
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 23, No. 3, pp. 529–543, June 2019

DOI: 10.11650/tjm/180808

Restricted Arc Connectivity of Unidirectional Hypercubes and

Unidirectional Folded Hypercubes

Shang-wei Lin* and Na-qi Fan

Abstract. Unidirectional hypercubes and unidirectional folded hypercubes are gener-

alizations of hypercubes and folded hypercubes to digraphs. The super-λ property of

a digraph is a index for network reliability, which can be measured by the restricted

arc-connectivity quantitatively. In this paper, we first show that the restricted arc-

connectivity of the n-dimensional unidirectional hypercube is n − 1 when n is even

and is n− 2 when n is odd, and then we show that the restricted arc-connectivity of

the n-dimensional unidirectional folded hypercube is n − 1 when n is even and is n

when n is odd. As a consequence, we prove that both unidirectional hypercube and

unidirectional folded hypercube are super-λ.

1. Introduction

The hypercube network has been widely applied in designing massively parallel or dis-

tributed systems due to its many excellent topological properties such as simple point-

to-point connection, parallel communications, short diameter, short average distance, and

efficient routing [9, 14, 15, 17, 21]. Due to the lack of a bidirectional electrical/optical

converter and the high cost of a full-duplex transmission, unidirectional topologies are

desirable for networks. Inspired by this, Chou and Du [7] proposed the unidirectional

hypercube by orienting all the edges in the hypercube. After then, many properties of

unidirectional hypercubes have been researched, such as routing property [13], wide diam-

eter [16], and Hamilton property [12].

The folded hypercube is one of the important variants of the hypercube network which

has better properties than the hypercube in many measurements, such as diameter, fault

diameter, and connectivity [8, 19]. Motivated by this, as one variant of the unidirectional

hypercube, we will introduce the unidirectional folded hypercube in this paper.

When designing interconnection networks, one fundamental consideration is the re-

liability of networks, which can be measured by the edge (arc)-connectivity of graphs
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(digraphs). To maximize edge (arc)-connectivity of graphs (digraphs) and minimize the

number of edge (arc)-cuts of graphs (digraphs), super-λ property was proposed by Boesch

in [4]. It is a more refine index than the edge-connectivity for network reliability. As

a measurement of super-λ property, the concept of restricted arc-connectivity was intro-

duced by Volkmann in [18]. It is believed that the larger the restricted arc-connectivity

of a network, the more reliable the network. Therefore, researchers tried to study up-

per bounds on restricted arc-connectivity. In 2008, Wang and Lin [20] introduced the

concept of minimum arc-degree and proved that it is an upper bound on restricted arc-

connectivity. Since then, some sufficient conditions for the restricted arc-connectivity of

a digraph to reach this upper bound have been researched [1, 2, 6, 10, 20]. However, the

restricted arc-connectivity of well-known networks has received little attention. In this

paper, we consider the reliability of unidirectional hypercubes and unidirectional folded

hypercubes, determine their restricted arc-connectivities by showing that their restricted

arc-connectivities are equal to their minimum arc-degrees, and prove they are super-λ.

2. Preliminaries

In this section, we first introduce the concepts of unidirectional hypercubes and unidirec-

tional folded hypercubes.

Definition 2.1. [15] Let n ≥ 2 be an integer. An n-dimensional hypercube, denoted by

Qn, is an undirected graph with 2n vertices. Each vertex of Qn can be represented as

an n-bit binary string. Two distinct vertices x = an−1an−2 · · · a0 and y = bn−1bn−2 · · · b0
in Qn are adjacent if and only if there is a bit position d ∈ {0, 1, . . . , n − 1} such that

bd = 1− ad and bi = ai for any i 6= d. In this case, y is denoted by xd and the edge xy is

called a d-edge.

Figure 2.1(a) shows the hypercube Q3.

(a) Q3 (b) UQ3

Figure 2.1: The hypercube Q3 and the unidirectional hypercube UQ3.
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The Hamming weight of a vertex x = an−1an−2 · · · a1a0 in Qn is h(x) = an−1 +an−2 +

· · · + a1 + a0. A vertex is even if its Hamming weight is even; otherwise, it is odd. It is

easy to see that if xy is an edge of Qn, then h(x) and h(y) have different parities.

