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Complete Cotorsion Pairs in Exact Categories

Zhi-Wei Li

Abstract. We generalize a theorem of Saoŕın-Šťov́ıček on complete cotorsion pairs in

exact categories. Our proof is based on a generalized small object argument due to

Chorny. As a consequence, we cover some examples which are not covered by the

result of Saoŕın-Šťov́ıček.

1. Introduction

Ever since Salce introduced the notion of a cotorsion pair in the late 1970’s in [13], the

significance of complete cotorsion pairs has been widely understood in approximation

theory [7] and the theory of closed exact model categories [10]. One fundamental result

on complete cotorsion pairs is due to Eklof and Trlifaj, they proved that any cotorsion

pair cogenerated by a set of modules is complete in [4]. It is a generalization of the

corresponding result of Göbel and Shelah on abelian groups in [6].

In [14], Saoŕın and Šťov́ıček proved that a cotorsion pair cogenerated by a homological

set is complete in their efficient exact categories. The proof of [14] used a variant of the

small object argument due to Hovey. A key point of an efficient exact category is the

axiom stating that transfinite compositions of inflations exist and are inflations. However,

this axiom seems superfluous. For example, given a Grothendieck category G with a

generator G, although the category Ch(GG) of chain complexes of the G-exact category

GG considered in [5] is not necessarily efficient, Gillespie still gave some complete cotorsion

pairs cogenerated by a homological set in Ch(GG). This motivates us to generalize Saoŕın

and Šťov́ıček’s result in theory by removing the efficient axiom.

Another motivation of this paper is to understand Christensen and Hovey’s relative

closed model structure of the chain complexes category Ch(A) of a bicomplete abelian

category A determined by a projective class in [3], through Hovey Correspondence between

exact model structures and complete cotorsion pairs in [10].

Our main result is the following.
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Theorem 1.1. Let A be an exact category. Let I be a homological class of inflations

that permits the generalized small object argument and put F = (Cok(I))⊥. The following

statements hold true:

(1) The following assertions are equivalent:

(a) Each relative I-cell complex with codomain in F is an inflation.

(b) All relative I-cell complexes are inflations.

(c) (⊥F ,F) is a right complete cotorsion pair in A.

In that case the mentioned cotorsion pair is complete if and only if ⊥F is a class of

generators in A.

(2) Consider the following conditions:

(a) Each morphism in I-inj with domain in Cell(I) is a deflation.

(b) All morphisms in I-inj are deflations.

(c) (Cof(I),F) is a left complete cotorsion pair in A.

The implications (b) ⇒ (a) ⇒ (c) hold true and, when A is weakly idempotent

complete, all assertions are equivalent. In that case the mentioned cotorsion pair is

complete if and only if F is a class of cogenerators of A.

The contents of the paper are as follows. In Section 2, we define the necessary notation

and prove Chorny’s generalized small object argument. In Section 3, we prove our main

result and give examples of complete cotorsion pairs in the categories of chain complexes

of (relative) exact categories. Throughout the paper, all colimits in concern are small

colimits.

2. A generalized small object argument

In this section, we recall a generalized small object argument due to Chorny in [2]. We

follow the sequence of lemmas from [9], extending them to work for the general case. The

proofs are essentially the same but we include the general versions here for clarity and

convenience of the reader.

2.1. Relative I-cell complexes

Let C be a category. Suppose i : A → B and p : X → Y are morphisms in C. Given a

morphism (f, g) : i→ p, i.e., a commutative diagram in C of the following form

A X

B Y

f

i p

g

h
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a lift or lifting in the diagram is a morphism h : B → X such that h ◦ i = f and p ◦ h = g.

A morphism i : A → B is said to have the left lifting property with respect to another

morphism p : X → Y and p is said to have the right lifting property with respect to i if a

lift exists in any diagram of the above form.

Definition 2.1. [9, Definition 2.1.7] Let I be a class of morphisms in a category C.

(1) A morphism is I-injective if it has the right lifting property with respect to every

morphism in I. The class of I-injective morphisms is denoted I-inj.

