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Asymptotic Stability of the Viscoelastic Equation with Variable Coefficients

and the Balakrishnan-Taylor Damping

Tae Gab Ha

Abstract. In this paper, we consider the viscoelastic equation with variable coefficients

and Balakrishnan-Taylor damping and source terms. This work is devoted to prove,

under suitable conditions on the initial data, the asymptotic stability without imposing

any restrictive growth assumption on the damping term and weakening of the usual

assumptions on the relaxation function.

1. Introduction

In this paper, we are concerned with the uniform energy decay rates of solutions for the

viscoelastic equation:

(1.1)


u′′ −M(t)Lu+

∫ t
0 h(t− s)Lu(s) ds+ g(u′) = |u|ρu in Ω× (0,∞),

u = 0 on Γ× (0,∞),

u(x, 0) = u0, u′(x, 0) = u1,

where Lu = div(A∇u) =
∑n

i,j=1
∂
∂xi

(
aij(x) ∂u∂xj

)
and M(t) = ξ1 + ξ2

∫
ΩA∇u∇u dx +

ξ3

∫
ΩA∇u∇u

′ dx, where ξ1, ξ2, ξ3 are positive constants. Ω is a bounded domain of Rn

(n ≥ 1) with boundary Γ. ′ denotes the derivative with respect to time t.

When A = I with the Balakrishnan-Taylor damping (ξ3 6= 0), the model was initially

proposed by Balakrishnan and Taylor in [1] and Bass and Zes [2]. The original motivation

for studying this model seemed to solve the spillover problem, namely, to design a feed-

back control function that involves only finitely many modes in order to achieve a high

performance of the closed-loop systems, such as a robust and exponential stabilization of

the system when there might be some uncertainty in values of the parameters. So far,

there are some stability results for the problem having the Balakrishnan-Taylor damping

(see [15,16,20,21]). For instance, Tatar and Zaräı [16] proved an exponential decay result
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of the energy provided that the kernel decays exponentially. Recently, Ha [8] studied the

uniform decay rates of the energy without imposing any restrictive growth assumption

on the damping term and weakening the usual assumptions on the relaxation function

applying the method in [5, 7].

When A is a general matrix without the Balakrishnan-Taylor damping (ξ2 = ξ3 = 0),

such a problem is called a wave equation with variable coefficients in principle. These

equations arise in mathematical modeling of inhomogeneous media in solid mechanics,

electromagnetic, fluid flows through porous media, and other areas of physics and engi-

neering. For the variable coefficients problem, the main tool is the Riemannian geometry

method, which was introduced by Yao [19] and has been widely used in the literature

(see [6, 12, 13, 17] and a list of references therein). For instance, Wu [18] proved the uni-

form decay of the energy without any geometrical conditions on the shape of the dissipative

portion of the boundary, whereas [10] studied the general decay rates of the energy with-

out imposing any restrictive growth near zero assumption on the damping term having

the Balakrishnan-Taylor damping. However, above mentioned references did not consider

the relaxation function h. On the other hand, the viscoelastic type problems with variable

coefficients and source term are very few results (cf. [4, 9]). For example, Boukhatem

and Benabderrahmane [3] studied the uniform decay rate of the energy to the viscoelastic

wave equation with variable coefficients and acoustic boundary conditions without damp-

ing term. But there is none, to our knowledge, for the viscoelastic problem with variable

coefficients and the Balakrishnan-Taylor damping.

Motivated by previous works, the goal of this paper is to study the asymptotic stability

of the viscoelastic equation with variable coefficients and Balakrishnan-Taylor damping

and source terms by applying the method developed in [7]. This paper is organized as

follows: In Section 2, we recall the hypotheses to prove our main result and introduce

the existence and energy decay rate theorem. In Section 3, we prove the uniform decay

rates of the energy without imposing any restrictive growth near zero assumption on the

damping term and weakening of the usual assumptions on the relaxation function.

2. Preliminaries

We begin this section introducing some notations and our main results. Let Ω ⊂ Rn be

a bounded domain, n ≥ 1, with smooth boundary Γ. Throughout this paper we define

the Hilbert space H = {u ∈ H1(Ω) : Lu ∈ L2(Ω)} with the norm ‖u‖H =
(
‖u‖2H1(Ω) +

‖Lu‖22
)1/2

and H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on Γ}. Moreover, Lp(Ω)-norm is denoted by

‖ · ‖p and 〈u, v〉 =
∫

Ω u(x)v(x) dx.

(H1) Hypotheses on ξ1, ξ2, ξ3, ρ. Let ξi > 0, i = 1, 2, 3, and let ρ be a constant satisfying
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the following condition:

0 < ρ <
2

n− 2
if n ≥ 3 and ρ > 0 if n = 1, 2.

