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Waring-Goldbach Problem: Two Squares and Three Biquadrates

Yingchun Cai* and Li Zhu

Abstract. Assume that ψ is a function of positive variable t, monotonically increasing

to infinity and 0 < ψ(t)� log t/(log log t). Let R3(n) denote the number of represen-

tations of the integer n as sums of two squares and three biquadrates of primes and we

write E3(N) for the number of integers n satisfying n ≤ N , n ≡ 5, 53, 101 (mod 120)

and ∣∣∣∣R3(n)− Γ2(1/2)Γ3(1/4)

Γ(7/4)

S3(n)n3/4

log5 n

∣∣∣∣ ≥ n3/4

ψ(n) log5 n
,

where 0 < S3(n)� 1 is the singular series. In this paper, we prove

E3(N)� N23/48+εψ2(N)

for any ε > 0. This result constitutes a refinement upon that of Friedlander and

Wooley [2].

1. Introduction

The celebrated Waring problem involving two squares still remains one of the most elegant

problems in additive number theory. Here we outline several pieces of research about it.

Let v(n) denote the number of representations of n as sums of two squares and three

nonnegative cubes. In 1972, Linnik [10] proved that v(n)�ε n
2/3−ε for all large integers

n and any ε > 0. In 1981, Hooley [5] improved upon the work of Linnik by obtaining

the expected asymptotic formula for v(n). In 2000, he [6] also obtained the asymptotic

formula for the number of representations of n as sums of three squares and a k-th power.

Let Rs(n) denote the number of representations of natural number n as sums of two

squares and s biquadrates. The expected asymptotic formula for Rs(n) can be established

for s ≥ 5, see Hooley [4]. But for s ≤ 4, all techniques fail to obtain the expected

asymptotic formula for Rs(n). Let Es(N) be the number of integers n ≤ N such that

the expected asymptotic formula for Rs(n) fails to be valid. In 2014, Friedlander and

Wooley [2] showed

E3(N)� N1/2+ε and E4(N)� N1/4+ε.
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Later on, Zhao [13] strengthened these results by showing

E3(N)� N3/8+ε and E4(N)� N1/8+ε.

Let

Ω = {n ∈ N : n ≡ 5, 53, 101 (mod 120)}.

The purpose of this paper is to investigate the cognate problem concerning the represen-

tation of integers n in Ω such that

(1.1) n = p21 + p22 + p43 + p44 + p45,

where pi are prime numbers. The congruence condition is necessary here, since we have

p2 ≡ 1 or 49 (mod 120) and p4 ≡ 1 (mod 120) for primes p > 5. Denote by R3(n) the

number of representations of natural number n ∈ Ω as the form (1.1). By applying a

pruning process into the Hardy-Littlewood method, we obtain the following result, which

constitutes an improvement upon that of Friedlander and Wooley [2].

Theorem 1.1. For a function ψ of a positive variable t, monotonically increasing to

infinity and 0 < ψ(t) � log t/(log log t), let E3(N) be the number of integers n ∈ Ω and

n ≤ N such that ∣∣∣∣∣R3(n)− Γ2(1/2)Γ3(1/4)

Γ(7/4)

S3(n)n3/4

log5 n

∣∣∣∣∣ ≥ n3/4

ψ(n) log5 n
,

where

S3(n) =
∞∑
q=1

1

ϕ5(q)

∑
a(q)∗

S2(q, a)2S4(q, a)3eq(−an) and Sk(q, a) =
∑
r(q)∗

e

(
ark

q

)
.

Then for any ε > 0, we have

E3(N)� N23/48+εψ2(N).