(2) A morphism is an I-cofibration if it has the left lifting property with respect to every

I-injective morphism. The class of I-cofibrations is denoted I-cof.

If C has an initial object 0, an object A ∈ C is I-cofibrant if the morphism 0 → A ∈
I-cof. The collection of I-cofibrants is denoted Cof(I).

Let C be a category and λ an ordinal. A functor X : λ→ C (i.e., a diagram

X0 → X1 → X2 → · · · → Xα → · · · (α < λ)

in C) is called a λ-sequence if for every limit ordinal γ < λ the colimit colimα<γ Xα exists

and the induced morphism colimα<γ Xα → Xγ is an isomorphism.

If a colimit of a λ-sequence X exists, then the morphism X0 → colimα<λXα is called

the transfinite composition of X.

If D is a collection of morphisms of C and λ is an ordinal, then a λ-sequence of

morphisms in D is a λ-sequence X0 → X1 → X2 → · · · → Xα → · · · (α < λ) in C such

that each morphism Xα → Xα+1 is in D for α + 1 < λ. A transfinite composition of

morphisms in D is the transfinite composition of a λ-sequence of morphisms in D.

Definition 2.2. [9, Definition 2.1.9] Let I be a class of morphisms in a category C.
Assume that the transfinite compositions of pushouts of morphisms in I exist. A relative

I-cell complex is a transfinite composition of pushouts of morphisms in I.

The collection of relative I-cell complexes is denoted I-cell. Note that I-cell contains

all isomorphisms. If C has an initial object 0, an object A ∈ C is an I-cell complex if the

morphism 0→ A ∈ I-cell. The collection of I-cell complexes is denoted Cell(I).

Lemma 2.3. Let C be a category and I a class of morphisms in C. If the transfinite

compositions of pushouts of morphisms in I exist, then I-cell ⊆ I-cof.

Proof. Assume that we have a commutative diagram

C A

D B

g

f j

h
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where f ∈ I-cell and j ∈ I-inj.

Let f : C → D be the transfinite composition of the λ-sequence

C = X0
f0−→ X1

f1−→ X2 → · · · → Xα
fα−→ Xα+1 → · · · (α+ 1 < λ)

where all morphisms fα are pushouts of morphisms in I. Let τα : Xα → D = colimα<λXα

be the colimit morphism for all α < λ. We will construct the morphism uα : Xα → A by

transfinite induction such that j ◦ uα = h ◦ τα and uα+1 ◦ fα = uα.

For α = 1, let u0 = g. Assume that f0 is the pushout of i : E → F in I:

E X0 A

F X1 B.

i

g

f0 j
v h◦τ1

Since j ∈ I-inj, there is a lifting v : F → A. It induces a morphism u1 : X1 → A such

that j ◦ u1 = h ◦ τ1 and u1 ◦ f0 = g by the universal property of pushouts. Assume now

that we have defined uα : Xα → A for all α < β. If β is a limit ordinal, let uβ : Xβ =

colimα<β Xα → A be the induced morphism by uα for α < β, then j ◦ uβ = h ◦ τβ. If

β has a predecessor α, then replace f0 : X0 → X1 by fα in the case of α = 0, we can

construct a morphism uα+1 : Xα+1 → A satisfying uα+1 ◦ fα = uα and j ◦uα+1 = h◦ τα+1,

which completes our transfinite induction. Therefore, let u : D = colimα<λXα → A be

the induced morphism by all morphisms uα, then j ◦ u = h and u ◦ f = g by the universal

property of colimits. So f ∈ I-cof.

Lemma 2.4. Let C be a category and I a class of morphisms in C. If the transfinite

compositions of pushouts of morphisms in I exist, then the transfinite compositions of

morphisms of I-cell exist and belong to I-cell.

