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A Family of Group Divisible Designs with Arbitrary Block Sizes
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Abstract. Recently, a construction of group divisible designs (GDDs) derived from

the decoding of quadratic residue (QR) codes was given. In this paper, we extend

the idea to obtain a new family of GDDs, which is also involved with a well-known

balanced incomplete block design (BIBD).

1. Introduction

Combinatorial designs and the theory of error-correcting codes are two research topics

which are closely related. Assmus and Mattson in 1969 [2] first proposed the relationship

between balanced incomplete block designs (BIBDs) and error-correcting codes. For in-

stance, the codewords of any fixed weight in an extended quadratic residue code [2] form

a 2-design. Later, BIBDs can also be constructed from Reed-Muller codes [4], extremal

binary doubly-even self-dual codes [4], and Pless symmetry codes [12].

Quadratic residue (QR) codes generated by irreducible polynomials are called Type I

QR codes, and those generated by reducible polynomials are Type II. In 2003, Chang et

al. [3] developed algebraic decoding of three Type I binary QR codes. For Type I QR

codes, if the first syndrome is zero then one can assume that there is no error occurred.

However, for Type II QR codes, one cannot suppose that the error pattern is zero, i.e.,

no error occurred, even if the first syndrome is zero. Motivated by the decoding of QR

codes, Lee et al. [10] provided a construction of group divisible designs. They investigated

the collection of all error patterns of weight three for the Type II QR code of length 31

which is with zero first syndromes and found some combinatorial structure. A new family

of GDDs with block sizes 3 to 7 was given and further generalized by Ji [9] with arbitrary

block sizes on finite fields.

This research is a sequel of [10]. The authors in [9, 10] considered the error patterns

(x1, x2, . . . , xk) satisfying the equation γx1 + γx2 + · · · + γxk = 1 ∈ F2m with no proper

subset S of {x1, x2, . . . , xk} such that
∑

i∈S γ
i = 1, where distinct integers 1 ≤ xi ≤ 2m−2

for 1 ≤ i ≤ k ≤ m and γ is a primitive element of the binary extension field F2m . While
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k = 2, those error patterns form a group set G. In this study, we propose another

construction of GDDs by assuming the sum of each error pattern to be any prescribed

nonzero element α instead of 1, and omitting the constraints for the sum of proper subset

S of {x1, x2, . . . , xk}. One may notice that these new GDDs are similar to the previous

one [10] when k is 3 or 4, but the divergence appears for k ≥ 5.

The paper is organized as follows. To study the new family of GDDs, a construction of

BIBDs related to the Hamming code is provided in Section 2. The details of our methods

to construct GDDs are depicted in Section 3. A short conclusion is given in the last

section.

2. A construction of balanced incomplete block designs

This section is composed of two subsections. The first subsection describes a brief review

of BIBDs. The second subsection introduces a family of BIBDs and shows their balance

parameters.

2.1. Basic results and notations

Definition 2.1. [15, Definition 1.2] Let v, k and λ be positive integers such that v >

k ≥ 2. A balanced incomplete block design (v, k, λ)-BIBD is a pair (X,B) such that the

following properties are satisfied:

(i) X is a set of elements called points with cardinality |X| = v,

(ii) B is a class of nonempty k-subsets of X called blocks, and

(iii) every pair of distinct points is contained in exactly λ blocks.

Particularly, (iii) is called the balance property and λ is called the balance parameter of

(X,B).

There are several parameters in a BIBD which are described in the following.

Theorem 2.2. [15, Theorem 1.9] Let (X,B) be a (v, k, λ)-BIBD. Then every point occurs

in exactly

r =
λ(v − 1)

k − 1
blocks, and the number of blocks

b = |B| = vr

k
.

Let m ≥ 3 be a positive integer and F2m be the finite field of order 2m. Then the

multiplicative group F∗2m = F2m \ {0} is cyclic of order 2m− 1, where 0 is the zero element

of F2m . The following definition gives sets of blocks in which the sum of elements is 0.

The ideas of zero-sum blocks for the construction of BIBDs are also studied in [16,17].
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Definition 2.3. For each integer k with 3 ≤ k ≤ 2m − 4, let

Wk =

{
B ⊆ F∗2m

∣∣∣ |B| = k and
∑
i∈B

i = 0

}
be the collection of k-subsets of F∗2m in which the sum of elements is zero.