2. Notations and some preliminary lemmas

In this paper, ε ∈ (0, 10−100) and the value of ε may change from line to line. Let N

denote a sufficiently large positive integer in terms of ε. The constants in O-term and �
symbol depend at most on ε. The letter p, with or without subscript, is reserved for a

prime number. As usual, ϕ(n) denotes Euler’s function. We use e(α) to denote e2πiα and

eq(α) = e(α/q). We denote by
∑

x(q)∗ a sum with x running over a reduced system of

residues modulo q. For a set F , |F| denotes the cardinality of F .
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Lemma 2.1. Let

gk(α) =
∑

2≤p≤N1/k

e(αpk).

Then for α = a/q + λ, (a, q) = 1, q ≤ Q and |λ| ≤ Q/(qN), we have

g2(α)� Q1/2N11/40+ε + V2(α),

where

(2.1) V2(α) =
N1/2 logcN

q1/2−ε(1 +N |λ|)1/2

and c > 0 denotes some absolute constant.

Proof. It follows from [9, Theorem 2].

Lemma 2.2. Let

Sk(q, a) =
∑
r(q)∗

e

(
ark

q

)
.

Then for (q, a) = 1, we have

(i) |Sk(q, a)| � q1/2+ε;

(ii) |Sk(p, a)| ≤ ((k, p− 1)− 1)p1/2 + 1;

(iii) Sk(p
l, a) = 0 for l ≥ γ(p), where

γ(p) =

θ + 2 if pθ ‖ k, p 6= 2 or p = 2, θ = 0,

θ + 3 if pθ ‖ k, p = 2, θ > 0.

Proof. For (i), see [7, Lemma 8.5]. For (ii), see [11, Lemma 4.3]. For (iii), see [7,

Lemma 8.3].

Lemma 2.3. Let 2 ≤ k1 ≤ k2 ≤ · · · ≤ ks be natural numbers such that

s∑
i=j+1

1

ki
≤ 1

kj
, 1 ≤ j ≤ s− 1.

Then we have ∫ 1

0

∣∣∣∣∣
s∏
i=1

gki(α)

∣∣∣∣∣
2

dα ≤ N1/k1+···+1/ks+ε.

Proof. By considering the number of solutions of the underlying equation, Lemma 2.3

follows from [1, Lemma 1].
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Lemma 2.4. Let F(N) denote a subset of integers in the interval (N/2, N ] and Z =

|F(N)|. Let ξ : Z→ C be a function with |ξ(n)| ≤ 1 for all n ∈ Z, and set

K(α) =
∑

n∈F(N)

ξ(n)e(−nα).

Then we have

(i)

∫ 1

0
|g2(α)2K(α)2| dα� Z2N ε + ZN1/2;

(ii)

∫ 1

0
|g2(α)|11/6|g4(α)3K(α)| dα� N2/3+εZ +N11/12+εZ1/2.

Proof. By [12, (2.4)] and the bound |ξ(n)| ≤ 1, we have∫ 1

0
|g2(α)2K(α)2| dα =

∑
p1,p2≤N1/2

∑
m,n∈F(N)
p21−p22=n−m

ξ(m)ξ(n)

�
∑

p1,p2≤N1/2

∑
m,n∈F(N)
p21−p22=n−m

1

� Z2N ε + ZN1/2.

By Hölder’s inequality and (i), we have∫ 1

0
|g2(α)|11/6|g4(α)3K(α)| dα

�
(∫ 1

0
|g2(α)2g4(α)4| dα

)5/12(∫ 1

0
|g4(α)|16 dα

)1/12(∫ 1

0
|g2(α)2K(α)2| dα

)1/2

� N5/12+εN1/4+ε(Z2N ε + ZN1/2)1/2

� N2/3+εZ +N11/12+εZ1/2,

where Hua’s inequality and Lemma 2.3 are used. This completes the proof.

In order to apply the Hardy-Littlewood method, we first define the Farey dissection.