Definition 2.2. [12] Let xy be a d-edge of Qn. We orient the edge from x to y if h(x)+d

is even; otherwise we orient the edge from y to x. The unidirectional hypercube UQn is

obtained by orienting all the edges in Qn in this way. The arc obtained from a d-edge of

Qn by orienting is called a d-arc of UQn.

For any d ∈ {0, 1, . . . , n− 1}, UQn can be decomposed into two subgraphs, UQ0
n and

UQ1
n, by removing all d-arcs. In fact, UQ0

n and UQ1
n are two subgraphs of UQn induced

by the sets {x = an−1 · · · ad · · · a0 ∈ V (UQn) | ad = 0} and {x = an−1 · · · ad · · · a0 ∈
V (UQn) | ad = 1}), respectively. Figure 2.1(b) shows the unidirectional hypercube UQ3.

As one of the important variants of the hypercube, the n-dimensional folded hypercube

is proposed first by El-Amawy and Latifi [8].

Definition 2.3. [8] Let n ≥ 2 be an integer. An n-dimensional folded hypercube, de-

noted by Fn, is obtained from the hypercube Qn by adding an edge called a comple-

mentary edge between any pair of complementary vertices x = an−1an−2 · · · a1a0 and

x = an−1an−2 · · · a1a0, where ai = 1− ai for i = 0, 1, . . . , n− 1.

(a) F3 (b) UF3

Figure 2.2: The folded hypercube F3 and the unidirectional folded hypercube UF3.

Figure 2.2(a) shows the folded hypercube F3. Let xx be a complementary edge of Fn.

If n is odd, then exactly one of x and x is even. We orient the edge xx from the odd

vertex to the even one. If n is even, then x and x have the same parity. We orient the

edge xx casually. The resulting arc is called a complementary arc.

Definition 2.4. Let n ≥ 2 be an integer. An n-dimensional unidirectional folded hyper-

cube, denoted by UFn, is obtained from the unidirectional hypercube UQn by adding a

complementary arc defined above between any pair x and x of complementary vertices.
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Obviously, there exists a unique n-dimensional unidirectional folded hypercube when n

is odd and 22
n−1

distinct n-dimensional unidirectional folded hypercubes when n is even.

The unique 3-dimensional unidirectional folded hypercube and the four 2-dimensional

unidirectional folded hypercubes are shown in Figure 2.2(b) and Figure 2.3, respectively.

Figure 2.3: The four 2-dimensional unidirectional folded hypercubes.

Denote the set of vertices and the set of arcs of a digraph D by V (D) and A(D),

respectively. Let P = v1v2 · · · vpvp+1 be a vertex sequence of V (D) such that vivi+1 ∈ A(D)

for i = 1, 2, . . . , p. If the vertices v1, v2, . . . , vp, vp+1 are distinct, then P is a directed path

of length p; if the vertices v1, v2, . . . , vp are distinct and vp+1 = v1, then P is a directed

cycle of length p. An oriented graph is a digraph with no directed cycle of length 2. It

is easy to see that both the unidirectional hypercube UQn and the unidirectional folded

hypercube UFn are oriented graphs. A digraph D is strongly connected (or simply strong)

if there exists a directed path from x to y for every ordered pair (x, y) of vertices in D. A

strong component of a digraph D is a maximal subdigraph of D which is strong.

Definition 2.5. [18] An arc subset S of a digraph D is an arc-cut if D−S is not strong.

The arc-connectivity λ(D) of D is the minimum cardinality of all arc-cuts of D.

Definition 2.6. [18] Let D be a strong digraph. An arc subset S is a restricted arc-cut

of D if D − S has a strong component D′ such that |V (D′)| ≥ 2 and D − V (D′) contains

an arc. If such a restricted arc-cut exists, then D is called λ′-connected. The restricted

arc-connectivity λ′(D) of a λ′-connected digraph D is the minimum cardinality over all

restricted arc-cuts.

The following is an example illustrating the definition above.

Example 2.7. Use the notations in Figure 2.1(b). Let x = 010, y = 000 and S = {e5}.
Then x has no out-arc, y has no in-arc and UQ3−{x, y} is strong in UQ3−S, which implies

that UQ3−S has three strong components x, y and UQ3−{x, y}. Let D′ = UQ3−{x, y}.
It is easy to see that UQ3−V (D′) contains the arc e5. Thus, by definition, S is a restricted

arc-cut and so λ′(UQ3) ≤ |S| = 1. Combining this with the fact that UQ3 is strong, we

have λ′(UQ3) = 1.
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For a set X ⊆ V (D), denote the sets of arcs of D leaving X and entering X by

∂+D(X) = ∂+(X) and ∂−D(X) = ∂−(X), respectively. Usually, abbreviate ∂+({x}) and

∂−({x}) to ∂+(x) and ∂−(x), respectively.