It should be noticed that the k-sets of nonzero elements summing up to zero in the

Galois field with 2m elements can be seen as codewords of weight k in the (2m−1, 2m−m−
1, 3) Hamming code. According to [11, p. 129] and [14], the number bk of such codewords

can be determined recursively from the relation (k+1)bk+1+bk+(v−k+1)bk−1 =
(
v
k

)
, where

v = 2m−1, and a closed-form expression for the number bk is given in [6, Proposition 4.1].

It is not hard to show that Wk is nonempty for every 3 ≤ k ≤ 2m − 4 by induction.

First, for distinct i, j ∈ F∗2m there exists a block {i, j, i + j} ∈ W3. Suppose that for

4 ≤ k ≤ 2m−1 − 1 there exists a (k − 1)-subset B0 ∈Wk−1. We will use B0 to construct a

k-subset B̃0 of F∗2m in which the sum of elements is still zero. Let α be an element in B0.

We define

Hα = F2m/{0, α} =
{
{x, x+ α} | x ∈ F2m

}
,

and give some background information of Hα in the following.

Remark 2.4. Consider the additive group 〈F2m ,+〉. For some α ∈ F∗2m , since F2m has

characteristic 2, one has that {0, α} is a subgroup of 〈F2m ,+〉. Hence, Hα is well-defined

and forms a partition of F2m with cardinality |Hα| = 2m−1.

Since |Hα\{{0, α}}| = 2m−1−1 > k−1, by Pigeonhole Principle there exists x0 ∈ F2m \
{0, α} such that {x0, x0+α}∩B0 = ∅. Then one has a k-subset B̃0 = B0\{α}∪{x0, x0+α}
of F∗2m . Note that

∑
i∈B̃0

i =
∑

i∈B0
i = 0 and hence B̃0 ∈ Wk. Now, Wk is nonempty

for 3 ≤ k ≤ 2m−1 − 1. Since the sum of elements in F∗2m is zero, B ∈ Wk if and only if

F∗2m \B ∈W2m−1−k, and the proof is completed. Moreover, the fact

|Wk| = |W2m−1−k| for 3 ≤ k ≤ 2m − 4

immediately follows.

The set Wk will play an important role in constructing BIBDs as illustrated in the

next subsection.

2.2. BIBDs and their balance parameters

The aim of this subsection is to prove Theorem 2.7 which states that (F∗2m ,Wk) is a

(2m − 1, k, λk)-BIBD for 3 ≤ k ≤ 2m − 4. Then the balance parameters λk are given in

Corollary 2.11.

Let Hα be ordered by some one-to-one mapping

Oα : Hα → {1, 2, . . . , 2m−1}.
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Definition 2.5. Given B ⊆ F∗2m , if B \ (B + α) is nonempty, then there exists a unique

β ∈ B \ (B + α) with the maximal ordering in Oα, i.e.,

Oα({β, β + α}) = max
γ∈B\(B+α)

Oα({γ, γ + α}).

We call β the representative of B with respect to Oα.

Note that if
∑

i∈B i /∈ {0, α} then B \ (B+α) is nonempty, which provides a sufficient

condition for the existence of the representative β ∈ B.

For 3 ≤ k ≤ 2m − 4 and distinct i, j ∈ F∗2m , let

W i,j
k = {B ∈Wk | i, j ∈ B}

be the set of blocks in Wk that contains i, j. Note that W i,j
k is finite since it is a subset

of Wk. We study the cardinality of W i,j
k in the following.

Lemma 2.6. For distinct i, j, ` ∈ F∗2m, |W i,j
k | = |W

i,`
k |.

Proof. Let α = j + ` and Hα =
{
{x, x + α} | x ∈ F2m

}
be ordered by some one-to-one

mapping Oα : Hα → {1, 2, . . . , 2m−1}. Define a function φ : W i,j
k →W i,`

k as

φ(B) =

B if ` ∈ B,

B \ {j, β} ∪ {`, β + α} if ` /∈ B

for each B ∈W i,j
k , where β is the representative of B− = B \ {i, j, α} with respect to Oα.

