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Restricted Arc Connectivity of Unidirectional Hypercubes and

Unidirectional Folded Hypercubes
Shang-wei Lin* and Na-qi Fan

Abstract. Unidirectional hypercubes and unidirectional folded hypercubes are gener-
alizations of hypercubes and folded hypercubes to digraphs. The super-A property of
a digraph is a index for network reliability, which can be measured by the restricted
arc-connectivity quantitatively. In this paper, we first show that the restricted arc-
connectivity of the n-dimensional unidirectional hypercube is n — 1 when n is even
and is n — 2 when n is odd, and then we show that the restricted arc-connectivity of
the n-dimensional unidirectional folded hypercube is n — 1 when n is even and is n
when n is odd. As a consequence, we prove that both unidirectional hypercube and

unidirectional folded hypercube are super-A\.

1. Introduction

The hypercube network has been widely applied in designing massively parallel or dis-
tributed systems due to its many excellent topological properties such as simple point-
to-point connection, parallel communications, short diameter, short average distance, and
efficient routing [9,/14,/15,/17,/21]. Due to the lack of a bidirectional electrical/optical
converter and the high cost of a full-duplex transmission, unidirectional topologies are
desirable for networks. Inspired by this, Chou and Du [7] proposed the unidirectional
hypercube by orienting all the edges in the hypercube. After then, many properties of
unidirectional hypercubes have been researched, such as routing property [13], wide diam-
eter [16], and Hamilton property [12].

The folded hypercube is one of the important variants of the hypercube network which
has better properties than the hypercube in many measurements, such as diameter, fault
diameter, and connectivity [8,[19]. Motivated by this, as one variant of the unidirectional
hypercube, we will introduce the unidirectional folded hypercube in this paper.

When designing interconnection networks, one fundamental consideration is the re-

liability of networks, which can be measured by the edge (arc)-connectivity of graphs
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(digraphs). To maximize edge (arc)-connectivity of graphs (digraphs) and minimize the
number of edge (arc)-cuts of graphs (digraphs), super-\ property was proposed by Boesch
in [4]. It is a more refine index than the edge-connectivity for network reliability. As
a measurement of super-\ property, the concept of restricted arc-connectivity was intro-
duced by Volkmann in [18|. It is believed that the larger the restricted arc-connectivity
of a network, the more reliable the network. Therefore, researchers tried to study up-
per bounds on restricted arc-connectivity. In 2008, Wang and Lin [20] introduced the
concept of minimum arc-degree and proved that it is an upper bound on restricted arc-
connectivity. Since then, some sufficient conditions for the restricted arc-connectivity of
a digraph to reach this upper bound have been researched [1}2,6/10.20]. However, the
restricted arc-connectivity of well-known networks has received little attention. In this
paper, we consider the reliability of unidirectional hypercubes and unidirectional folded
hypercubes, determine their restricted arc-connectivities by showing that their restricted

arc-connectivities are equal to their minimum arc-degrees, and prove they are super-A.

2. Preliminaries

In this section, we first introduce the concepts of unidirectional hypercubes and unidirec-

tional folded hypercubes.

Definition 2.1. [15] Let n > 2 be an integer. An n-dimensional hypercube, denoted by
Q., is an undirected graph with 2" vertices. Each vertex of (), can be represented as
an n-bit binary string. Two distinct vertices * = an—1an—2---ag and y = by,—_1b,—2 - - by
in @, are adjacent if and only if there is a bit position d € {0,1,...,n — 1} such that
by =1 —ag and b; = a; for any i # d. In this case, y is denoted by ¢ and the edge xy is
called a d-edge.

Figure 2.1{a) shows the hypercube Q3.

100 101 100 o, 101
€ e €3
=4
000 601 000,74 01 :
111 €10 1111
110 e e,/ 110
€g €11
010 011 010 € 011
(a) Qs (b) UQs

Figure 2.1: The hypercube Q)3 and the unidirectional hypercube UQs.
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The Hamming weight of a vertex © = ap—1an—2---aijap in Qy is h(z) = ap—1 + an—2 +
-o+4 a1 + ag. A vertex is even if its Hamming weight is even; otherwise, it is odd. It is

easy to see that if zy is an edge of @,,, then h(z) and h(y) have different parities.