Proof. Let λ be an ordinal and X be a λ-sequence

X0 → X1 → X2 → · · · → Xα → · · · (α < λ)

such that each morphism Xα → Xα+1 for α+ 1 < λ is the transfinite composition of the

γα-sequence

Xα = Wα
0 →Wα

1 →Wα
2 → · · · →Wα

β → · · · (β < γα)

of pushouts of morphisms in I. By interpolating these sequences for all α < λ into the λ-

sequenceX [8, Definition 10.2.11], we get a µ-sequence Y : µ→ C of pushouts of morphisms

in I by Propositions 10.2.8 and 10.2.13 in [8]. By assumption, the transfinite composition

of the µ-sequence Y exists, that is, colimγ<µ Yγ exists. By the construction of Y , we have

colimα<λXα = colimγ<µ Yγ and the transfinite composition X0 → colimα<λXα is the

transfinite composition Y0 → colimγ<µ Yγ , and it is a relative I-cell complex.
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2.2. Chorny’s generalized small object argument

Recall that, the cofinality of a limit ordinal λ, denoted by cf(λ), is the smallest cardinal

κ such that there exists a subset T of λ with |T | = κ and sup(T ) = λ.

Let C be a category. Let κ be a cardinal and D a class of morphisms in C. An object

A of C is said to be κ-small relative to D if for every ordinal λ with cf(λ) > κ and every

λ-sequence X : λ→ C of morphisms in D, the natural morphism

colimα<λ HomC(A,Xα)→ HomC(A, colimα<λXα)

is an isomorphism. An object A in C is called small relative to D if it is κ-small relative

to D for some cardinal κ.

Definition 2.5. Let C be a category. We say a class I of morphisms in C permits the

generalized small object argument if the following conditions hold:

(i) The transfinite compositions of pushouts of morphisms in I exist.

(ii) There is a cardinal κ, such that the domains of morphisms of I are κ-small relative

to I-cell.

(iii) For every morphism f in C, there is a morphism g ∈ I-cell equipped with a morphism

s : g → f , such that any morphism i→ f with i ∈ I factors through s.

Lemma 2.6. Let I be a class of morphisms of a category C such that the transfinite

compositions of pushouts of morphisms in I exist. Then any pushout of morphisms of

I-cell exists and belongs to I-cell.

Proof. Assume that f : A → B is a relative I-cell complex. Then there is an ordinal λ

and a λ-sequence

A = X0
f0−→ X1

f1−→ · · · → Xβ
fβ−→ Xβ+1 → · · · (β + 1 < λ)

such that every fβ is a pushout of a morphism in I and f is the transfinite composition

of X. Let g0 : A→ E0 be any morphism in C.
We claim that there is a commutative diagram:

(2.1)

X0 X1 · · · Xβ · · ·

E0 E1 · · · Eβ · · ·

f0

g0

f1

g1 gβ

fβ

h0 h1 hβ

such that each square is a pushout. In fact, since f0 is a pushout of a morphism in I, say

i : C → D, i.e., we have a pushout diagram

C D

X0 X1.

i

s t
f0
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By assumption, the pushout of i along g0 ◦ s exists and, it induces a pushout

X0 X1

E0 E1.

f0

g0 g1

h0

Assume that we have defined Eα and gα : Xα → Eα for all α < β. If β is a limit ordinal,

define Eβ = colimα<β Eα, and define gβ to be the morphism induced by gα. If β has a

predecessor α, i.e., β = α+ 1, define Eβ = Eα
∐
Xα

Xα+1, and gβ to be the pushout of gα

along fα. Therefore we have a λ-sequence

E0
h0−→ E1

h1−→ · · · → Eβ
hβ−→ Eβ+1 → · · · (β + 1 < λ).

Its transfinite composition E0 → colimα<λEα exists by assumption and belongs to I-cell

by construction. The commutative diagram (2.1) induces a desired pushout diagram

A B = colimα<λXα

E0 colimα<λEα

f

g0

in C.

Now we can prove the following generalized Quillen small object argument due to

Chorny [2, Theorem 1.1].

Theorem 2.7 (The generalized small object argument). Let C be a category and I a

class of morphisms in C. Suppose that I permits the generalized small object argument.

Then every morphism f : X → Y in C admits a factorization f = δ(f) ◦ γ(f), where

γ(f) ∈ I-cell and δ(f) ∈ I-inj.

Proof. By Lemmas 2.4 and 2.6, the proof of Theorem 1.1 in [2] works here.