(H2) Hypotheses on A. The matrix A =
(
aij(x)

)
, where aij ∈ C1(Ω), is symmetric and

there exists a positive constant a0 such that for all x ∈ Ω and ω = (ω1, . . . , ωn) we

have

(2.1)

n∑
i,j=1

aij(x)ωjωi ≥ a0|ω|2.

(H3) Hypotheses on g. Let g : R→ R be a nondecreasing C1 function such that g(0) = 0

and suppose that there exists a strictly increasing and odd function β of C1 class on

[−1, 1] such that

|β(s)| ≤ |g(s)| ≤ |β−1(s)| if |s| ≤ 1,

c1|s| ≤ |g(s)| ≤ c2|s| if |s| > 1,(2.2)

where β−1 denotes the inverse function of β and c1, c2 are positive constants.

(H4) Hypotheses on h. Let h : R+ → R+ be a bounded C1 function satisfying

(2.3) ξ1 −
∫ ∞

0
h(s) ds = ` > 0.

Moreover, we assume that h′(t) < 0 for all t ≥ 0.

By using the hypothesis (H2), we verify that the bilinear form a( · , · ) : H1
0 (Ω) ×

H1
0 (Ω)→ R defined by

a(u(t), v(t)) =

n∑
i,j=1

∫
Ω
aij(x)

∂u(t)

∂xj

∂v(t)

∂xi
dx =

∫
Ω
A∇u(t)∇v(t) dx

is symmetric and continuous. On the other hand, from (2.1) for ω = ∇u, we get

(2.4) a(u(t), u(t)) ≥ a0

∫
Ω

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx = a0‖∇u(t)‖22,

which implies that a( · , · ) is coercive.

Now, we state the local existence theorem which can be complete arguing as [3,19,20].

Theorem 2.1. Suppose that (H1)–(H4) hold. Then given (u0, u1) ∈ H1
0 (Ω)×L2(Ω), there

exist T > 0 and a unique solution u of the problem (1.1) such that

u ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)).
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In order to study the global existence and the decay of a local solution for problem (1.1)

given by Theorem 2.1, we will find a stable region. First of all, we define the energy

associated to problem (1.1) by

E(t) =
1

2
‖u′(t)‖22 +

1

2

(
ξ1 +

ξ2

2
a(u(t), u(t))−

∫ t

0
h(t− s) ds

)
a(u(t), u(t))

+
1

2
(h � u)(t)− 1

ρ+ 2
‖u(t)‖ρ+2

ρ+2,

(2.5)

where

(h � u)(t) =

∫ t

0
h(t− s)a(u(t)− u(s), u(t)− u(s)) ds.

Then

E′(t) = −ξ3

(
1

2

d

dt
a(u(t), u(t))

)2

+
1

2
(h′ � u)(t)

− 1

2
h(t)a(u(t), u(t))− 〈g(u′(t)), u′(t)〉

≤ 0.

(2.6)

We also define the following functional in order to obtain the potential well:

J(t) =
1

2

(
ξ1 +

ξ2

2
a(u(t), u(t))−

∫ t

0
h(t− s) ds

)
a(u(t), u(t))

+
1

2
(h � u)(t)− 1

ρ+ 2
‖u(t)‖ρ+2

ρ+2

(2.7)

and

I(t) =

(
ξ1 −

∫ t

0
h(t− s) ds

)
a(u(t), u(t)) + (h � u)(t)− ‖u(t)‖ρ+2

ρ+2.

Lemma 2.2. Suppose that (H4) holds and (u0, u1) ∈ H1
0 (Ω)× L2(Ω) such that

(2.8) ζ :=
Cρ+2
ρ+2

a0`

(
2(ρ+ 2)

a0ρ`
E(0)

)ρ/2
< 1 and I(0) > 0,

where Cρ+2 is an imbedding constant of H1
0 (Ω) ↪→ Lρ+2(Ω). Then I(t) > 0 for all t ≥ 0.

Proof. From the continuity of u(t) and since I(0) > 0, it follows that

I(t̃) ≥ 0

for all t̃ belonging to some neighborhood of t = 0. Let denote by [0, tmax] the maximal

interval where the above inequality hold. Then from the above inequality, we deduce that

J(t̃) =
ρ

2(ρ+ 2)

((
ξ1 −

∫ t̃

0
h(t̃− s) ds

)
a(u(t̃), u(t̃)) + (h � u)(t̃)

)

+
ξ2

4
a2(u(t̃), u(t̃)) +

1

ρ+ 2
I(t̃)

≥ ρ

2(ρ+ 2)

((
ξ1 −

∫ t̃

0
h(t̃− s) ds

)
a(u(t̃), u(t̃)) + (h � u)(t̃)

)
.