Definition 2.2. [12] Let zy be a d-edge of Q),,. We orient the edge from z to y if h(x)+d
is even; otherwise we orient the edge from y to x. The unidirectional hypercube UQ,, is
obtained by orienting all the edges in @), in this way. The arc obtained from a d-edge of
@y by orienting is called a d-arc of UQ,.

For any d € {0,1,...,n — 1}, UQ,, can be decomposed into two subgraphs, UQ" and
UQL, by removing all d-arcs. In fact, UQY and UQ]. are two subgraphs of UQ,, induced
by the sets {z = ap—1---aq---ap € V(UQy) | ag = 0} and {z = apn—1---aq---ag €
V(UQy) | ag = 1}), respectively. Figure [2.1(b) shows the unidirectional hypercube UQs3.

As one of the important variants of the hypercube, the n-dimensional folded hypercube

is proposed first by El-Amawy and Latifi [8].

Definition 2.3. [8] Let n > 2 be an integer. An n-dimensional folded hypercube, de-
noted by F,, is obtained from the hypercube @), by adding an edge called a comple-

mentary edge between any pair of complementary vertices © = a,_1a,—2---ajag and
T = Gp_10p_2 G109, where @; =1 —a; for i =0,1,...,n — 1.
100 101 100 101
000 %01 000 001
111
10 111 110
010 11 ofo 011
(a) F3 (b) UF3

Figure 2.2: The folded hypercube F3 and the unidirectional folded hypercube U Fj.

Figure 2.2|(a) shows the folded hypercube F3. Let T be a complementary edge of F,.
If n is odd, then exactly one of x and T is even. We orient the edge zx from the odd
vertex to the even one. If n is even, then x and T have the same parity. We orient the

edge xx casually. The resulting arc is called a complementary arc.

Definition 2.4. Let n > 2 be an integer. An n-dimensional unidirectional folded hyper-
cube, denoted by UF,, is obtained from the unidirectional hypercube U@, by adding a

complementary arc defined above between any pair z and T of complementary vertices.
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Obviously, there exists a unique n-dimensional unidirectional folded hypercube when n
is odd and 22" distinct n-dimensional unidirectional folded hypercubes when n is even.
The unique 3-dimensional unidirectional folded hypercube and the four 2-dimensional
unidirectional folded hypercubes are shown in Figure (b) and Figure respectively.

00 01 Q0 01 00 Pl 00 01

1 N 110 11 10 11 10 11

Figure 2.3: The four 2-dimensional unidirectional folded hypercubes.

Denote the set of vertices and the set of arcs of a digraph D by V(D) and A(D),
respectively. Let P = v1vy - - - vpvp41 be a vertex sequence of V(D) such that v;v;4q1 € A(D)
for i =1,2,...,p. If the vertices vy, v2,...,vp, vpy1 are distinct, then P is a directed path
of length p; if the vertices vi,v9,...,v, are distinct and v,y1 = v1, then P is a directed
cycle of length p. An oriented graph is a digraph with no directed cycle of length 2. It
is easy to see that both the unidirectional hypercube U@, and the unidirectional folded
hypercube U F,, are oriented graphs. A digraph D is strongly connected (or simply strong)
if there exists a directed path from x to y for every ordered pair (x,y) of vertices in D. A

strong component of a digraph D is a maximal subdigraph of D which is strong.

Definition 2.5. [18] An arc subset S of a digraph D is an arc-cut if D — S is not strong.

The arc-connectivity A(D) of D is the minimum cardinality of all arc-cuts of D.

Definition 2.6. [1§] Let D be a strong digraph. An arc subset S is a restricted arc-cut
of D if D — S has a strong component D’ such that |V (D')] > 2 and D — V(D) contains
an arc. If such a restricted arc-cut exists, then D is called X -connected. The restricted
arc-connectivity N'(D) of a N-connected digraph D is the minimum cardinality over all

restricted arc-cuts.
The following is an example illustrating the definition above.

