A,

which is equivalent to (n? — n?)II, BIl,, = II,, AL, i.e.,

(\/TLQ +m—/n? +m> (\/n2 +m+ /n? —i—m) 11, BII,, =11, AIL,.

Owing to the separation property (2.4) together with the fact of |n| # |n/| with n,n’ € Z,

we have for some ¢(m) > 0.

’(\/nQ—l—m— \/n’2+m) (\/nz—l—m—i-\/n’?—l—m)‘ > ¢(m)(1+ |n| + |n']),

where the constant ¢(m) depends the lower bound in (2.4). Applying A € X{p(N,0,q),

we define

B(u,w,€) = Z Z Z (n? —n/*) "I, A(u, w, €)1,

n1,n2€Nne{—ni,ni} n’'€{—na,n2}
ni#ng

= Z (n? —n/*) "I, A(u, w, )IL,.
n,n’€Z
nl#n’|

Thus we have B € ™ # (N, 0,q), where p/ = 1. Moreover, we can obtain [0z, B] €

S™(N,0,q) by (B-12). O
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5.3. Diagonalization theorem

The following proposition gives a reduction for operator L, + €V in (5.1). Through
the para-differential conjugation, the para-differential potential V' (u,w,¢€) is replaced by
Vb (u,w, €), where Vp is block diagonal relatively to an orthogonal decomposition of L?(T)

in a sum of finite-dimensional subspaces.

Proposition 5.7. Let r be a given positive number and N be an fized integer satisfying
(N+1)p >r+2. Let 0 € R with

.
0200+2(N+1)+2+;.

Setting ¢ > 0, one can find elements Q;(u,w,€) € E;,jp’(j, 0,q), 0 < j < N, elements
W,j(u,w,e€) € Egjp,(j, 0,9), 0 < j <N, an element Ri(u,w,€) € R5(N +1,0,q), are C!
in (w,€), such that for any u € By(H7), this holds:

(Id +eQ(u, w, €))* (L + €V (u, w, €))(Id +eQ(u, w, €))

(5.13)
= L, + eWp(u,w, €) — eRy(u, w, €),
where
N
(5.14) Q(u,w, €) = ZQj(u,w,e), Vb (u,w,€) ZVDJ U, W, €).

j=0

Proof. Let us verify that the right-hand side of may be written as the right-hand side
of . Assume that Qo, ..., Q;—1 have been already determined, where Q;, 0 < ¢ < j—1
may be written as the sum Q1 ;+ Q2; with Q1 ;, Q2 satisfying , such that V; depend
only on @, I < j — 1 and the right-hand side of can be written as

Jj—1 N-1 N
Lw +GZ VD,j/ +e€ Z(B;/Lw +Lij/)+EZ(Q1J ( _ +m) (78$z +m)Q]/)
(5.15) §'=0 i'= fromef
N-1 N
€3 (Quj Lo+ LuQay) +¢ > Vir + R,
i'=3 j'=j

It is straightforward to show that ([5.15) with 5 = 0 is the conclusion of Proposition
Since V; € »=97(j,0,q) with V =Vj, depending on @, | < j — 1, we define

Vo= ILViILy, Vipj= > ILViL,
neN n,n’'eN
n#n’
Then VD] S Z ar (j,U, ) with (VDJ‘)* = VDJ‘ and VND,j S Z;Hj)p’(j, o, q) with (VND,j)* =
VnDp,j, where Vap ; depends only on @, | < j — 1. By Proposition for Vap,;, we
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may find C; € E;ijl(j, 0,q) such that C;*(=0yz + m) + (=0zz + m)C; = Vxp,; with
[Oza, Cj] € E*jpl(j, 0,q). Let Q1 := —C;. This shows that we may eliminate the jth

component of
N

€ Z(Ql,j’*(_amc +m) + (=0pz +m)Q1,5)
i'=j
and EZ;Y:j Vjr. Moreover, Q1 ; satisfies (5.3). Set Q2; := —Bj, 0 < j < N — 1. Then we
may eliminate the jth component of e S5 (B} Ly + LoBjr) and

i'=i+1
N
€ Y Qo Lu+ LuQa).
j=j+1
In addition, ()2 ; satisfies . Therefore we may construct recursively @1, 0 < j < N,
Q2,5, 0 < j < N — 1 satisfying , such that the equality in holds. O

6. Iterative scheme

This section is concerned with the proof of Theorem First, we investigate some
properties about the restriction of the operator Ly, + Vp(u,w,€) to Range(IL,). Next,
under the non-resonant conditions , we prove the restriction is invertible and the
frequencies w are in a Cantor-like set whose complement has small measure. Finally, we

use a standard iterative scheme to construct the solutions.