(2.9)
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By using (2.3), (2.4), (2.5), (2.7) and (2.9) we have

`‖∇u(t̃)‖22 ≤
1

a0

(
ξ1 −

∫ t̃

0
h(t̃− s) ds

)
a(u(t̃), u(t̃)) ≤ 2(ρ+ 2)

a0ρ
J(t̃)

≤ 2(ρ+ 2)

a0ρ
E(t̃) ≤ 2(ρ+ 2)

a0ρ
E(0)

(2.10)

for all t̃ ∈ [0, tmax]. Hence, by (2.3), (2.8), (2.10) and the imbedding H1
0 (Ω) ↪→ Lρ+2(Ω)

we get

‖u(t̃)‖ρ+2
ρ+2 ≤ C

ρ+2
ρ+2‖∇u(t̃)‖ρ+2

2 ≤
Cρ+2
ρ+2

`
‖∇u(t̃)‖ρ2`‖∇u(t̃)‖22

≤ a0ζ`‖∇u(t̃)‖22 <

(
ξ1 −

∫ t̃

0
h(t̃− s) ds

)
a(u(t̃), u(t̃)),

(2.11)

which implies that

I(t̃) > 0 for all t̃ ∈ [0, tmax].

By repeating this procedure and using the fact that

lim
t̃→tmax

Cρ+2
ρ+2

a0`

(
2(ρ+ 2)

a0ρ`
E(t̃)

)ρ/2
≤ ζ < 1,

tmax is extended to for all t.

Theorem 2.3. Let u(t) be the solution of (1.1). If (u0, u1) ∈ H1
0 (Ω) × L2(Ω) satisfies

(2.8), then the solution u(t) is global.

Proof. It suffices to show that ‖u′(t)‖22 + a(u(t), u(t)) is bounded independent of t. By

virtue of (2.9) and Lemma 2.2, we get

J(t) =
ρ

2(ρ+ 2)

((
ξ1 −

∫ t

0
h(t− s) ds

)
a(u(t), u(t)) + (h � u)(t)

)
+
ξ2

4
a2(u(t), u(t)) +

1

ρ+ 2
I(t)

>
ρ

2(ρ+ 2)

((
ξ1 −

∫ t

0
h(t− s) ds

)
a(u(t), u(t)) + (h � u)(t)

)
.

From the fact (h � u)(t) > 0, for all t ≥ 0 and above inequality, we obtain

`a(u(t), u(t)) ≤
(
ξ1 −

∫ t

0
h(t− s) ds

)
a(u(t), u(t)) <

2(ρ+ 2)

ρ
J(t).

Hence,

1

2
‖u′(t)‖22 +

ρ`

2(ρ+ 2)
a(u(t), u(t)) <

1

2
‖u′(t)‖22 + J(t) = E(t) < E(0).

Therefore, there exists a positive constant C depending only on ρ and ` such that

‖u′(t)‖22 + a(u(t), u(t)) ≤ CE(0).
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Now we are in the position to state the energy decay rates result.

Theorem 2.4. Suppose that (H1)–(H4) and (2.8) hold. Then we have following cases

about decay rates:

Case 1. β is linear.

• If −h′/h ≥ m for all t, where m is some positive constant. Then we have

E(t) ≤ CE(0)e−ωt,

where C and ω are some positive constants.

• If −h′/h decays to zero at infinity, then we have

E(t) ≤ CE(0)h(t)ω.

Case 2. β has polynomial growth near zero. β(s) = sγ for some γ > 1.

• If −h′/h ≥ m for all t, where m is some positive constant, then

E(t) ≤ CE(0)

(1 + t)2/(γ−1)
.

• If −h′/h decays to zero at infinity, then

E(t) ≤ CE(0)(
− lnh(t)

)2/(γ−1)
.

Case 3. β does not necessarily have polynomial growth near zero. Assume that the

function G(s) = β(s)/s is nondecreasing on (0, 1) and G(0) = 0.

• If −h′/h ≥ m for all t, where m is some positive constant, then

E(t) ≤ CE(0)

(
β−1

(
1

t

))2

.

• If −h′/h decays to zero at infinity, then there exists a nondecreasing concave func-

tion φ : R+ → R+ such that φ(t)→∞ as t→∞ and such that the energy satisfies

the following decay rate

E(t) ≤ CE(0)

φ(t)
.

In particular, if the inequality

d

dt

[
h−1

(
h(0)

et

)]
≥ 1

tβ(1/t)
for all t ≥ 1

is satisfied, then the energy decays as

E(t) ≤ CE(0)

(− lnh(t))2
.
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3. Asymptotic stability

In this section we prove the uniform decay rates of equation (1.1). In the following section,

the symbol C indicates positive constants, which may be different.