Example 2.7. Use the notations in Figure [2.1(b). Let 2 = 010, y = 000 and S = {e5}.
Then x has no out-arc, y has no in-arc and UQ3—{x, y} is strong in UQ3— S, which implies
that UQs — S has three strong components z, y and UQs — {z,y}. Let D' =UQ3—{x,y}.
It is easy to see that UQ3—V (D’) contains the arc e5. Thus, by definition, S is a restricted
arc-cut and so N (UQ3) < |S| = 1. Combining this with the fact that UQs3 is strong, we
have N (UQ3) = 1.
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For a set X C V(D), denote the sets of arcs of D leaving X and entering X by
91 (X) = 07(X) and 9;(X) = 07 (X), respectively. Usually, abbreviate 0 ({z}) and
9~ ({z}) to 8% (x) and O~ (x), respectively.

Definition 2.8. [20] Let D be a strong digraph. For any xzy € A(D), let

Aay) = {07 ({z,y}), 0" () VO (), 0" (x) O (1), 0~ ({=,y})}-

The arc-degree of zy is {'(zy) = min{|S| : S € Q(zy)} and the minimum arc-degree of D
is (D) = min{¢'(zy) : zy € A(D)}.

To illustrate the definition above, consider the arc-degree of the arc es given in Fig-
ure 2.1(b). It can be seen from Figure [2.1b) that

Q(es) = {{e1.ea}, {es}. {e1,e4,e9, €12}, {eg, €12} }.

Therefore, by Definition ¢'(e5) = min{|S|: S € Q(es)} = 1.

In a digraph D, the out-degree and in-degree of a vertex x are d*(x) = |07 ()| and
d~(z) = |0 (z)|, respectively. The minimum degree of D is 6(D) = min{d*(z),d™ (z) :
x € V(D)}. A digraph D is said to be d-regular if the out-degree and the in-degree of
every vertex in D are both equal to d. In [20], it was shown that if xy is an arc of an

oriented graph D, then
(2.1) €' (zy) = min{d" (z)+d" (y)~1,d" (z)+d" (y)—1,d" (z)+d" (y)—1,d" (2)+d" (y)}.
3. The minimum arc-degrees of unidirectional hypercubes and unidirectional

folded hypercubes

It is clear that the degree of every vertex in @, is n. Let x be a vertex of UQ,. By
Definition we obtain that

(3.1) dt(z) =d (v) = g if n is even

and

S8

+

&
I

{g—‘ and d (x) = {gJ if n is odd and =z is even,

(3.2) ot ot
+ o o — — o . . .
d™(x) = bJ and d () {2—‘ if n is odd and z is odd.

Now, we determine the minimum arc-degree of the unidirectional hypercube.

Theorem 3.1. The minimum arc-degree of UQy, is

n—1 1ifn is even,

n—2 ifn is odd.

fl(UQn) =



534 Shang-wei Lin and Na-qi Fan

Proof. First, consider the case that n is even. For an arbitrary arc xy in UQ,, it follows

from (2.1)) and (3.1 that

€' (zy) = min{d" (z) +d"(y) = 1,d"(z) +d"(y) — L,d"(2) +d " (y) — 1,d"(z) +d" (y)}

n n
S L Y
573 "

By Definition we have ' (UQy) =n — 1.

Next, consider the case that n is odd. By and (3.2), &' (w) > [n/2]+[n/2] -1 >
n — 2 for each arc uv of UQ,. Let zy be a l-arc of UQ,. By Definition T is
odd and y is even. It follows from and that ¢ (zy) < dt(x) +d (y) — 1 =
(n—1)/24 (n—1)/2 —1=n — 2. Therefore, we have (UQ,) =n — 2. O

Let UF,, be a unidirectional folded hypercube and x be a vertex of UF;,,. By Defini-
tion [2.4] we have

n—+1

(3.3) dt(z) =d (z) = 5 if n is odd
and
(3.4) |d"(z) —d (z)]=1 and d"(z)+d (z)=n+1 ifniseven.