One can notice that B− 6= ∅ even if |B| = 3 by the fact that i + j + α = i + ` 6= 0 but

the sum of elements in B is zero. Moreover, since the sum of elements in B− is i + j or

i + ` (which is not in {0, α}), the set B− \ (B− + α) is nonempty and the mapping φ is

well-defined.

Claim that φ is a bijection. Define another function φ̃ : W i,`
k →W i,j

k as

φ̃(B̃) =

B̃ if j ∈ B̃,

B̃ \ {`, β̃} ∪ {j, β̃ + α} if j /∈ B̃

for each B̃ ∈W i,`
k , where β̃ is the representative of B̃− = B̃ \ {i, `, α} with respect to Oα.

Similarly, the mapping φ̃ is well-defined since the sum of elements in B̃− is i+ ` or i+ j

(which is not in {0, α}). It is clear that φ̃(φ(B)) = B if B ∈ W i,j
k with ` ∈ B. On the

other hand, for every B ∈ W i,j
k with ` /∈ B, one can observe that β is the representative

of B− with respect to Oα if and only if β̃ = β + α is the representative of B̃− with

respect to Oα, where B̃ = B \ {j, β} ∪ {`, β̃}. Therefore, φ̃(φ(B)) = B if B ∈ W i,j
k with

` /∈ B. Consequently, φ is a bijection from W i,j
k to W i,`

k with the inverse φ̃, and the result

follows.
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Theorem 2.7. For each integer k with 3 ≤ k ≤ 2m − 4, the pair (F∗2m ,Wk) is a (2m −
1, k, λk)-BIBD.

Proof. Let h, i, j, ` be distinct elements in F∗2m . By Lemma 2.6, one has

|W h,i
k | = |W

i,j
k | = |W

j,`
k |

for 3 ≤ k ≤ 2m − 4. Thus, the balance property for being a BIBD is confirmed. That is,

(F∗2m ,Wk) is a (2m − 1, k, λk)-BIBD for some constant λk = |W i,j
k |.

Theorem 2.7 indicates that for two positive integers k, m with 3 ≤ k ≤ 2m − 4 the

pair (F∗2m ,Wk) is a (2m − 1, k, λk)-BIBD, which is proved above. Then the remainder of

this subsection is to show that the balance parameter λk is obtained in recursive relations.

The method we use is basically by counting. For some element α ∈ F∗2m , the numbers of

blocks involved with α are given below.

Lemma 2.8. For 3 ≤ k ≤ 2m − 4 and some element α ∈ F∗2m, let

Iαk =

{
B ⊆ F2m \ {0, α}

∣∣∣ |B| = k and
∑
i∈B

i = α

}
and

Jαk =

{
B ⊆ F2m \ {0, α}

∣∣∣ |B| = k and
∑
i∈B

i = 0

}
.

Then

|Iαk | =


|Jαk | if k ≡ 1, 3 (mod 4),

|Jαk |+
(
2m−1−1
k/2

)
if k ≡ 2 (mod 4),

|Jαk | −
(
2m−1−1
k/2

)
if k ≡ 0 (mod 4).

Proof. We will prove this result by the mappings between Iαk and Jαk . This proof can be

divided into three cases.

Case 1: k ≡ 1, 3 (mod 4). Since k is odd, for each B ∈ Iαk we have B \ (B + α) is

nonempty. Hence, there exists β ∈ B such that β is the representative of B with respect

to some proper ordering Oα of Hα. In this case, the mapping φ : Iαk → Jαk defined by

φ(B) = B \ {β} ∪ {β + α}

is a bijection. Therefore, one has |Iαk | = |Jαk |.
In the following argument, let

Lαk = {B ⊆ F∗2m | |B| = k and B = B + α}

for even k.
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Case 2: k ≡ 2 (mod 4). In this case, k/2 is odd, and every B ∈ Lαk is with
∑

i∈B i = α.

Hence, Lαk ⊆ Iαk . Besides, since B \ (B+α) is nonempty for each B ∈ Iαk \Lαk , one has the

representative β of B with respect to Oα. Consequently, the mapping φ : Iαk \Lαk → Jαk is

also a bijection, and thus |Iαk | − |Lαk | = |Jαk |. Moreover, we can see that |Lαk | =
(
2m−1−1
k/2

)
because |Hα \ {{0, α}}| = 2m−1 − 1. The equality in Case 2 follows.