Let us multiply equation (1.1) by E(t)φ′(t)u, φ : R+ → R+ is a concave nondecreasing

function of class C2, such that φ(t) → +∞ as t → +∞, and then integrate the obtained

result over Ω× [S, T ]. Then we have

0 =

∫ T

S

E(t)φ′(t)

×
∫

Ω

u(t)

(
u′′(t)−M(t)Lu(t) +

∫ t

0

h(t− s)Lu(s) ds+ g(u′(t))− |u(t)|ρu(t)

)
dxdt

=

∫ T

S

E(t)φ′(t)

∫
Ω

u(t)u′′(t) dxdt−
∫ T

S

E(t)φ′(t)M(t)

∫
Ω

u(t)Lu(t) dxdt

+

∫ T

S

E(t)φ′(t)

∫
Ω

u(t)

∫ t

0

h(t− s)Lu(s) dsdxdt

+

∫ T

S

E(t)φ′(t)

∫
Ω

u(t)g(u′(t)) dxdt−
∫ T

S

E(t)φ′(t)

∫
Ω

|u(t)|ρ+2 dxdt.

(3.1)

We note that∫ T

S
E(t)φ′(t)

∫
Ω
u(t)u′′(t) dxdt =

[
E(t)φ′(t)〈u(t), u′(t)〉

]T
S

−
∫ T

S
(E′(t)φ′(t) + E(t)φ′′(t))

∫
Ω
u(t)u′(t) dxdt

−
∫ T

S
E(t)φ′(t)‖u′(t)‖22 dt,

−
∫ T

S
E(t)φ′(t)M(t)

∫
Ω
u(t)Lu(t) dxdt

= ξ1

∫ T

S
E(t)φ′(t)a(u(t), u(t)) dt+ ξ2

∫ T

S
E(t)φ′(t)a2(u(t), u(t)) dt

+
ξ3

4

[
E(t)φ′(t)a2(u(t), u(t))

]T
S
− ξ3

4

∫ T

S
(E′(t)φ′(t) + E(t)φ′′(t))a2(u(t), u(t)) dt

and ∫ T

S
E(t)φ′(t)

∫
Ω
u(t)

∫ t

0
h(t− s)Lu(s) dsdxdt

= −
∫ T

S
E(t)φ′(t)

∫ t

0
h(s) ds a(u(t), u(t)) dt

−
∫ T

S
E(t)φ′(t)

∫ t

0
h(t− s)a(u(t), u(s)− u(t)) dsdt.

By replacing above identities in (3.1) and having in mind the definition of the energy
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associated to problem (1.1), it follows that

2

∫ T

S
E2(t)φ′(t) dt

= 2

∫ T

S
E(t)φ′(t)‖u′(t)‖22 dt+

∫ T

S
E(t)φ′(t)(h � u)(t) dt

− ξ2

2

∫ T

S
E(t)φ′(t)a2(u(t), u(t)) dt

−
[
E(t)φ′(t)

(
〈u(t), u′(t)〉+

ξ3

4
a2(u(t), u(t))

)]T
S

+

∫ T

S
(E′(t)φ′(t) + E(t)φ′′(t))

(
〈u(t), u′(t)〉+

ξ3

4
a2(u(t), u(t))

)
dt

+

∫ T

S
E(t)φ′(t)

∫ t

0
h(t− s)a(u(t), u(s)− u(t)) dsdt

−
∫ T

S
E(t)φ′(t)

∫
Ω
u(t)g(u′(t)) dxdt+

ρ

ρ+ 2

∫ T

S
E(t)φ′(t)‖u(t)‖ρ+2

ρ+2 dt

:= 2

∫ T

S
E(t)φ′(t)‖u′(t)‖22 dt+

∫ T

S
E(t)φ′(t)(h � u)(t) dt

− ξ2

2

∫ T

S
E(t)φ′(t)a2(u(t), u(t)) dt+ I1 + I2 + I3 + I4 + I5.

(3.2)

Now we are going to estimate terms on the right-hand side of (3.2).

Estimate for I1 := −
[
E(t)φ′(t)

(
〈u(t), u′(t)〉+ ξ3

4 a
2(u(t), u(t))

)]T
S

. By using Young’s

and Poincaré’s inequalities and (2.10), we obtain

(3.3) |〈u(t), u′(t)〉| ≤ CE(t)

and

(3.4) a2(u(t), u(t)) ≤
(

2(ρ+ 2)

ρ`

)2

E(0)E(t).

Since E(t) is nonincreasing and φ(t) is nondecreasing, we have

I1 ≤ −C[E(t)φ′(t)E(t)]TS ≤ CE2(S).