Definition 2.8. [20] Let D be a strong digraph. For any xy ∈ A(D), let

Ω(xy) = {∂+({x, y}), ∂+(x) ∪ ∂−(y), ∂−(x) ∪ ∂+(y), ∂−({x, y})}.

The arc-degree of xy is ξ′(xy) = min{|S| : S ∈ Ω(xy)} and the minimum arc-degree of D

is ξ′(D) = min{ξ′(xy) : xy ∈ A(D)}.

To illustrate the definition above, consider the arc-degree of the arc e5 given in Fig-

ure 2.1(b). It can be seen from Figure 2.1(b) that

Ω(e5) = {{e1, e4}, {e5}, {e1, e4, e9, e12}, {e9, e12}}.

Therefore, by Definition 2.8, ξ′(e5) = min{|S| : S ∈ Ω(e5)} = 1.

In a digraph D, the out-degree and in-degree of a vertex x are d+(x) = |∂+(x)| and

d−(x) = |∂−(x)|, respectively. The minimum degree of D is δ(D) = min{d+(x), d−(x) :

x ∈ V (D)}. A digraph D is said to be d-regular if the out-degree and the in-degree of

every vertex in D are both equal to d. In [20], it was shown that if xy is an arc of an

oriented graph D, then

(2.1) ξ′(xy) = min{d+(x)+d+(y)−1, d−(x)+d−(y)−1, d+(x)+d−(y)−1, d−(x)+d+(y)}.

3. The minimum arc-degrees of unidirectional hypercubes and unidirectional

folded hypercubes

It is clear that the degree of every vertex in Qn is n. Let x be a vertex of UQn. By

Definition 2.2, we obtain that

(3.1) d+(x) = d−(x) =
n

2
if n is even

and

d+(x) =
⌈n

2

⌉
and d−(x) =

⌊n
2

⌋
if n is odd and x is even,

d+(x) =
⌊n

2

⌋
and d−(x) =

⌈n
2

⌉
if n is odd and x is odd.

(3.2)

Now, we determine the minimum arc-degree of the unidirectional hypercube.

Theorem 3.1. The minimum arc-degree of UQn is

ξ′(UQn) =

n− 1 if n is even,

n− 2 if n is odd.
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Proof. First, consider the case that n is even. For an arbitrary arc xy in UQn, it follows

from (2.1) and (3.1) that

ξ′(xy) = min{d+(x) + d+(y)− 1, d−(x) + d−(y)− 1, d+(x) + d−(y)− 1, d−(x) + d+(y)}

=
n

2
+
n

2
− 1 = n− 1.

By Definition 2.8, we have ξ′(UQn) = n− 1.

Next, consider the case that n is odd. By (2.1) and (3.2), ξ′(uv) ≥ bn/2c+bn/2c−1 ≥
n − 2 for each arc uv of UQn. Let xy be a 1-arc of UQn. By Definition 2.2, x is

odd and y is even. It follows from (2.1) and (3.2) that ξ′(xy) ≤ d+(x) + d−(y) − 1 =

(n− 1)/2 + (n− 1)/2− 1 = n− 2. Therefore, we have ξ′(UQn) = n− 2.

Let UFn be a unidirectional folded hypercube and x be a vertex of UFn. By Defini-

tion 2.4, we have

(3.3) d+(x) = d−(x) =
n+ 1

2
if n is odd

and

(3.4) |d+(x)− d−(x)| = 1 and d+(x) + d−(x) = n+ 1 if n is even.

Next, we determine the minimum arc-degree of the unidirectional folded hypercube.

Theorem 3.2. Let UFn be an n-dimensional unidirectional folded hypercube. Then the

minimum arc-degree of UFn is

ξ′(UFn) =

n− 1 if n is even,

n if n is odd.

Proof. First, consider the case that n is odd. Let xy be an arc in UFn. It follows from

(2.1) and (3.3) that ξ′(xy) = (n+ 1)/2 + (n+ 1)/2− 1 = n. By Definition 2.8, we obtain

that ξ′(UFn) = n.