Next, we determine the minimum arc-degree of the unidirectional folded hypercube.

Theorem 3.2. Let UF,, be an n-dimensional unidirectional folded hypercube. Then the

minimum arc-degree of UF,, is

n—1 ifn is even,

n if n is odd.

&UF,) =

Proof. First, consider the case that n is odd. Let xy be an arc in UF,,. It follows from
and that &(zy) = (n+1)/2+ (n+1)/2 — 1 = n. By Definition we obtain
that &(UF,) = n.

Next, consider the case that n is even. It follows from and that &' (zy) >
n/2+n/2—1=n—1. Let 2T be a complementary arc of UF,,. Without loss of generality,
assume that z is even. Then T is also even. Clearly, x2°,72° € A(UF,) and there
also exists a complementary arc between 2° and z¥. If 2°2° € A(UF,), then ¢'(z2°) <
d=(z)+d (") =1 =n/2+n/2 —1=n—1; otherwise, ¢'(zz") < d*(7) +d~(Z°) — 1 =
n/2+n/2 —1=mn— 1. By Definition we obtain that &'(UF,) =n — 1. O
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4. Restricted arc-connectivities of unidirectional hypercubes and unidirectional

folded hypercubes

We now introduce the concept of restricted edge-connectivity of graphs, which is an undi-
rected analogue of restricted arc-connectivity. A graph G is connected if there exists a
path between any two vertices. An edge set F of G is a restricted edge cut, if D — F' is not
connected and contains no isolated vertex. A connected graph G is called X -connected if
it contains a restricted edge-cut. The restricted edge-connectivity X' (G) of a N-connected
graph G is the minimum cardinality over all restricted edge-cuts. The restricted edge-

connectivities of hypercubes and folded hypercubes have been determined.

Lemma 4.1. [9] The n-dimensional hypercube @Q,, with n > 2 is N -connected and its

restricted edge-connectivity is N (Qy) = 2n — 2.

Lemma 4.2. [8] The n-dimensional folded hypercube F,, with n > 2 is X -connected and

its restricted edge-connectivity is X' (Fy,) = 2n.

Let G be a graph with vertex set V(G) and edge set E(G). For every nonempty
X C V(G), the subgraph of G induced by X is denoted by G[X], and the set of edges
in G with exactly one end in X by [X, X], where X = V(G) — X. The restricted edge-

connectivity of undirected graphs has the following bound.

Lemma 4.3. [5| Let G be a N -connected graph. If X is a vertex set of G such that both

G[X] and G[X] contain an edge, then |[X, X|| > N (QG).
The following inequality was proved in [11]:
(4.1) #(D) < \(D) < §(D),

where 6(D), A(D) and k(D) are the minimum degree, the arc-connectivity and the vertex-
connectivity of a digraph D, respectively. In [13], Jow and Tuan showed that x(UQ,) =
5(UQy). Combining these two results, we have the following.

Lemma 4.4. The arc-connectivity of n-dimensional unidirectional hypercube UQ, 1is
AUQr) =06(UQy) when n > 2.

Now, we turn our attention back to the restricted arc-connectivity of digraphs. In

2010, Balbuena and Garcia-Vazquez |1] proved following results.

Lemma 4.5. [1] Let D be a strong digraph of order at least 4. If its minimum degree
d(D) > 2, then D is N'-connected and N (D) < &'(D).

Definition 4.6. [1] A N-connected digraph D is said to be super-)\’ if for every minimum
restricted arc-cut S of D there exists an arc zy € A(D) such that S € Q(zy).



536 Shang-wei Lin and Na-qi Fan

Lemma 4.7. [1] Let D be a X -connected digraph and let S be a minimum restricted
arc-cut of D. If D is not super-\', then there exists a subset of vertices X C V(D) such

that S = 0% (X) and the induced subdigraphs D[X] and D[X] both contain an arc.
In order to prove our main results, we need to prove several useful lemmas.

Lemma 4.8. Let G be a 2k-reqular connected graph with k > 2 and 8 be a k-regular strong
connected oriented digraph obtained by orienting all edges in G. Then 8 is N -connected
and )\’(8) > N(G)/2 zfa is not super-X\'.

