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Averaging Operators Along a Certain Type of Surfaces with Hypersingularity

Jin Bong Lee*, Jongho Lee and Chan Woo Yang

Abstract. In this paper we obtain almost sharp decay estimates for L? operator norm
of strongly singular oscillatory integral operators in R™*! for n > 2; we prove some
necessary condition for L? estimates. Also, we prove that the operators are bounded
on LP for some p # 2 and the range of p depends on the hypersingularity of the

operators.

1. Introduction

The origin of the hypersingular integral operators along curves is the Hilbert transform

along curves:
ds
Hef(@)=p.v. [ fa-Co) S werr
R

with an appropriate curve C(s) = (s,¢(s)) in R™. It is a very well-known fact due to
E. M. Stein and S. Wainger [5] that the Hilbert transform along curves is bounded operator
on LP with 1 < p < oo, when one takes the well-curved C as an appropriate curve.
That is, one chooses C(s) = (s,c(s)) with a smooth ¢ in R"7!, and ¢(0) = 0 so that

kc
< ddSSCS) ‘S:O}k:1,2,3,...> =R"

One easily notices that above operator does not contain any oscillating terms. It is

S. Chandarana [1] who first tried to control this operator with an additional oscillating
e—27ri\s\75
Is|*

L?. In his paper, the hypersingular integral is defined as

term, , since with the singular term such as ﬁ the operator is not bounded on

s|*5 dS

Tosf (@) = p.v. / fla— 5,y — ofs))e 2 08>0

[-1,1] s|s|*”
with c(s) = |s|¥ or ¢(s) = |s|¥sgn(s) and k > 2. Then T, g is bounded on (i) L? if and
. . . 3a(B+1 1)+(8—3a) .
only if 5 > 3, and (ii) LP Wlthl—i-m <p<1+% if 8> 3a.
In the same direction, N. Laghi and N. Lyall [3] extended this result to well-curved C

which was considered by E. M. Stein and S. Wainger. That is, with 7, 3 = T¢, they proved
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that if C(s) is well-curved, then (i) T¢ is bounded on L?(R?) if and only if o < 8/(d + 1),
and (ii) with a = 0 and 8 > 0, T¢: Llog L(RY) — LY*°(RY).

Recently, X. Wu and X. Yu [6] studied the case when C(s) = TI'y(s) is a homoge-
neous curve given by T'g(s) = (01]s[P*, ..., 04|s/P?) or Ty(s) = sgn(s)(01]s|P:,...,04|sP?)
for 6 = (01,...,0;) € R% They proved that the corresponding operator, Taapf(x) =

p. V. f}l flz — Fg(s))% ds, is bounded on the a-modulation spaces such as the in-
homogeneous Besov spaces.

Now, returning to the work of S. Chandarana [1], we consider a natural question of
varying C(s) so that it is no longer a curve but a surface with some curvature conditions.
So, it is natural to change the dimension (n > 2) and a domain ([—1,1] — R™). Also, we
simply set T'(t) = (¢, |t|*), where t = (t1,...,t,) and k > 1 so that it represents the case
of hypersurface, co-dimesion 1. That is, we are interested in operators of the form

e—2milt| =P
(L1)  Rf(z)= Rnf(x—r(t))WnQU)dt, U(t) = (4, [t]%), t=(t1,... tn),

where the kernel Q(t)/|t|™ satisfies the following conditions:
(1) it is homogeneous of degree —n;
(2) it is the class C*°(R™ — {0});
(3) J=1 Q) do(t) = 0.
Our main results are

Theorem 1.1. Forn > 2,

(1) R is bounded on L*(R™*1) if B > 2a: > 0. Conversely, R is not bounded on L?(R™1)
if B < 2a. The case B = 2« is still open.

(2) R is bounded of LP(R™*) for a/B < 1/p < (B — a)/B if B > 2a.

Note that the statement of Theorem holds uniformly for the class of the kernels of
the operator R. That is, the necessary condition asserts that one can find a certain kernel
of which the associated operator is not bounded on L? when 3 < 2a.