Estimate for I2 :=
∫ T
S (E′(t)φ′(t)+E(t)φ′′(t))

(
〈u(t), u′(t)〉+ ξ3

4 a
2(u(t), u(t))

)
dt. From

(3.3) and (3.4), we have

|I2| ≤ C
∫ T

S
|E′(t)φ′(t) + E(t)φ′′(t)|E(t) dt

≤ C
∫ T

S
−E′(t)E(t) dt+ CE2(S)

∫ T

S
−φ′′(t) dt ≤ CE2(S).
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Estimate for I3 :=
∫ T
S E(t)φ′(t)

∫ t
0 h(t − s)a(u(t), u(s) − u(t)) dsdt. From Young’s

inequality and (2.6), we obtain

|I3| ≤
1

2

∫ T

S
E(t)φ′(t)

∫ t

0
h(t− s)a(u(t)− u(s), u(t)− u(s)) dsdt

+
1

2

∫ T

S
E(t)φ′(t)

∫ t

0
h(s) ds a(u(t), u(t)) dt

≤ 1

2

∫ T

S
E(t)φ′(t)(h � u)(t) dt+ C

∫ T

S
E(t)φ′(t)h(t)a(u(t), u(t)) dt

≤ 1

2

∫ T

S
E(t)φ′(t)(h � u)(t) dt+ CE2(S).

Estimate for I4 := −
∫ T
S E(t)φ′(t)

∫
Ω u(t)g(u′(t)) dxdt. By Young’s and Poincaré’s

inequalities and (2.10), we have

|I4| ≤
a0ρ`ε

2(ρ+ 2)CP

∫ T

S
E(t)φ′(t)‖u(t)‖22 dt+ C(ε)

∫ T

S
E(t)φ′(t)

∫
Ω
|g(u′(t)|2 dxdt

≤ a0ρ`ε

2(ρ+ 2)

∫ T

S
E(t)φ′(t)‖∇u(t)‖22 dt+ C(ε)

∫ T

S
E(t)φ′(t)

∫
Ω
|g(u′(t)|2 dxdt

≤ ε
∫ T

S
E2(t)φ′(t) dt+ C(ε)

∫ T

S
E(t)φ′(t)

∫
Ω
|g(u′(t)|2 dxdt,

where CP is a Poincaré constant.

Estimate for I5 := ρ
ρ+2

∫ T
S E(t)φ′(t)‖u(t)‖ρ+2

ρ+2 dt. By (2.10) and (2.11), it follows that

I5 ≤
ρa0ζ`

ρ+ 2

∫ T

S
E(t)φ′(t)‖∇u(t)‖22 dt ≤ 2ζ

∫ T

S
E(t)2φ′(t) dt.

By replacing all estimates I1, . . . , I5 in (3.2), and taking ε sufficiently small, we get

that ∫ T

S
E2(t)φ′(t) dt ≤ CE2(S) + C

∫ T

S
E(t)φ′(t)‖u′(t)‖22 dt

+ C

∫ T

S
E(t)φ′(t)

∫
Ω
|g(u′(t)|2 dxdt

+ C

∫ T

S
E(t)φ′(t)(h � u)(t) dt.

(3.5)

Now we are going to estimate the most important term: I6 :=
∫ T
S E(t)φ′(t)‖u′(t)‖22 dt,

I7 :=
∫ T
S E(t)φ′(t)

∫
Ω |g(u′(t))|2 dxdt and I8 :=

∫ T
S E(t)φ′(t)(h � u)(t) dt.

Terms of I6, I7 and I8 can be estimated by the same arguments as Section 4 in [9].

For the convenience of readers, we will adapt the procedure. First of all, we present

two technical lemma which will play an essential role when establishing the asymptotic

behavior.
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Lemma 3.1. [14] Let E : R+ → R+ be a nonincreasing function and φ : R+ → R+ a

strictly increasing function of class C1 such that

φ(0) = 0 and φ(t)→ +∞ as t→ +∞.

Assume that there exists σ > 0 and ω > 0 such that∫ +∞

S
E1+σ(t)φ′(t) dt ≤ 1

ω
Eσ(0)E(S)

for all S ≥ 0. Then E has the following decay property:

(i) if σ = 0, then E(t) ≤ E(0)e1−ωφ(t) for all t ≥ 0;

(ii) if σ > 0, then E(t) ≤ E(0)
(

1+σ
1+ωσφ(t)

)1/σ
for all t ≥ 0.

Lemma 3.2. [14] Let E and φ be satisfied the condition of Lemma 3.1. Assume that

there exists σ > 0, σ′ ≥ 0 and C > 0 such that∫ +∞

S
E1+σ(t)φ′(t) dt ≤ CE1+σ(S) +

C

(1 + φ(S))σ′E
σ(0)E(S), 0 ≤ S < +∞.

Then, there exists C > 0 such that

E(t) ≤ E(0)
C

(1 + φ(t))(1+σ′)/σ
for all t > 0.

3.1. Energy decay rate when β is linear and −h′/h ≥ m for all t, where m is some

positive constant

Since β is linear, |g(s)| ≤ C|s| for all s ∈ R. Then, we can easily check that

(3.6) I6 + I7 ≤ C
∫ T

S
E(t)φ′(t)

∫
Ω
u′(t)g(u′(t)) dxdt ≤ C

∫ T

S
E(t)(−E′(t)) dt ≤ CE2(S).