Next, consider the case that n is even. It follows from (2.1) and (3.4) that ξ′(xy) ≥
n/2+n/2−1 = n−1. Let xx be a complementary arc of UFn. Without loss of generality,

assume that x is even. Then x is also even. Clearly, xx0, xx0 ∈ A(UFn) and there

also exists a complementary arc between x0 and x0. If x0x0 ∈ A(UFn), then ξ′(xx0) ≤
d−(x) + d−(x0)− 1 = n/2 + n/2− 1 = n− 1; otherwise, ξ′(xx0) ≤ d+(x) + d−(x0)− 1 =

n/2 + n/2− 1 = n− 1. By Definition 2.8, we obtain that ξ′(UFn) = n− 1.
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4. Restricted arc-connectivities of unidirectional hypercubes and unidirectional

folded hypercubes

We now introduce the concept of restricted edge-connectivity of graphs, which is an undi-

rected analogue of restricted arc-connectivity. A graph G is connected if there exists a

path between any two vertices. An edge set F of G is a restricted edge cut, if D−F is not

connected and contains no isolated vertex. A connected graph G is called λ′-connected if

it contains a restricted edge-cut. The restricted edge-connectivity λ′(G) of a λ′-connected

graph G is the minimum cardinality over all restricted edge-cuts. The restricted edge-

connectivities of hypercubes and folded hypercubes have been determined.

Lemma 4.1. [9] The n-dimensional hypercube Qn with n ≥ 2 is λ′-connected and its

restricted edge-connectivity is λ′(Qn) = 2n− 2.

Lemma 4.2. [8] The n-dimensional folded hypercube Fn with n ≥ 2 is λ′-connected and

its restricted edge-connectivity is λ′(Fn) = 2n.

Let G be a graph with vertex set V (G) and edge set E(G). For every nonempty

X ⊆ V (G), the subgraph of G induced by X is denoted by G[X], and the set of edges

in G with exactly one end in X by [X,X], where X = V (G) − X. The restricted edge-

connectivity of undirected graphs has the following bound.

Lemma 4.3. [5] Let G be a λ′-connected graph. If X is a vertex set of G such that both

G[X] and G[X] contain an edge, then |[X,X]| ≥ λ′(G).

The following inequality was proved in [11]:

(4.1) κ(D) ≤ λ(D) ≤ δ(D),

where δ(D), λ(D) and κ(D) are the minimum degree, the arc-connectivity and the vertex-

connectivity of a digraph D, respectively. In [13], Jow and Tuan showed that κ(UQn) =

δ(UQn). Combining these two results, we have the following.

Lemma 4.4. The arc-connectivity of n-dimensional unidirectional hypercube UQn is

λ(UQn) = δ(UQn) when n ≥ 2.

Now, we turn our attention back to the restricted arc-connectivity of digraphs. In

2010, Balbuena and Garćıa-Vázquez [1] proved following results.

Lemma 4.5. [1] Let D be a strong digraph of order at least 4. If its minimum degree

δ(D) ≥ 2, then D is λ′-connected and λ′(D) ≤ ξ′(D).

Definition 4.6. [1] A λ′-connected digraph D is said to be super-λ′ if for every minimum

restricted arc-cut S of D there exists an arc xy ∈ A(D) such that S ∈ Ω(xy).
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Lemma 4.7. [1] Let D be a λ′-connected digraph and let S be a minimum restricted

arc-cut of D. If D is not super-λ′, then there exists a subset of vertices X ⊂ V (D) such

that S = ∂+(X) and the induced subdigraphs D[X] and D[X] both contain an arc.

In order to prove our main results, we need to prove several useful lemmas.

Lemma 4.8. Let G be a 2k-regular connected graph with k ≥ 2 and
−→
G be a k-regular strong

connected oriented digraph obtained by orienting all edges in G. Then
−→
G is λ′-connected

and λ′(
−→
G) ≥ λ′(G)/2 if

−→
G is not super-λ′.

Proof. Because G is a 2k-regular graph, obviously, |V (G)| ≥ 4. Combining this with

δ(
−→
G) = k ≥ 2, it follows from Lemma 4.5 that

−→
G is λ′-connected. Let

−→
S be a minimum

restricted arc-cut of
−→
G .

Suppose that
−→
G is not super-λ′. It follows from Lemma 4.7 that there exists a set

of vertices X in
−→
G such that

−→
S = ∂+(X) and both

−→
G [X] and

−→
G [X] contain an arc.