6.1. Lower bounds for eigenvalues

Let v9 € (0,1}, 0 e R, N e N, ¢ € R} with o > 09+ 2(N+1)+2+(/p. Define the space
of functions by
EC = EZ(T x T x [1,2] x (0,7]; R)
= {u(t,x,w,e); uw e H, duu € HO 2, u(t, z,w,€), doult, z,w,e)

for any € € [0, ] are continuous in w, ||u”52; < —i—oo}.

lullgg :==  sup  Ju(-,w,€)llye + - sup [ Auul(-, w,€)llgpec-2 -
¢ (@oe12)x[050] (w,)€[1,2]x[0,70]

Moreover, for fixed n € N, we define operator for any u € £7, w € [1,2], € € (0,70,

(6.1) Ap(w;u, €) =, (Ly + Vi (u, w, €))IL,.

Set F,, = Range(ﬁn), D,, = dim F,,. By ({2.5)), we have D,, < C (n) for some C > 0. This
implies that A, (w;u,¢) is self-adjoint on a space of finite dimension. By means of (5.14)),
[@.2), 0,u € H°~<~2 and the assumption on o, we obtain that A,(w;u,€) is C! in w.
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Proposition 6.1. Let m > 0, ¢ > 0. There exists v € (0,1] small enough, Cy > 0, and
for any uw € E7(C) with ||ullgo) < g, any € € [0,%], any n € N, the eigenvalues of Ay

form a finite family of C' real valued functions of w, depending on (u,¢), i.e.,
w—= AN (wyu,e), 1<1<D,
satisfying the following properties:

(i) For any n € N, any u,v’ € H” with |lullye < q, ||[W'|lye < q, any 1 € {1,..., Dy},
any € € (0,7)], any w € [1,2], there is I’ € {1,..., Dy} such that

(6'2) ‘)\?(w; Uu, 6) — )\?(w;ul7 5)} < Cype Hu — u/HH" .

(ii) For anyn € N, anyu € £7(C) with [|ul|¢s (o) < ¢, any € € (0,70], anyl € {1,..., Dn},
any w € [1,2], this holds

(6.3) — 4C) (n)? < uAMw;u,€) < —2C5 1 (n)?.
(iii) For any n € N, any u € &7 with Hqug <q, 0 €(0,1], € € (0,70], if we set

6.4)  I(n,u,ed) = {w e[L2: Vie{l,....Dn}, N (w;ue) > 5<n>*<},

then there is a constant Ey depending only on the dimension, such that for any
w € I(n,u,€,9), An(w;u,e€) is invertible and satisfies

(6.5) ||An(w;u, 6>71HL‘,('H0) < Epd~ ! (n)¢, (|0 A (w; u, 6)71||£(H0) < Eod 2 (n)* 2.
Proof. (i) By the property of A,,, Theorem 6.8 in |33] shows that we may index eigenvalues
AN (w;uy€), L € {1,..., Dy} of A, such that they are C'! functions of w. On the other hand,
for any eigenvalue \;(B) of B, there is an eigenvalue \y (B’) of B’ with I’ € {1,..., D, } such
that |A\(B) — A\y(B')| < ||B — B'|| when B B’ are self-adjoint in the same dimension space.
Moreover, u — A, (w;u, €) is lipschitz with values in £(H?). Consequently formula
can be obtained with lipschitz constant Cye.
(i) Set L™ = II,,L,II,,. We denote by A°(n) the spectrum set of L", where

A(n) = { —w?* +n*+m:n' € {-n,n} with n € N,
j € Z with Kg' (n) < |j| < Ko (n)}.