For this purpose, we set

A = 10100(1 + c), Q0 = logAN, Q1 = N1/4 and Q2 = N3/4,

where c is defined by (2.1). For (a, q) = 1, 0 ≤ a < q, we put

M0(q, a) =

(
a

q
− QA0

N
,
a

q
+
QA0
N

]
, M(q, a) =

(
a

q
− 1

qQ2
,
a

q
+

1

qQ2

]
,

M0 =
⋃

q≤QA
0

q⋃
a=1

(a,q)=1

M0(q, a), M =
⋃
q≤Q1

q⋃
a=1

(a,q)=1

M(q, a),

I =

(
− 1

Q2
, 1− 1

Q2

]
, m1 = I \M, m2 = M \M0, m = m1 ∪m2.
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Then we have the Farey dissection

(2.2) I = M0 ∪m.

Lemma 2.5. For α ∈ m1, we have

|g2(α)| � N7/16+ε.

Proof. It follows from [3, Theorem 1].

Lemma 2.6. For (a, q) = 1, let N0(q, a) =
(
a
q −

1
qN7/8 ,

a
q + 1

qN7/8

]
. Then we have

(i)
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
N0(q,a)

|V2(α)|1/6 dα� N−
77
96

+ε;

(ii)
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
N0(q,a)

|V2(α)|2 dα� Q3
0,

where V2(α) is defined by (2.1).

Proof. By (2.1), we have

∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
N0(q,a)

|V2(α)|1/6 dα

�
∑
q≤Q0

2q∑
a=−q
(a,q)=1

qε
∫
|λ|≤1/(qN7/8)

N1/12 logc/6N

(q + qN |λ|)1/12
dλ

� N−11/12+ε
∑
q≤Q0

2q∑
a=−q
(a,q)=1

q−1/12+ε
∫
|u|≤N1/8/q

1

(1 + u)1/12
du

� N−11/12+εQ
23/12+ε
0

∫ N1/8

0

1

(1 + u)1/12
du� N−77/96+ε.

Now, (i) is proved, and (ii) can be proved by similar arguments.

Lemma 2.7. Let

vk(λ) =
∑

2<n≤N

e(nλ)

n1−1/k log n
.

Then for α = a/q + λ ∈M0, we have

gk(α) =
Sk(q, a)

ϕ(q)
vk(λ) +O(N1/k exp(− log1/3N)).
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Proof. See [7, Lemma 7.15].

Lemma 2.8. Let Ω = {n ∈ N : n ≡ 5, 53, 101 (mod 120)}, and let

A3(q, n) =
1

ϕ5(q)

∑
a(q)∗

S2(q, a)2S4(q, a)3eq(−an) and S3(n) =

∞∑
q=1

A3(q, n).

Then the series S3(n) is convergent and S3(n) > 0 for n ∈ Ω.

Proof. The convergence of S3(n) follows from Lemma 2.2(i). By Lemma 2.2(iii) and the

fact that A3(q, n) is multiplicative in q, we get

(2.3) S3(n) = (1 +A3(2, n) +A3(4, n) +A3(8, n))
∏
p>2

(1 +A3(p, n)).

When p > 22, we conclude from Lemma 2.2(ii) that

|A3(p, n)| ≤ (p1/2 + 1)2(3p1/2 + 1)3

(p− 1)4
≤ 100

p3/2
.

So we get

(2.4)
∏
p>22

(1 +A3(p, n)) ≥
∏
p>22

(
1− 100

p3/2

)
> c > 0.

Let L(q, n) denote the number of solutions to the congruence

x21 + x22 + x43 + x44 + x45 ≡ n (mod q), 1 ≤ xi ≤ q, (xi, q) = 1.

Then by [7, Lemma 8.6], we have

1 +A3(2, n) +A3(4, n) +A3(8, n) =
L(8, n)

27
,(2.5)

1 +A3(p, n) =
pL(p, n)

(p− 1)5
.(2.6)

For n ≡ 5, 53, 101 (mod 120), it is easy to verify that

(2.7) L(8, n) > 0 and L(p, n) > 0 for 2 < p ≤ 19.

Now the conclusion S3(n) > 0 follows from (2.3)–(2.7).