Case 3: k ≡ 0 (mod 4). Similarly, since k/2 is even, one has the bijection φ : Iαk →
Jαk \ Lαk . Therefore, |Iαk | = |Jαk | − |Lαk |, and the proof is completed.

For k ≥ 3, (F∗2m ,Wk) is a BIBD by Theorem 2.7. Let bk = |Wk| be the number of

blocks and rk denote the number of blocks in which each point occurs. The following

result is helpful to evaluate the values of those parameters.

Theorem 2.9. For 3 ≤ k ≤ 2m − 4, there are the following recurrence relations

rk+1 =


bk − rk if k ≡ 1, 3 (mod 4),

bk − rk +
(
2m−1−1
k/2

)
if k ≡ 2 (mod 4),

bk − rk −
(
2m−1−1
k/2

)
if k ≡ 0 (mod 4),

where r2m−3 := 0.

Proof. We prove it by counting the values of |Iαk | and |Jαk | defined in Lemma 2.8. From

definition, we can observe that

|Iαk | =
∣∣∣∣{B ⊆ F2m \ {0, α}

∣∣∣ |B| = k and
∑
i∈B

i = α

}∣∣∣∣
=

∣∣∣∣{B̃ ⊆ F∗2m
∣∣∣ |B| = k + 1 and

∑
i∈B̃

i = 0

}∣∣∣∣
= rk+1

by letting B̃ = B ∪ {α} for each B ∈ Iαk . On the other hand,

|Jαk | =
∣∣∣∣{B ⊆ F2m \ {0, α}

∣∣∣ |B| = k and
∑
i∈B

i = 0

}∣∣∣∣
=

∣∣∣∣{B ⊆ F∗2m
∣∣∣ |B| = k and

∑
i∈B

i = 0

}∣∣∣∣
−
∣∣∣∣{B ⊆ F∗2m with α ∈ B

∣∣∣ |B| = k and
∑
i∈B

i = 0

}∣∣∣∣
= bk − rk

by applying the principle of inclusion and exclusion. The result directly follows from

Lemma 2.8.
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The initial conditions of Theorem 2.9 are provided as follows.

Remark 2.10. It is clear that λ3 = 1, since there exists a unique block {i, j, i + j} ∈ W3

for any two distinct elements i, j ∈ F∗2m . Then by Theorem 2.2 one has

r3 =
2m − 2

2
and b3 =

(2m − 1)(2m − 2)

3!
.

Actually, while k = 2, it is straightforward to define b2 = r2 = λ2 = 0 because there are no

blocks in W2. The recurrence formula in Theorem 2.9 also indicates that r3 =
(
2m−1−1

1

)
=

(2m − 2)/2.

Now, the recurrence relations of balance parameters λk are presented in the following

which is directly from Theorems 2.9 and 2.2.

Corollary 2.11. For 3 ≤ k ≤ 2m − 4,

λk+1 =


2m−k−1
k−1 λk if k ≡ 1, 3 (mod 4),

2m−k−1
k−1 λk +

(
2m−1−2
k/2−1

)
if k ≡ 2 (mod 4),

2m−k−1
k−1 λk −

(
2m−1−2
k/2−1

)
if k ≡ 0 (mod 4),

where λ2m−3 := 0. In one formula,

λk+1 =
2m − k − 1

k − 1
λk − cos

kπ

2

(
2m−1 − 2

bk/2− 1c

)
.

Based on the above results, the parameters λk with 3 ≤ k ≤ 7 are listed in Table 2.1

for some m ≥ 4.

λk

k = 3 1

k = 4 1
2(2m − 4)

k = 5 1
3!(2

m − 4)(2m − 8)

k = 6 1
4!(2

m − 4)(2m − 6)(2m − 8)

k = 7 1
5!(2

m − 4)(2m − 6)(22m − 15 · 2m + 71)

Table 2.1: The balance parameter λk of the BIBD (F∗2m ,Wk) for 3 ≤ k ≤ 7.