3. Proof of the main result

In this section, we recall the definition of complete cotorsion pairs in exact categories and

prove our main result.

3.1. Cotorsion pairs in exact categories

The concept of an exact category is due to D. Quillen [12], a simple axiomatic description

can be found in [11, Appendix A]. Roughly speaking, an exact category is an additive

category A equipped with a class E of kernel-cokernel sequences A
s
� B

t
� C in A such



Complete Cotorsion Pairs in Exact Categories 25

that s is the kernel of t and t is the cokernel of s. The class E satisfies exact axioms,

for details, we refer the reader to [1, Definition 2.1]. Given an exact category A, we will

call a kernel-cokernel sequence a conflation if it is in E . The morphism s in a conflation

A
s
� B

t
� C is called an inflation and the morphism t is called a deflation.

Given an exact category A, a pair (T ,F) of classes of objects of A is called a cotorsion

pair in A if

T = ⊥F := {T ∈ A | Ext1A(T, F ) = 0,∀F ∈ F}

and

F = T ⊥ := {F ∈ A | Ext1A(T, F ) = 0,∀T ∈ T }.

A cotorsion pair (T ,F) is called right complete if for each A ∈ A there exists a

conflation A � F � T such that T ∈ T and F ∈ F . Left complete cotorsion is defined

dually. We call a cotorsion pair complete if it is both right complete and left complete.

3.2. Eklof’s lemma

Given a class S of objects in an exact category A, an object A of A is called a transfinite

extension of S if the morphism 0→ A is the transfinite composition of a λ-sequence

X0
i0−→ X1

i1−→ · · · → Xβ
iβ−→ Xβ+1 → · · · (β + 1 < λ)

such that each iβ is an inflation with a cokernel in S.

The following lemma is proved in [10, Lemma 6.2], called Eklof ’s Lemma.

Lemma 3.1. Let A be an exact category and F ∈ A. Then ⊥F is closed under retracts

and, if A is a transfinite extension of ⊥F , then it is in ⊥F .

3.3. The main result

Given a class I of inflations in the exact category A, let Cok(I) = {A ∈ A | A ∼=
Coker(i) for some i ∈ I}. Following [14, Definition 2.3], I is called a homological class if

the morphism A → 0 belongs to I-inj (i.e., the map i∗ : HomA(D,A) → HomA(C,A) is

surjective for all i : C → D in I) implies A ∈ Cok(I)⊥.

Let A be an exact category. A collection X of objects of A is called a class of generators

of A if for any object A ∈ A, there is a deflation
∐
s∈S Xs � A, where all Xs are in X

and S is a set. The notation of a class of cogenerators of A is defined dually.

Recall that an exact category is called weakly idempotent complete (WIC, for short) if

every split monomorphism is an inflation.

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1. (1) (a) ⇒ (c). Given any object A ∈ A, since I permits the

generalized small object argument, we can factor A→ 0 as the composition A
f−→ B → 0,

with f ∈ I-cell and B → 0 ∈ I-inj. Since I is homological, we have B ∈ F . Therefore

f is an inflation by the condition (a). By Lemma 2.6, C := Coker(f) belongs to Cell(I).

Thus C is a transfinite extension of Cok(I) and hence in ⊥F by Lemma 3.1. So we have a

conflation A
f
� B � C, where B ∈ F and C ∈ ⊥F . Therefore (⊥F ,F) is a right complete

cotorsion pair in A.

(c)⇒ (b). Fix any relative I-cell complex ι : X → Y and, using the right completeness

of the cotorsion pair, fix an inflation j : X � F , where F ∈ F and Coker(j) ∈ ⊥F . Since

I is homological, F → 0 is in I-inj. Then it has the right lifting property with respect to

ι, so that we get a morphism h : Y → X such that h ◦ ι = j. By Lemma 2.6, the pushout

of ι : X → Y along the morphism X → 0 exists, Thus ι has a cokernel, and then it is an

inflation by the Obscure Axiom.

(b) ⇒ (a) is clear.