3. Mean value estimates

Let

Ij =

∫
mj

|g2(α)2g4(α)3K(α)| dα, j = 1, 2,

where K(α) is defined as in Lemma 2.4.
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Proposition 3.1. We have

I1 � N71/96+εZ +N95/96+εZ1/2,

where Z is defined as in Lemma 2.4.

Proof. By Lemma 2.4(ii) and Lemma 2.5, we have

I1 � sup
α∈m1

|g2(α)|1/6
∫ 1

0
|g2(α)|11/6|g4(α)3K(α)| dα

� N7/96+ε(N2/3+εZ +N11/12+εZ1/2)

� N71/96+εZ +N95/96+εZ1/2.

Proposition 3.2. We have

I2 � N3/4Q
−A/4
0 Z +N95/96+εZ1/2.

Proof. For α ∈ m2, it follows from Lemma 2.1 with Q = N1/4 that

(3.1) |g2(α)| � V2(α) +N2/5+ε,

where V2(α) is defined by (2.1). By (3.1) and Lemma 2.4(ii), we get

I2 �
∫
m2

|V2(α)|1/6|g2(α)|11/6|g4(α)3K(α)| dα

+N1/15+ε

∫ 1

0
|g2(α)|11/6|g4(α)3K(α)| dα

�
∫
m2

|V2(α)|1/6|g2(α)|11/6|g4(α)3K(α)| dα+N11/15+εZ +N59/60+εZ1/2.

(3.2)

Let

N0(q, a) =

(
a

q
− 1

qN7/8
,
a

q
+

1

qN7/8

]
, N(q, a) =

(
a

q
− 1

qQ0
,
a

q
+

1

qQ0

]
,

and

N1(q, a) = N(q, a) \N0(q, a).

From Dirichlet’s approximation theorem, we have∫
m2

|V2(α)|1/6|g2(α)|11/6|g4(α)3K(α)| dα

≤
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m2∩N1(q,a)

|V2(α)|1/6|g2(α)|11/6|g4(α)3K(α)| dα

+
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m2∩N0(q,a)

|V2(α)|1/6|g2(α)|11/6|g4(α)3K(α)| dα.

(3.3)
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For α = a/q + λ ∈ N1(q, a), it is easy to see that q(1 +N |λ|)� N1/8, hence

(3.4) sup
α∈N1(q,a)

|V2(α)| � N7/16+ε.

By (3.4), we obtain∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m2∩N1(q,a)

|V2(α)|1/6|g2(α)|11/6|g4(α)3K(α)| dα

� sup
α∈N1(q,a)

|V2(α)|1/6
∫ 1

0
|g2(α)|11/6|g4(α)3K(α)| dα

� N7/96+ε(N2/3+εZ +N11/12+εZ1/2)

� N71/96+εZ +N95/96+εZ1/2,

(3.5)

where Lemma 2.4(ii) is used. For α ∈ m2, we have q + qN |λ| � QA0 . Then it follows

from [8, Lemma 3.3] that

(3.6) sup
α∈m2

|g4(α)| � N31/128+ε +
N1/4 log4N

q1/8−ε(1 +N |λ|)1/8
� N1/4

Q
A/9
0

.

Moreover for α ∈ N0(q, a), by Lemma 2.1 with Q = N1/8, we have

(3.7) |g2(α)| � V2(α) +N27/80+ε.