Outline of proof: We will prove the L? estimate in the following steps. First, we de-
compose the Fourier multiplier of R so that the corresponding phase function has bounded
below partial derivatives. Second, we obtain decay estimates on each decomposed com-
ponent of the Fourier multiplier by making use of the Van der Corput lemma and the
stationary phase method. Then, by interpolation with a simple size estimate, we get the

LP estimate. For the converse statement of the main theorem, we use the Bessel function
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to simplify the multiplier of R and figure out that the multiplier blows up along a certain
curve.

Throughout this paper, the symbol < implies that the inequality holds with some
harmless constant multiplied on the right-hand side, and [S™"~2| denotes the measure of

the (n — 2)-dimensional sphere embedded in n-dimensional Euclidean space R™.

2. Preliminaries

In this section, we introduce some well-known properties of oscillatory integrals used in

our proofs. We will use these properties as lemmas.

Lemma 2.1 (Van der Corput’s lemma). [4, Corollary, p. 334] Suppose ¢ is real-valued,
smooth in (a,b), and |¢®) (z)| > C > 0 for all z € (a,b). Then

b
/ M@ (z) da

a

< oA [w(b)l + /ab Iw’(ﬂf)\dw]

for ¢ € C§°((a,b)) when (i) k > 2, or (ii) k =1 and ¢'(x) is monotonic. Note that cj is
independent of ¢, ¥, and \.

Lemma 2.2 (Asymptotic integrals). [4, Proposition 3, p. 334] Suppose k > 2 and ¢(xp) =
= ¢V (20) = 0 # ¢ (o). Then

/ei)“ﬁ(x)@b(:z:) de ~XYF s X — o0

when P is supported in a sufficiently small neighborhood of xg.

We also use some properties of the Bessel function,

1 e iy (T/Q)m 1 -
21 I - irsin(0) ,—imo do = / irt(] _ 42ym 1/2 dt.
(2.1)  Ju(r) 27r/0 i sin(0) el Y

The last equality holds when m > —1/2.

Lemma 2.3 (Recursion relation and asymptotic behavior of the Bessel function).
(1) Gelr ()] = =17 T (1),
(2) Jm(r) = O(r~Y2) as r — oo,
(3) Jm(r) ~r™ asr — 0 for Re(m) > —1/2.

For (1), (2) see E. M. Stein |4} (14), (15), (16), p. 338]. Also, for (3) see L. Grafakos [2,
B.6, p. 429].
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3. L? estimates

The multiplier m of the operator R can be written as

. —2mi(|t| P 4E t+En Itlk)w
o) = [ e o e

where &' = (&,...,&,). By using the spherical coordinate, the multiplier can be rewritten

as
:/ // 6_2“(”76+|€‘TCOS(G)JFE"“T}C)T_O‘_IQ(H,0)(sin(9))"_2drd@do’,
sn=2Jo Jo

where 6 denotes the angle between ¢t and £. Then, in the r variable, we decompose the

multiplier as

_ / / / e=27i9(r0) (9l =0=10) (9. ) (sin(6))"2 drdfdo,
sn=2.J0 Jo

where g(r,0) = r= + |¢|rcos(d) + &p17F, and 7(r) is a smooth function compactly
supported in [1/2,2]. Next, make the change of variables r — 277 to write

_ gl / / / e~ 2927 0) ()10 (9, o) (sin(6))" 2 drdfdo.
Sn—2
With a slight abuse of notation, set
9(27"r,0) = g(r,0) = 2777 4 278, ik 4 271¢ r cos(6).