The only if part of the last statement is trivial. For the if part, let A be any object

in A. Since ⊥F is a class of generators of A and closed under coproducts by Lemma 3.1,

there exists a deflation p : G � A with G ∈ ⊥F . Let K = ker p. Since (⊥F ,F) is right

complete in A, there is a conflation K � F � C, where F ∈ F and C ∈ ⊥F . By

Proposition 2.12 in [1], there is a commutative diagram of conflations:

K F C

G T C

A A

p

such that the upper-left square is a pushout diagram. Since ⊥F is closed under extensions,

we know that T ∈ ⊥F . Thus F � T � A is a desired conflation. Therefore (⊥F ,F) is a

complete cotorsion pair in A.

(2) (b) ⇒ (a) is clear.

(a) ⇒ (c). For each A ∈ A, we claim that there is a conflation K � U � A such that

K ∈ F and U ∈ Cell(I). In fact, since I permits the generalized small object argument,

we can factor 0 → A as a composition 0 → U
f−→ A, where U ∈ Cell(I) and f ∈ I-inj.

Since ⊥F is closed under transfinite extensions by Lemma 3.1, we know that Cell(I) ⊆ ⊥F .

By the condition (a), f is a deflation. Since I-inj is closed under pullback, we know that

K = ker f → 0 ∈ I-inj. Then K ∈ F . So if one proves ⊥F = Cof(I), then we are done.

If one takes A ∈ ⊥F in the above argument, then the given conflation splits. So A is

a direct summand of U . Since Cell(I) ⊆ Cof(I) and Cof(I) is closed under retracts, we

know that A ∈ Cof(I). Thus ⊥F ⊆ Cof(I). On the other hand, by using the general small
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object argument, it is easy to see that Cof(I) consists of retracts of Cell(I). Therefore

Cof(I) ⊆ ⊥F since ⊥F is closed under retracts by Lemma 3.1. So we have ⊥F = Cof(I).

Assume now that A is WIC in order to prove (c)⇒ (b). Let p : X → Y be a morphism

in I-inj and fix a deflation q : T � Y , where T ∈ Cof(I). By taking the pullback of q

and p, one gets that the opposite q′ : Z → X of q in that pullback is a deflation. It is

well known that I-inj is closed under pullback (see, for example, Lemma 7.2.11 in [8]),

so the morphism p′ is also in I-inj. But the morphism 0 → T is an I-cofibration since

T ∈ Cof(I). It follows that p′ has the right lifting property with respect to 0→ T (along

the identity on T ). Therefore there exists a morphism s : T → Z such that p′ ◦ s = 1T .

Then p′ is a retraction and, by the WIC condition on A, it is a deflation. Thus p is a

deflation by using Proposition 7.6 in [1] to p ◦ q′ = q ◦ p′.
For the final statement of assertion (2), we only need to prove the if part since the

only if part is obvious.

Assume now that F is a class of cogenerators of A. For each A ∈ A, we claim that

there is a conflation A � F � C such that F ∈ F and C ∈ ⊥F . In fact, this can be

proved dually with the proof of the last statement of the assertion (1). Thus (Cof(I),F)

is right complete, and then it is complete in A.

Example 3.2. Let A be a complete and cocomplete abelian category and P a class of

objects in A. A short exact sequence 0→ A
f−→ B

g−→ C → 0 in A is called P-exact if

0→ HomA(P,A)
f∗−→ HomA(P,B)

g∗−→ HomA(P,C)→ 0

is a short exact sequence of abelian groups for any P ∈ P. We use A
f
� B

g
� C to denote

a P-exact sequence and, let EP be the class of all P-exact sequences. The morphism f in

a P-exact sequence A
f
� B

g
� C is called a P-inflation and the morphism g is called a

P-deflation.

Assume now P is a projective class of A, i.e., for each object A there is a P-deflation

P � A with P ∈ P (see [3, Denfinition 1.1]). Then (A, EP) is an exact category. We will

use AP to denote this exact category.