By the definition of
−→
G , it is easy to see that both G[X] and G[X] contain an edge.

Therefore, by Lemma 4.3, |[X,X]| ≥ λ′(G). It is well-known that |∂+(Y )| = |∂−(Y )| for

any subset Y ⊆ V (D), if D is a regular digraph [22]. Combining this with the fact that

|[X,X]| = |∂+(X)|+ |∂−(X)|, we have

2λ′(
−→
G) = 2|

−→
S | = 2|∂+(X)| = |∂+(X)|+ |∂−(X)| = |[X,X]| ≥ λ′(G).

The proof is complete.

Lemma 4.9. [7] Let x be a vertex of UQn. Then the i-arc and j-arc incident with x can

be embedded in a directed cycle of length 4 of UQn if and only if i+ j is odd.

For any integer i ∈ {0, 1, . . . , n−1}, there are exactly n/2 integers j ∈ {0, 1, . . . , n−1}
such that i + j is odd when n is even. Combining this with Lemma 4.9, we have the

following observation.

Observation 4.10. If n is even, then each arc of UQn can be embedded in n/2 distinct

directed cycles of length 4.

Lemma 4.11. Let n ≥ 3 and d ∈ {0, 1, . . . , n − 1} be two integers. We decompose UQn

into two subgraphs UQ0
n and UQ1

n by removing all d-arcs. Then

(i) UQ0
n is isomorphic to UQn−1, if both n and d are even or n and d have different

parities;

(ii) UQ0
n is not isomorphic to UQn−1, if both n and d are odd.

(iii) UQ0
n is isomorphic to UQ1

n.
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Proof. (i) First, consider the case that both n and d are even. Let θ be the mapping from

V (UQ0
n) to V (UQn−1) defined by

θ(an−1an−2 · · · ad+10ad−1 · · · a0) = an−1an−2 · · · ad+2ad−1 · · · a0ad+1.

Obviously, θ is a bijection. In order to show that θ is an isomorphism from UQ0
n to UQn−1,

it suffices to prove xy is an arc of UQ0
n if and only if θ(x)θ(y) is an arc of UQn−1.

Suppose that xy is an arc of UQ0
n, say an i-arc. If i ∈ {0, . . . , d− 2, d− 1}, then θ(x)

and θ(y) differ in the position (i+1) and so θ(x)θ(y) is an (i+1)-edge of Qn−1. Obviously,

θ(x) and x have different parities. Therefore, it follows that h(θ(x)) + i + 1 is even from

the fact that h(x) + i is even, which implies that θ(x)θ(y) is an (i + 1)-arc of UQn−1. If

i ∈ {d+2, d+3, . . . , n−1}, then θ(x) and θ(y) differ in the position (i−1) and so θ(x)θ(y)

is an (i− 1)-arc of UQn−1. If i ∈ {d+ 1}, then θ(x) and θ(y) differ in the position 0 and

so θ(x)θ(y) is a 0-arc of UQn−1.

If xy is not an arc of UQ0
n, by Definition 2.2, either x and y differ in at least two

positions or yx is an arc of UQ0
n. If x and y differ in at least two positions, then θ(x) and

θ(y) differ in at least two positions, which implies that θ(x)θ(y) is not an arc of UQn−1.

If yx is an arc of UQ0
n, according to the above argument, we have θ(y)θ(x) is an arc of

UQn−1, which implies that θ(x)θ(y) is not an arc of UQn−1. Therefore, UQ0
n is isomorphic

to UQn−1.

Next, consider the case that n and i have different parities. Let φ be the mapping

from V (UQ0
n) to V (UQn−1) defined by

φ(an−1an−2 · · · ad+10ad−1 · · · a0) = ad+1an−1an−2 · · · ad+2ad−1 · · · a0.

Obviously, φ is a bijection. In order to show that φ is an isomorphism from UQ0
n to

UQn−1, it suffices to prove xy is an arc of UQ0
n if and only if φ(x)φ(y) is an arc of UQn−1.

In the same way as above, we can prove that xy is an i-arc of UQ0
n if and only if φ(x)φ(y)

is an i-arc of UQn−1 when i ∈ {0, . . . , d − 2, d − 1}, xy is an i-arc of UQ0
n if and only if

φ(x)φ(y) is an (i− 2)-arc of UQn−1 when i ∈ {d+ 2, d+ 3, . . . , n− 1} and xy is an i-arc

of UQ0
n if and only if φ(x)φ(y) is an i+ (n− d− 3)-arc of UQn−1 when i ∈ {d+ 1}. Thus,

xy is an arc of UQ0
n if and only if φ(x)φ(y) is an arc of UQn−1.