Similarly, A(n) stands for the spectrum of A,,. Let I' be a contour in the complex plane
turning once around A%(n), of length O((n)?), where I' satisfies dist(I', A°(n)) > ¢o (n)?. If
e € [0,70] with 4o small enough, we also have dist(I", A(n)) > ¢ (n). Moreover, we define
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the spectral projector II,, (w) (resp. I1% (w)) associated to the eigenvalues A(n) (resp. A%(n))
of A, (resp. L) by

1

(6.6) M,(w) = 5.—

/(ad —A,)"td¢, 1= /ad LMy~tdc.
r

Then there exist some constant C' > 0 such that [|IL,(w)|| g,y < < C. Note

HL(F ) =
that 12 is just the orthogonal projector on

Vect {eiUHn,w) : 0’ € {—n,n} withn €N, j € Z with K;' (n) <|j| < Ko <n)} .
This implies that I12 is independent of w. Let us consider the upper bound of

(6.7) Ha (w) ATl (w) — T LETL) H[L(Fn)’

where

I, (w) Ap Il (w) — H’(l)lLZLJHgL = (Il (w) — Hg)Aan(W) + H?z(An — L)y (w)
+ T0) L7 (T (w) — II).

Formula indicates

(6.8) M,(w) ~ T = [ (C1d—A,) (A, — L7)(C1d—L7) " dc.
2im Jr

It follows from (6.1)) that

HAn — LZHﬁ(Fn) + Haw(An - LZL))HE(Fn) < Cﬁ’
100 Anll gy + 100LE £ ry < C ()2

Then formulae and give rise to

T ()

(6.9)

91H£(Fn) S Ce <n>_2 ) ||aan(W)||£(Fn) § Ce <’I’L>_2 .

Consequently, (6.7)) is bounded from above by Ce. Let B be a subinterval of [1,2]. One of
the eigenvalues \'(w;u, €) of I, (w)A,Il, (w) (w € B) has constant multiplicity m. Let us
denote by P(w) (w € B) the associated spectral projector, where P(w)? = P(w) with C*

dependence in w € B. Then we obtain
1
M (wiu, €) = — tr(P(w)lly(w) Anlla () P(w),
which then shows that

O (Wi u, €) = 1 tr(P(w)0, (1L, (w) ApIl, (w)) P(w)).

3



1086 Bochao Chen, Yixian Gao and Yong Li

Combining this with the fact that (6.7) has the upper bound Ce, we get

DA (w; u, €) = (P(w), (IO LPMI%) P(w)) 4+ O(e).

Etr nHwttn

Moreover, the definition of L” derives that II2 L1V is diagonal with entries —w?j2+n"2+m

for n’ € {—n,n} with n € N, j € Z with Kgl (n) < |j| < Ko (n). This reads
—4K2 (n)? — Ce < QN (w;u,€) < 2K, (n)? + Cee.

Consequently, we get (6.3)) when € is in (0,~p] with 79 small enough. O

6.2. Iterative scheme

In this subsection, our goal is to achieve the proof of Theorem Fix indices s, o, N, (,

r, ¢ satisfying the following inequalities

(6.10) azao+2(N+1)+2+pi r=C (N+1)p >r+2 s>0+C+2, 8¢ (0,5),

/7

where §p > 0 is small enough. Let m > 0 and the force term f in be given in
H5HC. First we study how to solve equation . Our main task is to construct a
sequence (Gy, O, ¥r, u, wy), k > 0, where Gy, Oy, will be subsets of [1,2] x [0,52], ¥y
will be a function of (w,e) € [1,2] x [0,6%], u, wi will be functions of (¢,z,w,e) €
T x T x [1,2] x [0,6%]. When k = 0, define

ug = wo =0,
Oo = {(w,€) €[1,2] x [0,70]; In € Z with 1 < (n) < 3,
dle {17- . aDn} with |)\?(W;O,E)’ < 2(5},

| 5
Go = {(w,e) € [1,2] > [0,70); dist(w, R — Oo,e) > 7200} ’

where Cj is given in (6.3)), Opc is the e-section of O for any € € [0,7o]. We also denote by
G, the e-section of Gy for any € € [0,70]. Obviously, Gy is a closed subset of [1,2] for
any € € [0,70], contained in the open subset Oy .. By Urysohn’s lemma, when ¢ is fixed,
we may construct a C'! function w — g(w, €), compactly supported in Oo.e, equal to 1 on

Goe, satisfying for any w, €
0< wO(w76) < 17 |8w¢0(w76)| < 01671)
where (1 is some uniform constant depending only on Cy. Set