Now, we assume that there is φ(t) concave nondecreasing such that φ′(t) ≤ −h′(t)/h(t)

and φ(t)→∞ as t→∞. Then we have

(3.7) φ′(t)h(t− s) ≤ φ′(t− s)h(t− s) ≤ −h′(t− s).

Hence,

I8 ≤ −
∫ T

S
E(t)

∫ t

0
h′(t− s)a(u(t)− u(s), u(t)− u(s)) dsdt

≤ 2

∫ T

S
E(t)(−E′(t)) dt ≤ E2(S).

(3.8)
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By replacing (3.6) and (3.8) in (3.5), we have∫ T

S
E2(t)φ′(t) dt ≤ CE2(S),

which implies by Lemma 3.1 that

(3.9) E(t) ≤ E(0)e1−φ(t)/(2C).

It remains to estimate the growth of φ. However, it is very simple in this case. Indeed,

let us set φ(t) := kt, where k is for some positive constant, then φ(t) satisfies all the

required properties and we obtain that the energy decays exponentially to zero.

3.2. Energy decay rate when β is linear and −h′/h decays to zero at infinity

In order to estimate I8, we have only to find φ(t) satisfying φ′(t) = −h′(t)/h(t). Indeed,

let us set φ(t) = ln(h(0)/h(t)). Then φ(t) satisfies all the required properties and φ′(t) =

−h′(t)/h(t), i.e., φ′(t) satisfies (3.7). Hence,

I8 ≤ E2(S).

Thus, by using the same argument as Subsection 3.1 we also obtain (3.9). Furthermore,

we replace φ(t) = ln(h(0)/h(t)) in (3.9), then we get

E(t) ≤ CE(0)(h(t))1/(2C).

3.3. Energy decay rate when β has polynomial growth near zero and −h′/h ≥ m for all

t, where m is some positive constant

Assume that β(s) = sγ for some γ > 1. In this particular case, it is interesting to estimate

using the method developed by [11]. It is necessary to use the multiplier E(γ−1)/2(t)φ′(t)u

in place of E(t)φ′(t)u. Then similar computations lead to∫ T

S
E(γ+1)/2(t)φ′(t) dt ≤ CE(γ+1)/2(S) + C

∫ T

S
E(γ−1)/2(t)φ′(t)‖u′(t)‖22 dt

+ C

∫ T

S
E(γ−1)/2(t)φ′(t)

∫
Ω
|g(u′(t))|2 dxdt

+ C

∫ T

S
E(γ−1)/2(t)φ′(t)(h � u)(t) dt.

(3.10)

By hypotheses on g, we have∫
|u′|≤1

|u′|2 dx ≤
∫
|u′|≤1

(u′g(u′))2/(γ+1) dx

≤ C

(∫
|u′|≤1

u′g(u′) dx

)2/(γ+1)

≤
(
−E′(t)

)2/(γ+1)
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and ∫
|u′|>1

|u′|2 dx ≤ C
∫
|u′|>1

u′g(u′) dx ≤ −CE′(t).

Hence ∫ T

S
E(γ−1)/2(t)φ′(t)

∫
Ω
|u′|2 dxdt

=

∫ T

S
E(γ−1)/2(t)φ′(t)

∫
|u′|≤1

|u′|2 dxdt+

∫ T

S
E(γ−1)/2(t)φ′(t)

∫
|u′|>1

|u′|2 dxdt

≤ C
∫ T

S
E(γ−1)/2(t)φ′(t)

(
−E′(t)

)2/(γ+1)
dt+ C

∫ T

S
E(γ−1)/2(t)

(
−E′(t)

)
dt

≤ ε
∫ T

S
E(γ+1)/2(t)φ′(t) dt+ C(ε)E(S) + CE(γ+1)/2(S).

(3.11)

Similarly, ∫ T

S
E(γ−1)/2(t)φ′(t)

∫
Ω
g(u′)2 dxdt

≤ ε
∫ T

S
E(γ+1)/2(t)φ′(t) dt+ C(ε)E(S) + E(γ+1)/2(S).

(3.12)

Moreover, by using the same argument as (3.8), we have

(3.13)

∫ T

S
E(γ−1)/2(t)φ′(t)(h � u)(t) dt ≤ CE(γ+1)/2(S).

By replacing (3.11), (3.12) and (3.13) in (3.10) and choosing ε sufficiently small, then we

get ∫ T

S
E(γ+1)/2(t)φ′(t) dt ≤ CE(S),

which implies by Lemma 3.1 and choosing φ(t) = kt that

E(t) ≤ CE(0)

(1 + t)2/(γ−1)
.