Proof. Because G is a 2k-regular graph, obviously, |V(G)| > 4. Combining this with
(5(8) =k > 2, it follows from Lemma that @ is N-connected. Let S be a minimum
restricted arc-cut of G.

Suppose that 8 is not super-\. It follows from Lemma that there exists a set
of vertices X in G such that § = 07 (X) and both 8[X] and 8[?] contain an arc.
By the definition of 8, it is easy to see that both G[X] and G[X] contain an edge.
Therefore, by Lemma I[X, X]| > N(G). Tt is well-known that |01 (Y)| = |0~ (Y)] for
any subset Y C V(D), if D is a regular digraph [22]. Combining this with the fact that
I[X, X]| = |07(X)] + |0~ (X)|, we have

2N(G) = 2/S| = 2107 (X)] = |97 (X)] + 0~ (X)| = |[X, X]| > X(G).
The proof is complete. O

Lemma 4.9. [7] Let x be a vertex of UQy. Then the i-arc and j-arc incident with x can
be embedded in a directed cycle of length 4 of UQ., if and only if i + j is odd.

For any integer i € {0, 1,...,n— 1}, there are exactly n/2 integers j € {0,1,...,n—1}
such that ¢ 4+ j is odd when n is even. Combining this with Lemma [{.9] we have the

following observation.

Observation 4.10. If n is even, then each arc of UQ,, can be embedded in n/2 distinct
directed cycles of length 4.

Lemma 4.11. Let n > 3 and d € {0,1,...,n — 1} be two integers. We decompose UQ,
into two subgraphs UQY and UQL by removing all d-arcs. Then

(i) UQY is isomorphic to UQ,_1, if both n and d are even or n and d have different

parities;
(i) UQY is not isomorphic to UQ,_1, if both n and d are odd.

(iii) UQY is isomorphic to UQ}.
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Proof. (i) First, consider the case that both n and d are even. Let 6 be the mapping from
V(UQY) to V(UQ,_1) defined by

O(an—1an—2- - aq410a4—1 - QQ) = Gp_1an_2 - Ad4+204—1 - - AOTd41-

Obviously, 6 is a bijection. In order to show that @ is an isomorphism from UQY to UQ,,_1,
it suffices to prove xy is an arc of UQ? if and only if 8(x)0(y) is an arc of UQ,_1.

Suppose that xy is an arc of UQY, say an i-arc. If i € {0,...,d — 2,d — 1}, then 6(z)
and 6(y) differ in the position (i+1) and so #(x)8(y) is an (i+ 1)-edge of Q,—1. Obviously,
0(z) and x have different parities. Therefore, it follows that h(f(x)) 4+ i+ 1 is even from
the fact that h(z) + i is even, which implies that 0(x)0(y) is an (i + 1)-arc of UQp—1. If
i€{d+2,d+3,...,n—1}, then 0(x) and (y) differ in the position (i —1) and so 8(z)0(y)
is an (i — 1)-arc of UQp—1. If i € {d + 1}, then 6(x) and (y) differ in the position 0 and
so 0(x)f(y) is a 0-arc of UQp—1.

If 2y is not an arc of UQY, by Definition either x and y differ in at least two
positions or yz is an arc of UQQ. If x and y differ in at least two positions, then 6(z) and
(y) differ in at least two positions, which implies that 6(x)6(y) is not an arc of UQy,—1.
If y is an arc of UQY, according to the above argument, we have 6(y)f(x) is an arc of
UQ—1, which implies that 6(z)60(y) is not an arc of UQ,,_1. Therefore, UQY is isomorphic
to UQp—1.

Next, consider the case that n and ¢ have different parities. Let ¢ be the mapping
from V(UQY) to V(UQ,—1) defined by

dlan—1an—2- - ag+10a4—1 - a0) = Qg41an—10n—2 - - A+20d—1 - * - Q.