(6.11) Se= Y M, k>0

nez
(n)<3kt+1
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Proposition 6.2. There are 6y € (0,/70] with vo small enough, positive constants C,
By, Bs, a5-tuple (G, Ok, Vg, ug, wi) for any k >0, any § € (0,00) satisfying the following

conditions:
Op = {(w,e) € [1,2] % [0,82]; In € Z with 3* < (n) < 341,

(6.12) J0E {1, Dok, N (@i, )] < 26375,

G = {(w,e) €[1,2] x [0,(52]; dist(w,R — O ) >

where Cy is given in (6.3). And
Yr: [1,2] x [0,8%] — [0, 1]is supported in O, equal to 1 on Gy,
(6.13) L Cl o p(ers
C" in w and for all (w,€), |0,k (w,e€)] < 73 (€+2),
For any € € [0,6%], it can be showed that
wy € M, dgwp € M2,

and the functions wi(t, z,w, €), Opywi(t, z,w, €) are continuous with respect to w and satisfy

€
(614) Hwk( c, W, E)H’HS +90 Hawwk( T, W, E)H’HS*C*2 < Blga
(6.15) lwr = wiallye < Ba37%

uniformly in € € [0,0%], w € [1,2], 6 € (0,680]. Furthermore, for any (w,¢€) € [1,2]x[0, %] —
Ullz/:o O, wy, satisfies the equation

(Lo + Vb (uk—1,w, €))wy, = eSp(Id +eQ(up—1,w, €))* R(up—1,w, €)up1
(6.16) + eSk(Ry (up—1,w, €)wy_1)
+ Egk (Id +€Q(uk—17 W, 6))*f7
where R is defined in (5.1)) and Q, Vb, Ry are defined in (5.14) and (5.13). The function

uy, 1s deduced from wy by

(6.17) up(t, x,w, €) = (Id +eQ(ug—_1,w, €))wg
with

€
(6.18) (- @, )llpgs + 01 Owun(- w, €)llgys—c2 < Bas,
(6.19) = g1 l5g0 < 23%3*’*6C

uniformly for e € [0,0%], w € [1,2], 6 € (0, ).
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Remark 6.3. If we assume € < 62, then (6.18)) implies for some constant ¢ > 0

(6.20) [ukllgo () < a-
Before the proof of Proposition [6.2, we need to introduce two lemmas.

Lemma 6.4. There is §y € (0,1] small enough, depending only on the constants By, Ba,
such that for any k >0, any k' € {0,..., k+ 1}, any € € [0,52], any § € (0,00], anyn € N
with 3% < (n) < 3F+1

[1,2] — Gyre C I(n,ug,€,0),

where I(-) is defined by (6.4). When k =0, we set u_1 = 0.

Proof. We first consider w € [1,2] — Oy, l € {1,..., D,}. By Proposition (ii), (6.12])
and (6.19)), setting (u,u’) = (ug, up—_1), there exists I’ € {1,..., D, } such that

2 a-k( /
€ 3 > 3537k C’

ne, .. —k'¢ _ h =
(6.21) IN (ws ug, €)| > 263 2Co By 51—-3<¢< =2

when e < 62 if § € [0, §p] with & small enough. Next, let w € Ok.e — G e. The definition
in (6.12)) indicates that
0 4 k(ct2)

|w—w|<772c0 ,

where w € [1,2] — Op . Due to (6.3), we have that for any u € £7(¢) with [|ullgo ) < ¢,
any n € Nyany [ € {1,...,D,}

sup |8w)\l"(w/;u, e)’ < 4Cy (n)?.
we(l,2]

From (6.21)) and 3* < (n) < 3¥*1, it yields that
N (s g, €)] > [N (@5 ks €)] — 4C0 (n)? |w — &] > 6 (n)~°. O

In order to use the recurrence method, we shall also need to give the upper bound of
the right-hand side of equation (6.16) at k + 1-th step. Set

Hi 1 (ug,wg) = §k+1(ld +eQ(ug,w, e))*fi(uk, W, €) U

(6.22) ~ ~
+ Sk+1<R1 (uk, w, E)Mk) + GSk-Jrl(Id —i—eQ(uk, w, 6))*f

Lemma 6.5. There ezists a constant C' > 0, depending on q in (6.20) but independent of
k, such that for any w € [1,2], any € € [0,6%], any § € [0, 0], the following holds:

(6.23) [k (s wi) g < Cllun(-,ws @)l + lwr(- 5w, €)llye) + (14 CO) [ fllpgese s

10w Hi41 (u, wie) g2 < Cllur(+,w, €)ll3ge + 10wur (-, w, €)ll3e-c-

(6.24)
+ lwi (-, w, )l + 10w (- w, €)ll3ge—c-2 + €[ fllgez),
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and

| Hppr (w, wi) — Hy(up—1, wip—1)|| o +¢
(6.25) < C(lJur — ug—1llyge + [lwr — wr—1ll30)
+ 377 (Cl|unllygosc + l[wkllpgore) + (1 + Ce) || Fllpgorac) -

Proof. Let wy satisfy . It follows from Definition and that }Aé, Ry are
bounded from #H*® to H5t¢ with s € R. Moreover, Lemma shows that Q(ug,w,€e)* is
bounded on space ‘H® with s € R, which yields .

The term in implies that the upper bound of the following terms

(6.26a) Ow (Qug,w, €)) = 0uQ( -, w,€) - (Ouug) + 0uQ(up,w,€),
(6.26b) a, ( (g, w0, e)) — 0uR(-,w,€) - (Buur) + O R(ug,w, ¢),
(6.26¢) O (R1(ug,w, €)) = Oy R1( -, w,€) - (Opug) + OpRi(ug,w, €)

has to be required. The assumption on s in shows H*~¢~2 C H°. Formulae
and read that is bounded on any space H®. Similarly, we see also that
, are bounded from H* to H*T¢. This completes the proof of .

Let us write the difference of Hy1 (ug, wi) — Hy(ug—1, wi—1) as the sum of the following

three parts:

(Skr1 — Sk)(Id +€Q(ug, w, €))* R(ug, w, €)uy,
(627) (§k‘+1 - gk‘)Rl (Uk-,w, E)wk‘a
(§k+1 - §]€)(Id +€Q(Uk, W, €)>*fa

(S (QUut, w, € — Qg 1, w, €)7) Blug, w, u,
§k(Id+eQ(uk_1,w,e))*( R(ug,w,€) — R(uk_l,w,e))uk,
Sk(Ry (ug,w, €) — Ry (up_1,w, €))wg,

(

(6.28)
€Sk(Qup,w, )" — Qu—1,0,6)") .
and
(6.29) S (1d +eQ(ug—1,w, €))* R(up—1,w, €) (ug — up—1),

§kR1 (ug, w, €)(wg — wi—_1).

Formulae (6.14)) and (6.19)) lead to that uj, wy are in a bounded subset of H?. This
establishes that ]A?:, Ry are bounded operators from H°¢ to H+2¢ with o € R. Owing to
(6.11)), we have that the H°T¢-norm of ([6.27) is bounded from above by

37O (ullpgosc + lwillggorsc + (1+ Ce) || Fllgposac)-
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It follows from (4.5) and (4.4) that there exists a constant C' such that

Hé(ukvwve) - R(Uk_l,w,G) <C ||Uk — Uk— 1||’Hff )

Hc(Ha Ho+)
[ R (uk, w, €) = Ri(ub—1,w, €)|| gigg0 pyorey < Cllug — up—1llyo

1Q(ug, w, €)* — Q(ug—1,w, 6)*”£(HU+§7HG+C) < Clug — Uk:—1||Hv .

Since Q(ug,w,€e)* is bounded on any space H° with o € R, the H°+<-norm of ([6.28)
is bounded from above by C'|jug — u_1||5o. Similarly, H+¢-norm of (6.29) is bounded
from above by C(|lur — ug—1|ly0 + [|wr — wr—1]l30). Thus we get (6.25)). O

Let us complete the proof of Proposition

Proof of Proposition [6.2. We apply a recursive argument to Proposition We have
already defined (Gg, Og, ¥y, ug, wp) satisfying f. Suppose that (G, Ok, Yk, ug,
wy) have been constructed satisfying —. Now let us construct these data at
k + 1-th step and verify that these data at k + 1-th step still satisfy 7. When
uy, is given, the sets Oy11, Giy1 are defined by at k + 1-th step. Fixing €, Gp41,¢ is
a compact subset of the open set Oy ., where G} . has to satisfy the distance between
Gj+1,e and the complement of Oy, is bounded from below —3 (E+1D)(CH2) | Tt is easy
to construct a function 4, satisfying (6 at the k£ + 1-th step applying Urysohn’s
lemma.