We denote Ch(AP) the exact category of all chain complexes of objects of A with the

form · · · → Xn−1 dn−1

−−−→ Xn dn−→ Xn+1 → · · · and conflations degreewise lie in AP . Given

an object A ∈ A, we denote the n-sphere on A by Sn(A), and it is the complex consisting

of A in degree n and 0 elsewhere. We denote the n-disk on A by Dn(A) and, this is the

complex consisting of Dn(A)k = A if k = n or n+ 1, but Dn(A)k = 0 for other values of

k, and whose differential is the identity in degree n.

Assume that P has enough κ-small projectives in the sense of Proposition 4.2 in [3].

That is, there is a collection P ′ of objectives in P such that every P ′-deflation is a P-

deflation and, each object in P ′ is κ-small relative to split monomorphisms with cokernel
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in P. Then {Dn(P ) | P ∈ P ′, n ∈ Z} is a class of projective generators of Ch(AP) and,

there is a degreewise split conflation Sn+1(P )
ιn(P )
↪→ Dn(P ) � Sn(P ) for each P ∈ P ′ and

n ∈ Z.

Let I =
{
Sn+1(P )

ιn(P )
↪→ Dn(P ) | ∀P ∈ P ′, n ∈ Z

}
. Then I-cell consists of degreewise

split inflations. By Lemma 4.3 in [3], we know that Sn(P ) is κ-small relative to I-cell for

any P ∈ P ′ and n ∈ Z.

Let f : X → Y be any morphism in Ch(AP). Then for any morphism ιn(P ) in I, a

morphism from ιn(P ) to f is in bijective correspondence with a commutative diagram

P ker dn+1
X

Y n Y n+1.

fn+1|
ker dn+1

X
dnY

Let Wn = ker dn+1
X ×Y n+1 Y n be the pullback. Then there is a P ′-deflation Pn �Wn with

Pn ∈ P ′. Thus the above commutative diagram is in correspondence with a morphism

hn(P ) : P → Pn. Take g =
∐
n∈Z ιn(Pn). Then g is in I-cell by Proposition 10.2.7 in [8]

and, there is a morphism s : g → f induced by the morphisms Pn →Wn for all n ∈ Z. By

the construction of g, for any morphism t : ιn(P )→ f , there is a morphism p : ιn(P )→ g

induced by hn(P ) such that s ◦ p = t. Therefore, I permits the generalized small object

argument.

Moreover, for any object X in Ch(AP) and ιn(P ) ∈ I, since Dn(P ) is projective in

Ch(AP), we have an exact sequence

HomCh(AP )(Dn(P ), X)
ι∗n−→ HomCh(AP )(Sn+1(P ), X)→ Ext1Ch(AP )(Sn(P ), X)→ 0

by applying HomCh(AP )(−, X) to the conflation Sn+1(P )
ιn(P )
↪→ Dn(P ) � Sn(P ). There-

fore, ι∗n is surjective implies X ∈ S⊥n . Since Cok(I) = {Sn(P ) | P ∈ P ′, n ∈ Z}, we

know that X → 0 is in I-inj means X ∈ Cok(I)⊥. That is, I is homological. So

(⊥(Cok(I)⊥),Cok(I)⊥) is a complete cotorsion pair in Ch(AP) by Theorem 1.1(1).

Remark 3.3. If we take I =
{

0 → Dn(P ), Sn+1(P )
ιn(P )
↪→ Dn(P ) | ∀P ∈ P ′, n ∈ Z

}
in

Example 3.2, then ⊥(Cok(I)⊥) = Cof(I). In this case, it can be proved that F consists

of acyclic chain complexes in Ch(AP) (a complex · · · → Xn dn−→ Xn+1 dn+1

−−−→ Xn+2 → · · ·
is acyclic if each morphism dn decomposes in AP as Xn en−→ ker dn+1 mn−−→ Xn+1 where en

is an deflation and mn is a P-inflation; furthermore, ker dn+1 mn−−→ Xn+1 en+1−−−→ ker dn+2 is

a P-conflation). By Theorem 2.2 in [10], Cof(I), F and Ch(AP) determine a projective

closed model structure on Ch(AP). It is easy to see that this model structure is Quillen

equivalent to the relative closed model structure on Ch(A) given in Theorem 2.2 in [3].
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