Obviously, ¢ is a bijection. In order to show that ¢ is an isomorphism from UQ to
UQn_1, it suffices to prove zy is an arc of UQY if and only if ¢(x)¢(y) is an arc of UQ,_1.
In the same way as above, we can prove that xy is an i-arc of UQY if and only if ¢(z)¢(y)
is an i-arc of UQ,_1 when i € {0,...,d —2,d — 1}, 2y is an i-arc of UQY if and only if
o(x)p(y) is an (i — 2)-arc of UQp—1 when i € {d+2,d+3,...,n— 1} and zy is an i-arc
of UQY if and only if ¢(z)¢p(y) is an i + (n — d — 3)-arc of UQ,,_1 when i € {d+ 1}. Thus,
ry is an arc of UQY if and only if ¢(x)é(y) is an arc of UQ,_1.

(ii) Let 2 = 00- - - 0 be a vertex of UQY. We have d*(z) = (n+1)/2 in UQY. By (3.1),
UQn_1 is (n — 1)/2-regular, which implies that UQ? is not isomorphic to UQ,,_1.

(iii) Let ¢ be the mapping from V(UQ?) to V(UQL) defined by

Ylan—1an—2---a4+10a4—1 - ag) = Gp_1Gn_2- - agy1laq—1 - Gp.

Obviously, ¢ is a bijection. Similar to the proof of (i), we can prove that zy is an arc of
UQY if and only if p(x)¢(y) is an arc of UQL. Thus, UQY is isomorphic to UQL. O
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Let D be an oriented graph with 4 vertices. By Definition if D is a N-connected
digraph, there exists an arc subset S such that D — S has a strong component D’ with
|[V(D")| > 2 and D — V(D’) has an arc which implies |V (D) — V(D')| > 2. Thus, D’ is a
strong digraph with 2 vertices and so it is a cycle of length 2 contradicting that D is an
oriented graph. Therefore, we have the following observation.

Observation 4.12. An oriented graph with 4 vertices is not \-connected.

By Definitions and Observation we have that neither UQy nor UF} is
N -connected. Below, we determine the restricted arc-connectivities of UQ,, and UF,, with
n > 3.

Theorem 4.13. Let n > 3 be an integer. The n-dimensional unidirectional hypercube

UQ,, is N -connected and its restricted arc-connectivity is

n—1 ifn is even,

n—2 ifn is odd.

NUQn) =€ (UQn) =

Proof. 1t follows from Example 2.7 and Theorem [3.1]that X'(UQ3) =1 =n—2 = ¢ (UQ3)
and so the statement holds for n = 3.

Next, consider the case n > 4. It follows from and that 6(UQ,) > 2. By
Lemma we have that UQ,, is N'-connected and N (UQ,,) < £ (UQ,,). Combining this
with Theorem we need only to prove N(UQ,) > & (UQ,). Let S be a minimum
restricted arc-cut of UQ,.

Case 1. UQ,, is super-\'.

By Definition there exists an arc zy € A(UQ,,) such that S € Q(xy). Combining
this with Definition [2.8] we have N (UQ,) = |S| > ¢'(zy) > £ (UQ,).

Case 2. UQ,, is not super-\" and n is even.

In this case, by , UQ, is n/2-regular. It follows from Lemmas and
Theorem [3.1} we have N(UQ,) > X(Qn)/2=n—1=£(UQy).

Case 3. UQ,, is not super-\ and n is odd.

By Theorem it is sufficient to prove that \'(UQ,) > n—2. Suppose to the contrary
that |S| = N(UQ,) <n—3.

Denote all i-arcs by F; for i € {0,1,2,...,n — 1}. Obviously, |S N Fy| + |S N Fy| +
ISNFy|+ -+ |SNE,_1] <|S] = N(UQn) < n—3. Thus, there exists an integer
d € {0,2,4,...,n— 1} such that |S N Fy| < 1. Decompose UQ,, into two subgraphs UQY
and UQ}, by removing all d-arcs. By Lemma UQY and UQ] are both isomorphic to
UQ,—1 and so are both strong.