For (w,e€) € [1,2] x [0,6%] — U],z,ilo Gy, let us construct wg41. By construction, the

operator Vp(ug,w,€) is a block-diagonal operator, which implies

ﬁn(Lw + eVp (ug, w, €))wgr1 = (L, + €Vp (ug, w, e))ﬁnwk+1.
Then equation at the k + 1-th step can be written as for any n € N
(6.30) (L + €Vp(ug, w, e))ﬁnwkH = eﬁnHkH(uk, wg,).

Notice the right-hand side of (6.30) vanishes when (n) > 382 by (6.11). Let k' €
{0,...,k+1}, neN with 3 < (n) <38+, we1,2] - G e. Moreover, by Lemma
Proposition (iii), equation (6.30)) may be simplified as

(6.31) ﬁnwk+1 = eAn(w;uk,e)_lﬁnHk+1(uk,wk).

Then we define wy1(t,z,w,€) as

k+1

(6.32) Wi1(t, T, w,€) 1= Z Z (1 — o (w, pwpi (, 2, w, €)

nez
3k <(n)<3k'+1
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for any (w,€) € [1,2] x [0,6%]. Let us first verify that (6.14]) holds at the k + 1-th step.
Formulae (6.5) and (6.31]) deduce that for any &' € {0,...,k+ 1}, any n € N with 3F <
(n) < 3¥+1 any (w,€) € [1,2] x [0,0%] — Gy

(6.33) Hﬁnwk+1(-,w,e)H < Ey— “HnHk+1(uk,wk)(-,w,e)‘

Hs+C

and

Hﬁn&uwkﬂ( W, E)H < Eo~ HHnawHk:—i-l(ukz»wk)( W, 6)’

Hs—C—2 Hs—2

(6.34) _
+ EO? "HnHk-l-l(uk? wk)( W, 6)

Hs+H¢ '
Furthermore formula (|6.13) gives

(6.35) “aw¢k’ﬁnwk+l H < % Hﬁ”wk+1 HH

H57C72
From (6.14)), (6.19)), (6.23]), (6.24), and (6.32)—(6.35)), it follows that

5 (0B + o)+ (14 CO e

€
0t (-0, €)ooz < Bo (c 5By + By) + Cel| s
+ Eos; <C’5(Bl + By) + (14 Ce) Hfuwg)

+ EoCh— 5 (EC(Bl + B2) + (1 4 Ce) ||fHHs+<) )

Notice C' depends only on ¢, Ey, Ci, where ¢ is given by (6.20), Ep, C; are uniform
constants. If € < §2 < §2 with Jp small enough, when B is taken large enough corre-
sponding to Ey, C1 and || f||;/s+¢, then we have that (6.14) still holds at the k + 1-th step.

Furthermore, using that Q(uy,w, €) is bounded on any space H*® with s € R, we derive

Hwk+1( cy W, E)HHS < Ep

otk (-0, g + 8 [t (-0, gecea

< (1 + Ce+ 065) (Hwk”?_[s +6 Haw'warlHHs_g_z) .

When 4y is small enough, if we take By = 2By, then (§6.18]) holds at the k 4+ 1-th step.
Next, we check (6.15) still holds at the k + 1-th step. By (6.31), for ¥’ € {0,...,k},
(w,€) € [1,2] x [0,0?] = Gy, n € N with 35 < (n) < 3¥+1 we can get the upper bound

(6.5)

~ 6 ~
HHn(wk-i-l - wk)”’}-{” S EOE( HHn(VD(uk—lawa 6) - VD(Uk,LL), 6))wk“

(6.36) HoH

+ HHn(HkH(uk, wg) — Hk(ukq,wkq))HHgﬂ )
Furthermore, formula (4.4)) infers for s > o + ¢

(Vb (ur—1,w, €) — Vb (ug, w, €))wi|lyyorc < C flup — up—10 lwillos -
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Applying (6.10) and (6.14]), there exist some universal constants Cs such that

—k(s—0o € o—k(s—0o
(6.37) > - ) wen|| < Cs37) Juga < C3B1%3 k(s—0)

neN

3k+1g<n><3k+2 o

Owing to (6.32), (6.15)), (6.25)), (6.36)—(6.37)), it yields that for s > o 4 ¢

|wWit1 — w30

62

52

+ 9By g?)fk(sio) .