As a consequence of Theorem 2.7 and Corollary 2.11, the parameters (v, k, λk) of BIBDs

with small block sizes are listed below: (7, 3, 1), (15, 3, 1), (31, 3, 1), (7, 4, 2), (15, 4, 6),

(31, 4, 14), (15, 5, 16), (31, 5, 112), (15, 6, 40), and (15, 7, 87).

A series of BIBDs obtained in Theorem 2.7 will be used to construct a new family of

GDDs as shown in the next section.
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3. A construction of group divisible designs

This section consists of two subsections. Section 3.1 gives the definition of a GDD. Sec-

tion 3.2 is the main result of this paper, which presents new GDDs with arbitrary block

sizes.

3.1. Notations

GDD is a topic generalized from the pairwise balanced design (well-known as PBD) [5,

p. 231]. Since GDD has been widely applied to graphs [7] and matrices [13], many authors

proposed different constructions of a GDD. One can see [7,8,13], [1, Definition 1.4.2], [15,

Definition 7.14] and [18, Definition 5.5] for some examples. The definition of a GDD is as

follows.

Definition 3.1. [5, p. 231] Let k and λ be positive integers. A group divisible design

(k, λ)-GDD is a triple (X,G,B), where X is a finite set of cardinality v, G is a partition

of X into groups, and B is a family of subsets (blocks) of X that satisfy

(i) if B ∈ B then |B| = k,

(ii) every pair of distinct elements of X occurs in exactly λ blocks or one group, but not

both, and

(iii) |G| > 1.

In particular, (ii) is called the balance property and λ is called the balance parameter of

(X,G,B).

3.2. Proposed GDDs

Throughout this subsection, let α be an element in F∗2m+1 and Vα = F2m+1\{0, α}. Consider

the collection Uα,2 of some 2-subsets of Vα such that

Uα,2 =
{
{i, j} ⊆ Vα | i+ j = α

}
.

Furthermore, for each 3 ≤ k ≤ 2m − 1,

Uα,k =

{
B ⊆ Vα

∣∣∣ |B| = k,
∑
i∈B

i = α and B ∩ (B + α) = ∅
}
.

Lemma 3.2. Uα,2 forms a partition of Vα.

Proof. It immediately follows by Remark 2.4.

To prove the main theorem, a result has to be introduced.



A Family of Group Divisible Designs with Arbitrary Block Sizes 1299

Remark 3.3. Let A = {0, α}. Then 〈A,+〉 is a subgroup of 〈F2m+1 ,+〉. It is clear that

the quotient group F2m+1/A is with zero A. Since every nonzero element in F2m+1/A has

order 2 and F2m has characteristic 2, F2m+1/A is isomorphic to 〈F2m ,+〉 by the fundamental

theorem of finitely generated abelian groups.

Recall that for 3 ≤ k ≤ 2m − 4 the pair (F∗2m ,Wk) is a (2m − 1, k, λk)-BIBD as shown

in Theorem 2.7. The next theorem states that the triple (Vα, Uα,2, Uα,k) is a (k, λ′k)-GDD

with balance parameter λ′k = 2k−3λk.

Theorem 3.4. For each 3 ≤ k ≤ 2m − 4, (Vα, Uα,2, Uα,k) is a (k, λ′k)-GDD with balance

parameter λ′k = 2k−3λk.

Proof. Let i and j be two distinct elements in Vα with i+ j 6= α. It suffices to show that

there are 2k−3λk blocks in Uα,k that contains i and j, where λk is the balance parameter

of the BIBD (F∗2m ,Wk) proposed in Section 2.2. Let A = {0, α} ⊆ F2m+1 , as mentioned

in Remark 3.3. Then there exists an isomorphism ψ : F2m+1/A → F2m . Moreover, let

x = {x, x+ α} for x ∈ Vα. One can see that for any B ⊆ Vα,

(3.1)
∑
`∈B

` = A if and only if
∑
`∈B

ψ(`) = 0 ∈ F2m .

Note that
∑

`∈B ` =
∑

`∈B `. Hence if
∑

`∈B ` = A then
∑

`∈B ψ(`) = ψ
(∑

`∈B `
)

= 0,

and vice versa.