Denote S; = SN AU Q%) for j = 0,1. Without loss of generality, we may assume
|S1| < |S|/2. By and Lemma we have AN(UQY) = MUQn_1) = 6(UQpn_1) =
(n—1)/2 > 15|/2 > |S1]. Thus, UQL — S is still strong. Next, we consider UQY — S.
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By Cases 1 and 2, we have N (UQp_1) > & (UQpn—1) = n — 2. Therefore, N (UQY) >
n—2. Since |So| < S| <n—-3<n—-2=XN(UQY), Sy is not a restricted arc-cut of UQY.
By Definition we need to consider the following two cases.

Subcase 3.1. UQ® — Sy has no strong component with at least 2 vertices.

Let P = v1vg -+ - v, be a longest directed path of UQY — Sy and denote O, = 8;}Q2 (vp).
Suppose that there exists v,z € O, —Sy. If & ¢ V(P), then Puv,zx is a longer directed path
than P in UQY — Sp, which contradicts the maximality of P. If x = v; € V(P) — vp, then
C = vvi41 - vp—1vp7 is a directed cycle. Notice that C' must contain at least 4 vertices
and so the strong component of UQY — Sy containing this directed cycle C has at least 4
vertices, a contradiction. Thus, O, C Sp.

Denote I; = G&Q% (v1). Similarly, we can obtain I; C Sp. Obviously, |O,| = |I1| =

(n—1)/2 and |O, N I;| < 1. Therefore, we can deduce a contradiction as follows:
n—=2=[0p[+[L]| =1 <[Op] + [L] = [Op N L] = [Op U Li| < |So| < [S] < —3.

Subcase 3.2. UQY — Sy has a strong component Dy with at least 2 vertices, but
UQY — V(Do) contains no arc.

As UQ),, contains no directed cycle of length less than 4, by assumption, we know that
Dy contains a directed cycle of length at least 4. This implies that Dy contains a directed
path P = x1xox314.

We first prove that the subgraph of UQ,, — S induced by V(Do) UV (UQL), denoted
Do1, is strong. By Definition xla:cll, xga:g, xgxg and mxi are four edges of @), between
Dy and QL. By Definition there are exactly two of them are oriented from Dy to
UQL. Recall that |S N Fy| < 1. Hence, there exists at least one d-arc from Dy to
UQL and one d-arc from UQ. to Dy in UQ, — S which implies that Dg; is strong in
UQ, — S. Let D' be the strong component of UQ,, — S containing Dg;. It is clear that
UQ,— V(D) CUQY —V(Dy). Combining this with the fact that UQY — V(Dy) contains
no arc, we know that UQ,, — V(D’) has no arc and so D’ is the unique strong component
of UQR, — S with at least 2 vertices. This contradicts our assumption that S is a restricted
arc-cut of UQ,,. O

Theorem 4.14. Let n > 3 be an integer. The n-dimensional unidirectional folded hyper-

cube UF,, is X -connected and its restricted arc-connectivity is

n—1 ifn is even,

n if n is odd.

N(UF,) =¢(UF,) =

Proof. Tt follows from (3.3) and (3.4) that 6(UF,,) > 2. By Lemma we have that U F),
is M-connected and N (UF),) < ¢(UF,). Combining this with Theorem we need only
to prove N (UF},) > &' (UF,). Let S be a minimum restricted arc-cut of UF,,.
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Case 1. UF,, is super-\'.

By Definition there exists an arc zy € A(UF,,) such that S € Q(zy). Combining
this with Definition 2.8 we have X' (UF,) = |S| > ¢/(zy) > ¢ (UF,).

Case 2. UF,, is not super-\ and n is odd.

In this case, by ([3.4), UF, is (n + 1)/2-regular. It follows from Lemmas and
Theorem [3.2] we have N (UF,) > N(F,)/2 =n = ¢ (UE,).

Case 3. UF,, is not super-\ and n is even.