(ii) Let x = 00 · · · 0 be a vertex of UQ0
n. We have d+(x) = (n+1)/2 in UQ0

n. By (3.1),

UQn−1 is (n− 1)/2-regular, which implies that UQ0
n is not isomorphic to UQn−1.

(iii) Let ϕ be the mapping from V (UQ0
n) to V (UQ1

n) defined by

ϕ(an−1an−2 · · · ad+10ad−1 · · · a0) = an−1an−2 · · · ad+11ad−1 · · · a0.

Obviously, ϕ is a bijection. Similar to the proof of (i), we can prove that xy is an arc of

UQ0
n if and only if ϕ(x)ϕ(y) is an arc of UQ1

n. Thus, UQ0
n is isomorphic to UQ1

n.
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Let D be an oriented graph with 4 vertices. By Definition 2.6, if D is a λ′-connected

digraph, there exists an arc subset S such that D − S has a strong component D′ with

|V (D′)| ≥ 2 and D − V (D′) has an arc which implies |V (D)− V (D′)| ≥ 2. Thus, D′ is a

strong digraph with 2 vertices and so it is a cycle of length 2 contradicting that D is an

oriented graph. Therefore, we have the following observation.

Observation 4.12. An oriented graph with 4 vertices is not λ′-connected.

By Definitions 2.2, 2.4 and Observation 4.12, we have that neither UQ2 nor UF2 is

λ′-connected. Below, we determine the restricted arc-connectivities of UQn and UFn with

n ≥ 3.

Theorem 4.13. Let n ≥ 3 be an integer. The n-dimensional unidirectional hypercube

UQn is λ′-connected and its restricted arc-connectivity is

λ′(UQn) = ξ′(UQn) =

n− 1 if n is even,

n− 2 if n is odd.

Proof. It follows from Example 2.7 and Theorem 3.1 that λ′(UQ3) = 1 = n−2 = ξ′(UQ3)

and so the statement holds for n = 3.

Next, consider the case n ≥ 4. It follows from (3.1) and (3.2) that δ(UQn) ≥ 2. By

Lemma 4.5, we have that UQn is λ′-connected and λ′(UQn) ≤ ξ′(UQn). Combining this

with Theorem 3.1, we need only to prove λ′(UQn) ≥ ξ′(UQn). Let S be a minimum

restricted arc-cut of UQn.

Case 1. UQn is super-λ′.

By Definition 4.6, there exists an arc xy ∈ A(UQn) such that S ∈ Ω(xy). Combining

this with Definition 2.8, we have λ′(UQn) = |S| ≥ ξ′(xy) ≥ ξ′(UQn).

Case 2. UQn is not super-λ′ and n is even.

In this case, by (3.1), UQn is n/2-regular. It follows from Lemmas 4.1, 4.8 and

Theorem 3.1, we have λ′(UQn) ≥ λ′(Qn)/2 = n− 1 = ξ′(UQn).

Case 3. UQn is not super-λ′ and n is odd.

By Theorem 3.1, it is sufficient to prove that λ′(UQn) ≥ n−2. Suppose to the contrary

that |S| = λ′(UQn) ≤ n− 3.

Denote all i-arcs by Fi for i ∈ {0, 1, 2, . . . , n − 1}. Obviously, |S ∩ F0| + |S ∩ F2| +
|S ∩ F4| + · · · + |S ∩ Fn−1| ≤ |S| = λ′(UQn) ≤ n − 3. Thus, there exists an integer

d ∈ {0, 2, 4, . . . , n− 1} such that |S ∩ Fd| ≤ 1. Decompose UQn into two subgraphs UQ0
n

and UQ1
n by removing all d-arcs. By Lemma 4.11, UQ0

n and UQ1
n are both isomorphic to

UQn−1 and so are both strong.

Denote Sj = S ∩ A(UQj
n) for j = 0, 1. Without loss of generality, we may assume

|S1| ≤ |S|/2. By (3.1) and Lemma 4.4, we have λ(UQ0
n) = λ(UQn−1) = δ(UQn−1) =

(n− 1)/2 > |S|/2 ≥ |S1|. Thus, UQ1
n − S1 is still strong. Next, we consider UQ0

n − S0.
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By Cases 1 and 2, we have λ′(UQn−1) ≥ ξ′(UQn−1) = n − 2. Therefore, λ′(UQ0
n) ≥

n− 2. Since |S0| ≤ |S| ≤ n− 3 < n− 2 = λ′(UQ0
n), S0 is not a restricted arc-cut of UQ0

n.