Simple computations give

(3.1) gh(r,0) = —=p20 =81 4 pa—kle k=1 4 97l e! | cos (),
(3.2) go(r,0) = —27"[¢/|r sin(0),

9re(r,0) = BB+ 1277772 4 k(k — 1)27M g, 00" 2,
(3-3) 9bo(r,0) = —=271¢'|r cos(0),
(3.4) A = max {27, 27 |¢, 1], 270}

Lemma 3.1. Let e = f27F=5-3,
(1) For all (r,0) € [1/2,2] x [0, 7],
max {|g;.(r, )], g5 (r, )|, 197 (7, )], g (r, )|} > €.
(2) If |g;(ro,60)| > €eX for some (ro,00) € [1/2,2] x [0, 7], then |g,.(r,0)| > S\ for all
(r,0) satisfying
9—2(8+k+4)
(B+1)3+ k3

The same assertion holds for each gy, gr., Gpy-

[r—1o| < =e and [0 —0y < B27FATT — ¢y,
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Proof. To prove the first assertion, suppose that there exists (r,6) € [1/2,2] x [0, 7] such
that

(3.5) max {|g;.(7,0)|,195(r, )1, g7, (, 0)], |gge (r, )| } < €X.
Combining (3.5 with (3.2]) and (3.3) to obtain
27227 < 27 |¢/ 1P (sin® (0) + cos?(0)) = |gp(r, 0)” + |9 (r, 0)]7 < 26N?

which yields

(3.6) 27| < 2v2eX < M.
Combining (3.5) with (3.1]) and (3.3) to obtain
(3.7) | — B2° P k2R, R| = |rgl(r, 0) + ggp(r, 0)] < e

Make use of (3.5) again to obtain
(3.8) 1B(8+1)2°07F + k(k — 1)27 Mg, 110%| = |rPgl(r,0)] < 4eX.

Using and we obtain
(74 3B)er™F < (7 + 383)e2*
k(k+ 5) — k(k+P)
g _ (1+3k)er?® = (14 3k)e2’
(310 S R )

By combining ((3.4)), (3.6)), , and (3.10) we immediately obtain a contradiction. This

completes the proof of the first assertion of the lemma.

(3.9) 27 Mg, 1] < A<\,

A <A

To prove the second assertion of the lemma, thanks to the mean value theorem one

can write
g7 (r,0)] > |g5.(ro, 00)| — 1g;(7,0) — g;.(r0, 60)]
> ed— BB+ 1)2% P72 lr — ro| — [k(k — 1)27 % 17572 |r — 1o
— 27" 11]| sin(61)116 — o]
> eX— AB(B 4 1)2°F2|r — rg| — Me(k — 1)257 2 — 1| — A0 — 6]
> X — 273\ — 273X — 273\ > %)\.

The cases gy, g/, and gy, can be treated in a similar way. O

Let €1 and ez be as in Lemma [3.1] Define an index set Z by

1
Z:{(j1,j2)€61Z><EQZ:4§j1§4and0§j2§27r}.
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Decompose the multiplier m; as

=> m;(6)

jeT

where for 7 = (j1, j2),

(3.11)  my (&) =2 / / W/ OOeig(“@)r_a_lxj(r,G)n(r)Q(G,a)(sin(é’))"_zdrd@da
sn=2.J0 Jo

X3 (r,0) = xa (W) X1 (W) ,

where supp x1 C [—1,1], x1 = 1 on [-1/2,1/2]. Therefore, x; is a smooth function equal

with

to lin [j1 — %, 51+ %] % [Jjo— %, j2+ %] and compactly supported in [j; — 3ﬂ,j + 361]
[]2 — 3&,] + 362} hence, the collection {x;}; forms a partition of unity in the support
of 7.

Let R; be the support of x;, and divide the index set Z into four subsets 7., 7y, Z,,
and Zgg defined by

Jj=(j1,72) €L :|g.(r,0)| > g)\ for all (r,0) € R;

Z = {d = Grd) j
Ty = {3 = (G1.42) €T : lgp(r,0)| = S for all (r,6) € Ry }
r={d = (r.d2) €T : gl (r.0)] = JA for all (r.6) € Ry}
Too = {3 = (1,32) € T : ghy(r,0)| = S for all (1,6) € Ry}
Thanks to Lemma [3.1] it is clear that