3.4. Energy decay rate when β has polynomial growth near zero and −h′/h decays to

zero at infinity

By using the same argument as Subsection 3.2, if we set φ(t) = ln(h(0)/h(t)), then we

get (3.13). Therefore, by using the same argument as Subsection 3.3 and replacing φ(t) =

ln(h(0)/h(t)), then we obtain

E(t) ≤ CE(0)

(− lnh(t))2/(γ−1)
.
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3.5. Energy decay rate when β does not necessarily have polynomial growth near zero

and −h′/h ≥ m for all t, where m is some positive constant

Assume that the function G(s) = β(s)/s is nondecreasing on (0, 1) and G(0) = 0. Let

φ(t) be the concave function such that its inverse is defined by

φ−1(t) = 1 +

∫ t

1

1

G(1/s)
ds

for all t ≥ 1. Then φ(t) satisfies all the required properties and can be easily extended on

[0, 1) such that it remains concave nondecreasing (see [14]). Moreover,∫ ∞
S

φ′(t)(G−1(φ′(t)))2 dt =

∫ ∞
φ(S)

(G−1(φ′(φ−1(s))))2 ds

=

∫ ∞
φ(S)

(
G−1

(
1

(φ−1)′(s)

))2

ds =

∫ ∞
φ(S)

1

s2
ds

=
1

φ(S)
≤ β−1

(
1

S

)
.

(3.14)

Assume that φ′(t) ≤ −m1
h′(t)
h(t) for some positive constant m1. Then we have

(3.15) I8 ≤ m1E
2(S).

Next we will estimate I6 and I7.

Estimate for I6 =
∫ T
S E(t)φ′(t)‖u′(t)‖22 dt. For every t ≥ 1 let us define

Ω1 = {x ∈ Ω : |u′(t)| ≤ f(t)},

Ω2 = {x ∈ Ω : f(t) < |u′(t)| ≤ f(1)},

Ω3 = {x ∈ Ω : |u′(t)| > f(1)},

where each Ωi depends on t and f(t) = G−1(φ′(t)) such that f is a decreasing positive

function which satisfies f(t)→ 0 as t→ +∞.

Now, let us consider these three cases.

Case 1. Part on Ω3.

First, we claim that f(1) > 0. Indeed, we assume that f(1) = 0. Then G−1(φ′(1)) =

f(1) = 0, i.e., φ′(1) = G(0) = 0. It implies that φ′(t) ≤ φ′(1) for all t ≥ 1, consequently,

φ′(t) = 0 for all t ≥ 1. This contradicts the fact that φ is strictly increasing. Thus,

f(1) > 0.

If f(1) > 1, then from (2.2), |g(u′(t))| ≥ c1|u′(t)|.
If f(1) ≤ 1, we note that the function F : s 7→ g(s)/s is positive and continuous on

[−1,−f(1)] ∪ [f(1), 1] which implies that there exists a positive constant c3 satisfying
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g(s)/s ≥ c3 for |s| ∈ [f(1), 1], i.e., |g(u′(t))| ≥ c3|u′(t)|. Hence, for c4 = min{c1, c3},
|u′(t)| ≤ 1

c4
|g(u′(t))|. Then we have∫ T

S
E(t)φ′(t)

∫
Ω3

|u′(t)|2 dxdt ≤ 1

c4
E(S)

∫ T

S
φ′(t)

∫
Ω3

|u′(t)||g(u′(t))| dxdt

≤ φ′(S)

c4
E(S)

∫ T

S

∫
Ω
u′(t)g(u′(t)) dxdt

≤ φ′(S)

c4
E2(S).

(3.16)

Case 2. Part on Ω2.

Since G is nondecreasing on (0, 1), then we have

φ′(t)|u′(t)|2 = G(f(t))|u′(t)|2 ≤ G(|u′(t)|)|u′(t)|2 = u′(t)β(u′(t)) ≤ u′(t)g(u′(t))

for all x ∈ Ω2, consequently, we obtain

(3.17)

∫ T

S
E(t)φ′(t)

∫
Ω2

|u′(t)|2 dxdt ≤ E(S)

∫ T

S

∫
Ω
u′(t)g(u′(t)) dxdt ≤ E2(S).

Case 3. Part on Ω1.

By the definition of the boundary of this paper, we have∫ T

S
E(t)φ′(t)

∫
Ω1

|u′(t)|2 dxdt ≤ E(S)

∫ T

S
φ′(t)

∫
Ω1

f2(t) dxdt

≤ meas(Ω)E(S)

∫ T

S
φ′(t)(G−1(φ′(t)))2 dt.

(3.18)

From (3.16)–(3.18), we get

(3.19) I6 ≤ CE2(S) + CE(S)

∫ T

S
φ′(t)(G−1(φ′(t)))2 dt.