From (3.6), (3.7) and Lemma 2.6(i)(ii), we get∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m2∩N0(q,a)

|V2(α)|1/6|g2(α)|11/6|g4(α)3K(α)| dα

�
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m2∩N0(q,a)

|V2(α)2g4(α)3K(α)| dα

+N99/160+ε
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m2∩N0(q,a)

|V2(α)|1/6|g4(α)3K(α)| dα

� Z sup
α∈m2

|g4(α)|3
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
N0(q,a)

|V2(α)2| dα

+ ZN99/160+ε sup
α∈m2

|g4(α)|3
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
N0(q,a)

|V2(α)|1/6 dα

� ZN3/4Q
−3A/8
0 Q3

0 + ZN99/160+εN3/4Q
−A/2
0 N−77/96+ε

� N3/4Q
−A/4
0 Z,

(3.8)
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where the trivial bound |K(α)| ≤ Z is used. Now from (3.2), (3.3), (3.5) and (3.8), we get

I2 � N3/4Q
−A/4
0 Z +N95/96+εZ1/2.

Proposition 3.3. For N/2 ≤ n ≤ N , we have∫
M0

g2(α)2g4(α)3e(−nα) dα =
Γ2(1/2)Γ3(1/4)

Γ(7/4)

S3(n)n3/4

log5 n
+O

(
n3/4 log logn

log6 n

)
.

Proof. For α = a/q + λ, let fk(α) = Sk(q,a)
ϕ(q) vk(λ). Then it follows from Lemma 2.7 that∫

M0

g2(α)2g4(α)3e(−nα) dα

=

∫
M0

f2(α)2f4(α)3e(−nα) dα+O(n3/4 exp(− log1/4 n)).

(3.9)

It is easy to see that

(3.10)

∫
M0

f2(α)2f4(α)3e(−nα) dα =
∑
q≤QA

0

A3(q, n)

∫
|λ|≤QA

0 /N
v2(λ)2v4(λ)3e(−nλ) dλ.

It follows from [7, Lemma 7.16] that∫
|λ|≤QA

0 /N
v2(λ)2v4(λ)3e(−nλ) dλ

=

∫ 1

0
v2(λ)2v4(λ)3e(−nλ) dλ+O

(∫ 1

QA
0 /N

1

λ7/4 log5N
dλ

)

=

∫ 1

0
v2(λ)2v4(λ)3e(−nλ) dλ+O(N3/4Q

−3A/4
0 ).

(3.11)

Similar to [7, Lemma 7.19], we have

(3.12)

∫ 1

0
v2(λ)2v4(λ)3e(−nλ) dλ =

Γ2(1/2)Γ3(1/4)

Γ(7/4)

n3/4

log5 n
+O

(
n3/4 log logn

log6 n

)
.

By (3.11) and (3.12), we have

(3.13)

∫
|λ|≤QA

0 /N
v2(λ)2v4(λ)3e(−nλ) dλ =

Γ2(1/2)Γ3(1/4)

Γ(7/4)

n3/4

log5 n
+O

(
n3/4 log log n

log6 n

)
.

From Lemma 2.2(i) and the inequality ϕ(q)� q/ log q, we get

(3.14)
∑
q≤QA

0

A3(q, n) = S3(n) +O

∑
q>QA

0

q−3/2+ε

 = S3(n) +O(Q
−A/2+ε
0 ).

Now combining (3.9), (3.10), (3.13) and (3.14), we have∫
M0

g2(α)2g4(α)3e(−nα) dα =
Γ2(1/2)Γ3(1/4)

Γ(7/4)

S3(n)n3/4

log5 n
+O

(
n3/4 log logn

log6 n

)
.
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4. Proof of Theorem 1.1

By the Farey dissection (2.2), we have

(4.1) R3(n) =

∫
M0

g2(α)2g4(α)3e(−nα) dα+

∫
m
g2(α)2g4(α)3e(−nα) dα.

Let ψ be a function of positive variable t, monotonically increasing to infinity and 0 <

ψ(t) � log t/(log log t). By Proposition 3.3 and Lemma 2.8, we may define F(N) to be

the set of integers n ∈ Ω, N/2 ≤ n ≤ N such that

(4.2)

∣∣∣∣∣R3(n)− Γ2(1/2)Γ3(1/4)

Γ(7/4)

S3(n)n3/4

log5 n

∣∣∣∣∣ ≥ n3/4

ψ(n) log5 n
.