T=17,UTyUL, Uy

and without loss of generality we may assume that they are mutually disjoint. One may

therefore write
= () + > O+ D mu(€)+ > mu(€)
j (S .7 €Ty .7 ELrr .7 6199

Now we separately consider four cases: (i) g € Z,; (ii) j € Zp; (iii) § € Zrr; (iv) J € Zpp-
(i) 7 € Z,: In this case, we use integration by parts of (3.11)) with respect to r to

obtain

mg@ =2 [ [ [T emoen [t o) 26,0
x (sin(6))"~? drdfdo,
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which gives
g (€)] < 275" 2|9 22 AT = C(n, @)2%A7Y,

hence
Imj(€)] < 201
There is also a trivial bound:
Imy 5 (6)] S 2%

In view of the definition of A in (3.4)), one has

2(a=P)l < 9la=B/2)L if | > 0,

(3.12) Imy ()] < _
gal if I <0.

(ii) § € Zyp: In this case we use integration by parts of (3.11)) with respect to 6 to

obtain

mlv](é-) = 2CYZ /;nQ/O /0 6_2”i9(rve)r—a—ln(r)
0

-1 i n—2
* 0 [WXJ (r,0)(0, 0)(sin(0))" = | drdfdo,

which gives
a3 (€)] < 2% |op—a|[[Q L=22TIAT! = C(n, a)2%'A 7,
hence again

Iy (6)] S 2%A

Make use of the similar argument as above to obtain that if j € Zy, then

o=l < gla=B/2L if | >0,

(3.13) Iy ()] < _
gal if I <0.

(iii) 7 € Z,,: In this case we apply the van der Corput lemma of the second order in
the r variable to obtain
a5 ()] S 2% A2,

Make use of the similar argument as above to obtain that if j € Z,.,., then

20@=B/2)Lf | >,

(3.14) Imu i ()] S
20l if 1 <0.

(iv) J € Zyg: In this case we apply the van der Corput lemma of the second order in

the 6 variable to obtain
mu(€)] S 27 A2
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Make use of the similar argument as above to obtain that if j € Zgg, then

ole=B)lif | >0,

(3.15) Iy, (E)] <
2e if 1 <0.
By combining (3.12})—(3.15]) one finally obtains
[ma(8)]
o(a—p/2)l
< SO+ 3 Imig O+ 3 mg@l+ Y Imis 154
JELr J€Ly J€Lrr J€ZLyo

which yields

2=/l if 1 > 0,

(3.16) IRillp2sre S _

20l if I <0.
One also has a size estimate
(3.17) IRl pr S 200

By interpolating (3.16]) and (3.17)) we obtain

2(a=B+B/p)l  if | > 0,
(3.18) Rillr—re S §

if 1 <0.

if 1 >0,
if 1 <0,

The right-hand side of (3.18) is summable when a > 0 and 1/p < (8 — «)/f. By using

the duality argument, for 5 > 2a > 0 and /8 < 1/p < (8 — «)/8 we have

(3.19) IRfllr@ntry Sas 1l Lo @n+r)-

Since we have an L? estimate for R, by controlling the multiplier m, one can obtain

the following Sobolev estimate. Consider two cases: (i) |£3] > [£'] and (ii) &3] < |€/]-

(i) [&s] = [€):
Dom@OI<Y Y Imug@l+Y > @)l
I€Z I€EZ jEI, ULy IEZ JEL,rULpy
SDSIDIETREED DD S
JELULy IEZ JELrULyg IEZ

< ZQal max{2ﬂ172—nl|€3‘}*1 + ZQal max{2ﬂ172—nl|§3‘}*1/2

leZ leZ

5 Z 20él2—ﬂl + Z 2al2nl|£3‘—1

2l >|g5|1/(5+m) 2!<|ga 1/ (P )

+ Z 204[2—%[ + Z 2al2%l‘53|—1/2

21|51/ (5+m) 21 <1/ (P )

_ B/2—« _ B/2—«
< lesl =~ Jg 5
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(ii) |€s] < [€]:
STmOI<> 0 D ImgOI+> . > (9]
l€Z leZ ]EI:,»UIQ LEZ jEIN«UIgg
D 3D S S S
JEL ULy IEZ JEL»ULyy IEZ
< S 2% max {28, 27|} + 3T 2% max {27, 27|}
IeZ ez
21> [¢ |1/ (B+1) 2L <|g/ |1/ (B+1)
2l>\5/\1/(6+1> 2L<|gr |1/ (B+1)
SIETTE g
Therefore,

Corollary 3.2. If 8 > 2a > 0, then R is bounded from L? to L? for all s < Béi_ﬁa.
For LP Sobolev estimate, define
Rf (@) = (& mf)" (@), (&)= (1+]¢*)>.