We have || f||gov2c < ||fllsssc from s > o+ ¢. If 0 < e < §2 < 62 with J small enough,
when Bj is chosen large enough relatively to Eo, || f||,s+¢c, and Bs is taken large enough
corresponding to By, Cs, then is obtained for s > o + ¢ holds at the k + 1-th step.
It is clear to verify that still holds at the k+ 1-th step by the definition . This
concludes the proof of Proposition [6.2] O

< Eog (203132 37k 4 3CB2§3"“< 4+ CS(Br+ Ba)3 ™ 4 (14 C€) || fllagoac 3—k<>

J

Our aim is to construct the solution of (5.1). Therefore we consider the equation

about ug. According to , Proposition and , it follows that for any
(w,€) € [1,2] x [0,6%] — Uy O, 6 € (0, 0]

(L + €V (ug—1,w,€))ug
(6.33) = e((1d+eQ(ux—1,w,))) ™ (Sk(1d +eQ(up 1,0, €))* Rl 1,0, Jug 1

+ SR (up—1,w, wp—1) + (Sp(Id +eQ(up—1,w, €))* f + Ri(up—1,w, 6)“%))-

Finally, let us complete the proof of Theorem

Proof of Theorem [2.1] Formulae (6.17) and (6.19) indicate that the sequence uy is well
defined and converges to u in H with

€
5
Moreover, by (6.14]), (6.15]), the sequence wy, converges in H? to w, which satisfies

[u- @, )llys + 0 [[wul-,w, €)llggs-—c-2 < Bz

€
5
o . 2 400 . .
If (w,€) isin [1,2]x [0, 0°] = U=y G, 0 € (0, 0] with dg small enough, then equation (6.38)

is satisfied for any k& € N. Therefore u satisfies

”w( ty W, 6)||HS + o ”&Uw( Ty, W, 6)”’}-[8—4—2 < Bl

(Ly + €V (u,w, €))u = eR(u,w, €)u + €f
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as k — +oo. This shows that u is a solution of equation (5.1). By Proposition m
equation (5.1]) is equivalent to equation (4.1)) which is also equivalent to (3.9)) by Propo-
sition (3.9 Thus we may get a solution satisfying the conditions of Theorem Let

0= UZ,OZOO Oy. For w,w’ € Oy, using (6.3]) and (6.12), we may obtain the bound

;1 0€(0,1) |)\£l(w;uk/,e) — )\il(w’;uk/,e)\ @O
_ © < .
Sl 0N (00 + (1 — B)ws up, €)| — 3 0

Moreover, we deduce D, < C13"*! with n € N from (n) < 3¥*! and definition of IL,.

Thus the upper bound of w-measure of the e-section of O is

—+00
cs Z 37(2+C)k’+(k’+1)+(k’+1)'
k’'=0

The series converges if we take ¢ > 0. This implies that we obtain the bound O(J), which
gives the proof of (2.3]). O

7. Concluding remarks

In this paper, we have investigated the existence of time-periodic solutions of nonlinear
wave equation with general nonlinear terms on the one-dimensional torus. Without ap-
plying the use of Nash-Moser or KAM methods, through para-differential conjugation, the
equation under study are reduced to an equivalent form for which periodic solutions can
be constructed for a large set of frequencies by a classical iteration scheme. This approach
allows ones to separate on the one hand the treatment of losses of derivatives coming
from small divisors, and on the other hand the question of convergence of the sequence of
approximations. In [22], Delort proposed that this method does not seem to be adapted
to find periodic solutions of nonlinear wave equations in high-dimensional spaces, since
the specific separation property does not hold. However, for the nonlinear wave equa-
tion on one-dimensional tori, we can obtain the separation property of the eigenvalues of
v/—=0zz +m. One direction for this research is the construction of quasi-periodic solutions
of the nonlinear PDEs by the para-differential method. This is our ongoing work and will

be reported elsewhere.
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