For n ∈ F(N), by (4.1), (4.2) and Proposition 3.3, we get

(4.3)

∣∣∣∣∫
m
g2(α)2g4(α)3e(−nα) dα

∣∣∣∣ ≥ n3/4

ψ(n) log5 n
.

For n ∈ F(N), let ξ(n) be defined by the following equation

(4.4)

∣∣∣∣∫
m
g2(α)2g4(α)3e(−nα) dα

∣∣∣∣ = ξ(n)

∫
m
g2(α)2g4(α)3e(−nα) dα.

Then it is easy to see that |ξ(n)| ≤ 1. Write Z(N) = |F(N)|. From (4.3), (4.4), we have

Z(N)N3/4

ψ(N) log5N
�

∑
n∈F(N)

n3/4

ψ(n) log5 n

�
∫
m
|g2(α)2g4(α)3K(α)| dα

�
(∫

m1

+

∫
m2

)
|g2(α)2g4(α)3K(α)| dα,

(4.5)

where

K(α) =
∑

n∈F(N)

ξ(n)e(−nα).

From (4.5), Propositions 3.1 and 3.2, we obtain

(4.6)
Z(N)N3/4

ψ(N) log5N
� N3/4Q

−A/4
0 Z(N) +N95/96+εZ(N)1/2.

It follows from (4.6) that

(4.7) Z(N)� N23/48+εψ2(N).

Now by (4.7), we have

E3(N)� N1/3 +
∑

1≤2j≤N2/3

Z

(
N

2j

)
� N23/48+εψ2(N),

and the proof of the Theorem 1.1 is completed.
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[1] J. Brüdern, Sums of squares and higher powers I, J. London Math. Soc. (2) 35 (1987),

no. 2, 233–243.

[2] J. B. Friedlander and T. D. Wooley, On Waring’s problem: two squares and three

biquadrates, Mathematika 60 (2014), no. 1, 153–165.

[3] G. Harman, Trigonometric sums over primes I, Mathematika 28 (1981), no. 2, 249–

254.

[4] C. Hooley, On a new approach to various problems of Waring’s type, in: Recent

Progress in Analytic Number Theory I, (Durham, 1979), 127–191, Academic Press,

London, 1981.

[5] , On Waring’s problem for two squares and three cubes, J. Reine Angew. Math.

328 (1981), 161–207.

[6] , On Waring’s problem for three squares and an `th power, Asian J. Math. 4

(2000), no. 4, 885–903.

[7] L. K. Hua, Additive Theory of Prime Numbers, American Mathematical Society,

Providence, R.I., 1965.

[8] K. Kawada and T. D. Wooley, On the Waring-Goldbach problem for fourth and fifth

powers, Proc. London Math. Soc. (3) 83 (2001), no. 1, 1–50.

[9] A. V. Kumchev, On Weyl sums over primes and almost primes, Michigan Math. J.

54 (2006), no. 2, 243–268.

[10] Y. V. Linnik, Additive problems involving squares, cubes and almost primes, Acta

Arith 21 (1972), 413–422.

[11] R. C. Vaughan, The Hardy-Littlewood Method, Second edition, Cambridge Tracts in

Mathematics 125, Cambridge University Press, Cambridge, 1997.

[12] T. D. Wooley, Slim exceptional sets for sums of four squares, Proc. London Math.

Soc. (3) 85 (2002), no. 1, 1–21.

[13] L. Zhao, Exceptional sets in Waring’s problem: two squares and s biquadrates, Acta

Arith 162 (2014), no. 4, 369–379.

Yingchun Cai and Li Zhu

School of Mathematical Science, Tongji University, Shanghai, 200092, P. R. China

E-mail address: yingchuncai@mail.tongji.edu.cn, zhuli15@tongji.edu.cn


	Introduction
	Notations and some preliminary lemmas
	Mean value estimates
	Proof of Theorem 1.1