Let B = {i, j, x1, x2, . . . , xk−2} be a k-subset of Vα with i, j ∈ B and B ∩ (B +α) = ∅.
On the left-hand side of (3.1), if B satisfies the condition

∑
`∈B ` = A, then there are 2k−2

possible choices of k-subset B̃ = {i, j, y1, y2, . . . , yk−2} of Vα such that
∑

`∈B̃ ` = α or 0 by

letting yh ∈ {xh, xh +α} for h = 1, 2, . . . , k− 2. Note that every B̃ also has the properties

i, j ∈ B̃ and B̃ ∩ (B̃ + α) = ∅. Therefore, there are 2k−2/2 = 2k−3 possible choices of B̃

with
∑

`∈B̃ ` = α corresponding to B. On the other hand, since ψ(i) and ψ(j) are given,

by Theorem 2.7 there are λk blocks for the right-hand side of (3.1) provided that B is a

k-subset of Vα with i, j ∈ B and B ∩ (B + α) = ∅. In summary, there are 2k−3λk ways

to pick a k-subset B ⊆ Vα with i, j ∈ B, B ∩ (B + α) = ∅, and
∑

`∈B ` = α. Namely, the

balance parameter λ′k = 2k−3λk. The result follows.

From Remark 2.10, λ′3 = 20λ3 = 1. Then the recurrence relations of λ′k is given in the

following which can be attained by Theorem 3.4 and Corollary 2.11.

Corollary 3.5. For each 3 ≤ k ≤ 2m − 4,

λ′k+1 =


2m+1−2k−2

k−1 λ′k if k ≡ 1, 3 (mod 4),

2m+1−2k−2
k−1 λ′k + 2k−2

(
2m−1−2
k/2−1

)
if k ≡ 2 (mod 4),

2m+1−2k−2
k−1 λ′k − 2k−2

(
2m−1−2
k/2−1

)
if k ≡ 0 (mod 4),
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where λ′2m−3 := 0. In one formula,

λ′k+1 =
2m+1 − 2k − 2

k − 1
λ′k − cos

kπ

2
· 2k−2

(
2m−1 − 2

bk/2− 1c

)
.

The balance parameters of the newly proposed GDD (Vα, Uα,2, Uα,k) and the previously

known GDD in [10] with 3 ≤ k ≤ 7 are compared in Table 3.1, where α ∈ F2m+1 \ {0} and

Vα = F2m+1 \ {0, α}.

λ′k of Proposed GDDs λ′k in [10]

k = 3 1 1

k = 4 2m+1−8
2

2m−8
2

k = 5 (2m+1−8)(2m+1−16)
3!

(2m−8)(2m−16)
3!

k = 6 (2m+1−8)(2m+1−12)(2m+1−16)
4!

(2m−8)(2m−16)(2m−32)
4!

k = 7 (2m+1−8)(2m+1−12)(22m+2−30·2m+1+284)
5!

(2m−8)(2m−16)(2m−32)(2m−64)
5!

Table 3.1: Comparison on balance parameters λ′k of GDDs for 3 ≤ k ≤ 7.

From Theorem 3.4 and Corollary 3.5, the parameters (k, λ′k) of GDDs with small block

sizes are listed below: (3, 1), (4, 4), (4, 12), (4, 28), and (5, 64).

4. Conclusion

In this paper, based on the fact that (F∗2m ,Wk) is a (2m−1, k, λk)-BIBD for 3 ≤ k ≤ 2m−4

in Theorem 2.7, we show in Theorem 3.4 that the triple (Vα, Uα,2, Uα,k) is a (k, λ′k)-GDD

with balance parameter λ′k = 2k−3λk. A comparison of the results in [9,10] and this work

is listed in Table 4.1. Consequently, this paper has presented a new construction of GDDs,

which can be proved by a family of BIBDs. One advantage of the proposed GDDs is that

their block sizes are much larger than those in [9, 10].

Point set X Block size k Balance parameter λ

GDDs in [9, 10] F∗2m \ {1} 3 ≤ k ≤ m
∏k−1
i=3 (2m − 2i)/(k − 2)!

Proposed GDDs F∗2m+1 \ {α} 3 ≤ k ≤ 2m − 4 λ′k = 2k−3λk

Table 4.1: Comparison on different constructions of GDDs.
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