By Definition 2.6, we need to consider the following two cases.

Subcase 3.1. UQ0
n − S0 has no strong component with at least 2 vertices.

Let P = v1v2 · · · vp be a longest directed path of UQ0
n−S0 and denote Op = ∂+

UQ0
n
(vp).

Suppose that there exists vpx ∈ Op−S0. If x /∈ V (P ), then Pvpx is a longer directed path

than P in UQ0
n − S0, which contradicts the maximality of P . If x = vi ∈ V (P )− vp, then

C = vivi+1 · · · vp−1vpx is a directed cycle. Notice that C must contain at least 4 vertices

and so the strong component of UQ0
n − S0 containing this directed cycle C has at least 4

vertices, a contradiction. Thus, Op ⊆ S0.
Denote I1 = ∂−

UQ0
n
(v1). Similarly, we can obtain I1 ⊆ S0. Obviously, |Op| = |I1| =

(n− 1)/2 and |Op ∩ I1| ≤ 1. Therefore, we can deduce a contradiction as follows:

n− 2 = |Op|+ |I1| − 1 ≤ |Op|+ |I1| − |Op ∩ I1| = |Op ∪ I1| ≤ |S0| ≤ |S| ≤ n− 3.

Subcase 3.2. UQ0
n − S0 has a strong component D0 with at least 2 vertices, but

UQ0
n − V (D0) contains no arc.

As UQn contains no directed cycle of length less than 4, by assumption, we know that

D0 contains a directed cycle of length at least 4. This implies that D0 contains a directed

path P = x1x2x3x4.

We first prove that the subgraph of UQn − S induced by V (D0) ∪ V (UQ1
n), denoted

D01, is strong. By Definition 2.1, x1x
d
1, x2x

d
2, x3x

d
3 and x4x

d
4 are four edges of Qn between

D0 and Q1
n. By Definition 2.2, there are exactly two of them are oriented from D0 to

UQ1
n. Recall that |S ∩ Fd| ≤ 1. Hence, there exists at least one d-arc from D0 to

UQ1
n and one d-arc from UQ1

n to D0 in UQn − S which implies that D01 is strong in

UQn − S. Let D′ be the strong component of UQn − S containing D01. It is clear that

UQn−V (D′) ⊆ UQ0
n−V (D0). Combining this with the fact that UQ0

n−V (D0) contains

no arc, we know that UQn − V (D′) has no arc and so D′ is the unique strong component

of UQn−S with at least 2 vertices. This contradicts our assumption that S is a restricted

arc-cut of UQn.

Theorem 4.14. Let n ≥ 3 be an integer. The n-dimensional unidirectional folded hyper-

cube UFn is λ′-connected and its restricted arc-connectivity is

λ′(UFn) = ξ′(UFn) =

n− 1 if n is even,

n if n is odd.

Proof. It follows from (3.3) and (3.4) that δ(UFn) ≥ 2. By Lemma 4.5, we have that UFn

is λ′-connected and λ′(UFn) ≤ ξ′(UFn). Combining this with Theorem 3.2, we need only

to prove λ′(UFn) ≥ ξ′(UFn). Let S be a minimum restricted arc-cut of UFn.
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Case 1. UFn is super-λ′.

By Definition 4.6, there exists an arc xy ∈ A(UFn) such that S ∈ Ω(xy). Combining

this with Definition 2.8, we have λ′(UFn) = |S| ≥ ξ′(xy) ≥ ξ′(UFn).

Case 2. UFn is not super-λ′ and n is odd.

In this case, by (3.4), UFn is (n + 1)/2-regular. It follows from Lemmas 4.2, 4.8 and

Theorem 3.2, we have λ′(UFn) ≥ λ′(Fn)/2 = n = ξ′(UFn).

Case 3. UFn is not super-λ′ and n is even.

By Theorem 3.2, it is sufficient to prove that |S| = λ′(UFn) ≥ n − 1. We know that

UFn is obtained from the unidirectional hypercube UQn by adding complementary arcs.