Estimate for I7 =
∫ T
S E(t)φ′(t)

∫
Ω |g(u′(t))|2 dxdt. For every t ≥ 1 let us define

Ω4 = {x ∈ Ω : β−1(|u′(t)|) ≤ f(t)},

Ω5 = {x ∈ Ω : f(t) < β−1(|u′(t)|) ≤ f(1)},

Ω6 = {x ∈ Ω : β−1(|u′(t)|) > f(1)}.

By using the similar arguments as the estimate for I6, we obtain the same estimate

(3.20) I7 ≤ CE2(S) + CE(S)

∫ T

S
φ′(t)(G−1(φ′(t)))2 dt.

By replacing (3.15), (3.19) and (3.20) in (3.5) and using Lemma 3.2 and (3.14), we obtain

E(t) ≤ CE(0)

(
β−1

(
1

t

))2

.
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3.6. Energy decay rate when β does not necessarily have polynomial growth near zero

and −h′/h decays to zero at infinity

In order to prove this subsection, we introduce the useful lemma.

Lemma 3.3. [5] Given f1, f2 : R+ → R+ two continuous functions such that f1(t) → 0

as t → ∞ and
∫∞

0 f1 = +∞, f2 is nondecreasing on a neighborhood of 0 and f2(0) = 0.

Then there always exists f3 : R+ → R+ such that

(3.21) f3 ≤ f1,

∫ ∞
0

f3 = +∞,
∫ ∞

0
f3(t)f2(f3(t)) dt < +∞.

Moreover, if f1 is nonincreasing, then f3 can also be chosen nonincreasing.

Now, we define f1 := −h′(t)/h(t) and choose f2 := G−1(·)2. Then
∫ t

0 f1 = ln(h(0)/h(t))

→∞ as t→∞ and f1 is nonincreasing. Also, by the definition of G, f2 is nondecreasing

on a neighborhood of 0 and f2(0) = 0. Hence, by using Lemma 3.3 there exists φ′ := f3

that is nonincreasing and that satisfies (3.21). So we get that

φ′(t)h(t− s) ≤ φ′(t− s)h(t− s) ≤ −h′(t− s).

Hence,

(3.22) I8 ≤ E2(S).

And by using the same arguments as Subsection 3.5 and (3.21), we obtain

(3.23) I6 ≤ CE2(S) + CE(S)

∫ T

S
φ′(t)(G−1(φ′(t)))2 dt ≤ CE2(S) + CE(S)

and

(3.24) I7 ≤ CE2(S) + CE(S)

∫ T

S
φ′(t)(G−1(φ′(t)))2 dt ≤ CE2(S) + CE(S).

By replacing (3.22), (3.23) and (3.24) in (3.5) and using Lemma 3.1, we obtain

E(t) ≤ CE(0)

φ(t)
.

Next, we assume that

(3.25)
d

dt

[
h−1

(
h(0)

et

)]
≥ 1

tβ(1/t)
for all t ≥ 1.

Let us set φ(t) = ln(h(0)/h(t)), then φ(t) satisfies all the required properties and φ′(t) =

−h′(t)/h(t). So we get that

φ′(t)h(t− s) ≤ φ′(t− s)h(t− s) ≤ −h′(t− s).
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Hence,

(3.26) I8 ≤ E2(S).

On the other hand, by the same argument as (3.19) and (3.20), we have

(3.27) I6, I7 ≤ CE2(S) + CE(S)

∫ T

S
φ′(t)(G−1(φ′(t)))2 dt.

By replacing (3.26) and (3.27) in (3.5), we obtain∫ T

S
E2(t)φ′(t) dt ≤ CE2(S) + CE(S)

∫ ∞
S

φ′(t)(G−1(φ′(t)))2 dt

≤ CE2(S) + CE(S)

∫ ∞
φ(S)

(G−1(φ′(φ−1(s))))2 ds

≤ CE2(S) + CE(S)

∫ ∞
φ(S)

(
G−1

(
1

(φ−1)′(s)

))2

ds.

(3.28)

We now solve the φ−1(t). Since φ(t) = ln(h(0)/h(t)), we can obtain by simple com-

putation that φ−1(t) = h−1(h(0)/et). We note that since h−1(t) is decreasing positive

function, φ−1(t) is increasing positive function. By using the assumption (3.25) and the

fact G−1 is increasing, we deduce that∫ ∞
φ(S)

(
G−1

(
1

(φ−1)′(s)

))2

ds ≤
∫ ∞
φ(S)

(
G−1

(
G

(
1

t

)))2

ds

=

∫ ∞
φ(S)

1

s2
ds =

1

φ(S)
.

(3.29)

By replacing (3.29) in (3.28), we have∫ T

S
E2(t)φ′(t) dt ≤ CE2(S) +

CE(S)

φ(S)
,

which implies by Lemma 3.2 and definition of φ(t) that

E(t) ≤ CE(0)

(− lnh(t))2
.
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