Note that for Re(z) = 0 R, = R, which has L range of (3.19). Then, {R.} is an analytic
family of linear operators of admissible growth defined in the strip S := {z eCl|o0<

Re(z) < s1 = =8 / 2 a} Therefore, using interpolation of analytic families of operators
(L. Grafakos |2, 1.3.3]), one has

Corollary 3.3. If > 2o > 0 and § + w < % < Boa s(n+’8) then R is bounded

B
from LP to L% for all s < s1 = ﬂr/li_ﬁa.

4. Necessity of L? estimates

Consider the case of [ > 0, since for [ < 0 our multiplier m only depends on « > 0. In

addition, assume that |t?”) |t|2”+1 with vector ¢ = (0,...,&,) fixed. Without loss of

generality, one takes the corresponding part of the multiplier m as

T rl
:/ / / e—27ri[r|§’|cos(9)+£n+1rk+r*3} COS(@)(Sin(Q))n_QT_a_l drdfdo.
Ssn=2J0 JO

Now, switch the order of the integrals so that one can extract the term independent of 6

from the original integrand as follows:

1 ™
/ —2milénsartr=F] —am1 / e 2mireeost®) cos(6) (sin(9))"~* dfdodr,
0 Sn—2
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and set -
Grle]) = 572 / ¢~ 2mirl¢'| €os(6) o () (sin(0))"2 do.
0
So,
1
m4(§) = / 6727&[5”“%”%]riO‘*lG(T\5/’) dr.

0
Then, use integration by parts, change of variables 27r|¢’| = 2, — cos(6) = ¢, and (2.1)) so
that G(r|¢’|) can be written as

—2mir|¢’| cos(0) (sin Q)n—l O=m 27T’i7“|f/| ™

0=0 n—l 0

6—27rir|§’| cos@(sin (9)” do

G(rl¢) = |52 [

n—1
1T t
_ ‘Sn72| / ezxt(l o t?)(nfl)/Q dt.
1—-n -1

Now, with [S"2| = F(QW—H/ZI/Q and the last equality of (2.1)), one has

nj2—1/2)r
—2mi
G(rl¢']) = an/2(2777“|5/|)~
So,
1 4 Jnp2rriE']) 1
_ —2mig1(r) n/2
(@) ma(€)] = 2r | [ e QTR D i,

where ¢y (r) = & 17 + 1P,
Actually,

O (1) = Epyrkr*~t — gr=F-1
(4.2) T(r) = &prk(k — D)rF 2+ 8(B+1)r P"2>0, Vre(0,7).

1
With (4.2) and ¢1(r) tends to co as r — 0, note that the ro = (%) F+% is the only
critical point of ¢q(r).

Then, write (4.1) as

1 a b 1
/ :/ +/ —l—/ =IIT+1+1I,
0 0 a b

where a = %7“0, and b= %7“0; it is no harm since 7 — oo.