By Theorem it is sufficient to prove that |S| = N(UF,) > n — 1. We know that
UF,, is obtained from the unidirectional hypercube U@, by adding complementary arcs.
Denote S = SN A(UQ,). We claim |S’| > n — 1 which implies |S| > n — 1 and so the
theorem follows. Suppose to the contrary that |S’'| < n — 2. By Theorem S’ is not a
restricted arc-cut of UQ,,. Thus, by Definition [2.6] we need to consider the following two
cases.

Subcase 3.1. UQ,, — S’ has no strong component with at least 2 vertices.

By Observation there are w = 2742 directed cycles of length 4 in UQ,
and the remove of " will destroy at most |S’|5 directed cycles of length 4 in UQ,,. It is
clear that 2" *n? > (n—2)% > |S’|2 when n > 4. Thus, UQ,— S’ contains a directed cycle
of length 4 and so contains one strong component with at least 4 vertices, a contradiction.

Subcase 3.2. UQ,, — S’ has a strong component D’ with at least 2 vertices, but UQ,, —
V(D') contains no arc.

Let D" be the strong component of UF,, — S containing D'. If UF,,—V (D") contains at
most 1 vertex, it is easy to see that S is not a restricted arc-cut of UF},, a contradiction.
Therefore, UF,, — V(D") contains at least 2 vertices which implies UQ,, — V(D’) also
contains at least 2 vertices.

Let u and v be 2 vertices of UQ,, — V(D'). Then each arc incident with u has exactly
one end in D’ and so u and v are not adjacent. If 9y, (u) € S’ and 8§Qn(u) ¢ 9,
then the vertex u and D’ can reach each other in UQ,, — S’, which contradicts the fact
that V(D) is a strong component of UQ, — S’. So we have either ;o (u) C ' or
8'&2” (u) € . Combining this with (3.1), we can know that S’ contains at least n/2
arcs incident with w. Similarly, S’ also contains at least n/2 arcs incident with v. Hence,

|S’| > n, a contradiction to the assumption that |S’| < n — 2. O

5. Super-A property of unidirectional hypercubes and unidirectional folded

hypercubes

The concept of super-\ was originally introduced by Boesch in [4].

Definition 5.1. [4] A digraph D is super arc-connected or super-A if every minimum

arc-cut of D is either the set of in-arcs of some vertex or the set of out-arcs of some vertex.
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In the following we will show that the super-A property of a digraph can be justified
by the restricted arc-connectivity. First, we introduce a helpful concept. If a digraph D
has p strong components, then these can be labeled D1, ..., D, such that there is no arc
from D; to D; unless j < i [3]. We call such an ordering an acyclic ordering of the strong

components of D. It is clear that Dy has no in-arc and D, has no out-arc.
Theorem 5.2. Let D be a X -connected digraph. If N (D) > X(D), then D is super-A.

Proof. Let S be a minimum arc-cut of D and let Dy,..., D, be an acyclic ordering of
the strong components of D — S. If [V(D1)| > 2 and |V (D,)| > 2, then S is a restricted
arc-cut of D. Therefore, A\(D) = |S| > N (D), a contradiction. So we have |V (D;)| =1 or
|\V(Dp)| = 1. If |[V(D1)| =1, say V(D1) = {«}, then by the definition of acyclic ordering
of the strong components, we have 9~ (z) C S. Combining this with the minimality of
S, we have S = 07 (x). Similarly, if |V(D,)| = 1, say V(D,) = {y}, then we can obtain
S = 07 (y). Therefore, by Definition D is super-\. O

Corollary 5.3. For an integer n > 2, let D be an n-dimensional unidirectional hypercube

or an n-dimensional unidirectional folded hypercube. Then D is super-\.

Proof. 1t is easy to verify that D is super-Aif D = UQ2, D = UQ3 or D = UF5. Now let us

consider the remaining cases. By Theorems and formulas (3.2)), (3.3)), (3.4]) and
(4.1), we have X' (D) > 6(D) > X(D). Therefore, the proof follows from Theorem O

It easy to see that if D is super-A, then A\(D) = 6(D). So we have the following

corollary.

Corollary 5.4. For an integer n > 2, let D be an n-dimensional unidirectional hypercube

or n-dimensional unidirectional folded hypercube. Then A(D) = 6(D).
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