Denote S′ = S ∩ A(UQn). We claim |S′| ≥ n − 1 which implies |S| ≥ n − 1 and so the

theorem follows. Suppose to the contrary that |S′| ≤ n− 2. By Theorem 4.13, S′ is not a

restricted arc-cut of UQn. Thus, by Definition 2.6, we need to consider the following two

cases.

Subcase 3.1. UQn − S′ has no strong component with at least 2 vertices.

By Observation 4.10, there are n2n−1(n/2)
4 = 2n−4n2 directed cycles of length 4 in UQn

and the remove of S′ will destroy at most |S′|n2 directed cycles of length 4 in UQn. It is

clear that 2n−4n2 > (n−2)n2 ≥ |S
′|n2 when n ≥ 4. Thus, UQn−S′ contains a directed cycle

of length 4 and so contains one strong component with at least 4 vertices, a contradiction.

Subcase 3.2. UQn−S′ has a strong component D′ with at least 2 vertices, but UQn−
V (D′) contains no arc.

Let D′′ be the strong component of UFn−S containing D′. If UFn−V (D′′) contains at

most 1 vertex, it is easy to see that S is not a restricted arc-cut of UFn, a contradiction.

Therefore, UFn − V (D′′) contains at least 2 vertices which implies UQn − V (D′) also

contains at least 2 vertices.

Let u and v be 2 vertices of UQn − V (D′). Then each arc incident with u has exactly

one end in D′ and so u and v are not adjacent. If ∂−UQn
(u) * S′ and ∂+UQn

(u) * S′,

then the vertex u and D′ can reach each other in UQn − S′, which contradicts the fact

that V (D′) is a strong component of UQn − S′. So we have either ∂−UQn
(u) ⊆ S′ or

∂+UQn
(u) ⊆ S′. Combining this with (3.1), we can know that S′ contains at least n/2

arcs incident with u. Similarly, S′ also contains at least n/2 arcs incident with v. Hence,

|S′| ≥ n, a contradiction to the assumption that |S′| ≤ n− 2.

5. Super-λ property of unidirectional hypercubes and unidirectional folded

hypercubes

The concept of super-λ was originally introduced by Boesch in [4].

Definition 5.1. [4] A digraph D is super arc-connected or super-λ if every minimum

arc-cut of D is either the set of in-arcs of some vertex or the set of out-arcs of some vertex.
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In the following we will show that the super-λ property of a digraph can be justified

by the restricted arc-connectivity. First, we introduce a helpful concept. If a digraph D

has p strong components, then these can be labeled D1, . . . , Dp such that there is no arc

from Dj to Di unless j < i [3]. We call such an ordering an acyclic ordering of the strong

components of D. It is clear that D1 has no in-arc and Dp has no out-arc.

Theorem 5.2. Let D be a λ′-connected digraph. If λ′(D) > λ(D), then D is super-λ.

Proof. Let S be a minimum arc-cut of D and let D1, . . . , Dp be an acyclic ordering of

the strong components of D − S. If |V (D1)| ≥ 2 and |V (Dp)| ≥ 2, then S is a restricted

arc-cut of D. Therefore, λ(D) = |S| ≥ λ′(D), a contradiction. So we have |V (D1)| = 1 or

|V (Dp)| = 1. If |V (D1)| = 1, say V (D1) = {x}, then by the definition of acyclic ordering

of the strong components, we have ∂−(x) ⊆ S. Combining this with the minimality of

S, we have S = ∂−(x). Similarly, if |V (Dp)| = 1, say V (Dp) = {y}, then we can obtain

S = ∂+(y). Therefore, by Definition 5.1, D is super-λ.

Corollary 5.3. For an integer n ≥ 2, let D be an n-dimensional unidirectional hypercube

or an n-dimensional unidirectional folded hypercube. Then D is super-λ.

Proof. It is easy to verify that D is super-λ if D = UQ2, D = UQ3 or D = UF2. Now let us

consider the remaining cases. By Theorems 4.13, 4.14 and formulas (3.2), (3.3), (3.4) and

(4.1), we have λ′(D) > δ(D) ≥ λ(D). Therefore, the proof follows from Theorem 5.2.

It easy to see that if D is super-λ, then λ(D) = δ(D). So we have the following

corollary.

Corollary 5.4. For an integer n ≥ 2, let D be an n-dimensional unidirectional hypercube

or n-dimensional unidirectional folded hypercube. Then λ(D) = δ(D).
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