Now, choose § so that [£/| = o~ and &,41 = E7_5+k for 7 > 0, so that

(4.3) ro =171,

Jn/2(27T’l“|f/|) Jn/Q(TT)
et~ S T

(4.4) ¢1(r) = %Tﬁ%rk +7r7h.
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Case I: Since rg tends to 0 as 7 — o0, use change of variable r — rys which is equivalent

to s = 7 1r so that

b 3/2
/ :Tae27rz'r—5¢1(m)// e—Qm‘Tﬂ[T—ﬂ(qsl(7«05)_¢1(T0))] J”/Q(S)id
a /2

)

sn/2 g
and we set ®(s) = 77%(¢1(ros) — ¢1(rg)) and note that

d(1) =0, '(1)=0,
O"(1) =7 P (r )2 =7 P 2Bk — 1)+ BB+ )T = B(B+E) >0

by (4.2), (4.3), (4.4). Then, since "ff/(z )s% is smooth in [1/2,3/2], one can show, using
Lemma with A = 7%, that the estimate of I is given by

(4.5) 11| ~ 7782 as 7 — o0,

which is bounded if 5 > 2a.

Case II: In case 11, we set r — 7~

=7 / T im0 1,
3/2 rn/2  po

Ly 5o that

crF 4+ r7P). Let ¢ = 'B 7k + 778 then ¢} (r) increases monotonically
1= 1)~ ()] > 0, vr € [3/2,7). So, if i) = 222

rn/2 ras

1] < C(n, 5,17 [w i+ [ \w’(t)]dt]
3/2
by Lemmawith A =78 Since |¢(7)| — 0 as 7 — oo, one has

< C'(n, B, k)r? /3 / 1 (8)] dt.

. n ) In /2 (
Also, since [¢/'(r)] = | T{ffﬁ; AT |
1 1
/
[W'(r)| < rn/2+1/2+a rn/2+1/2+a+1
by Lemma [2.3] Then, with n > 2,
(4.6) IIT] < C(n, B, k, )7 P as 7 — oo,

which is bounded if 5 > «a.

Case III: As in case I, I1, by the change of variable, r — 77!

r, so that

1/2 -
I =171 / e 2T 0204 (1) dr,
0
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where we have |¢h(r)| > B(2°F1 — 21=F) for r € [0,1/2]. Then integration by parts gives
\I11) < 7

|F(r)(r)1 2% ] + ] — 7 [|[I1L| + |[I1L],

O S—

~

[\

T
—
=
N—
S
<
—~
SN—
U
3

F(r) :/ e 2miT? $2(t) dt, r<
0
Since |F(r)| < C(B,k)7=" by Lemma with A\ = 78, and J,,(r) ~ r™ as r — 0 for
Re(m) > —1/2,
THHIL] < TH[E(1/2)]]h(1/2)]

< Cppt T Py (1/2)[207% ~ 7077,

which is bounded if 8 > a. For I1I,, note that |¢h(r)| > 8r=7~Lif r € [0, (2)5+k] and if
k> 1, then (1)7F > L that is, [F(r)| < C(8, k)r—Pr®+Lin [0,1/2]. Then, by Lemmal2.3|

2 120 _a
L ] e R = K

s Y2 e (D] sy |Jﬁ/2( Nl s
< Chyt ﬁ/o — oz " +8 77" 72 ar? =% dr

1/2 1/2
~ TP / r2B=e gy +/ rP=dr|  as T — oo.
0 0

Both integrals are bounded if 24+ 8 — a > —1 and § — a > —1 respectively; hence the
entire term is bounded if § > o — 1. Thus,

(4.7) TN | < Ca,@mo‘_ﬂ as T — 00,

which is bounded if 5 > a.
By (4.5)—(4.7), it follows that I1 and III decay faster than I does as 7 — oo. Thus
one can conclude that

Im (&) ~ 772 as 7 — 00

along & = (¢, 2(2x]¢’|)Pt*) with |¢'| = & ; note that the direction of ¢ is fixed. Hence we

have the following

Theorem 4.1. Suppose that & = Tu for 7 > 0 and let a fived w € S~ 1. Then along & =
(¢, %(2#\5’])5“‘3), the Fourier multiplier, m(§), of R associated to the kernel \t?n) = |t‘€{‘+1
satisfies that |m(€)] ~apx 7P/ as 7 — oo,

This proves that the operator class {R} has a necessary condition, 8 > 2a > 0, for L?
boundedness. In other words, if 5 < 2, then there exists an operator R of the form (|1.1))
which is not bounded on L?.
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