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Abstract. The present paper concerns the study of distributional travelling waves for

the model problem ut + (u2 − v)x = 0, vt + (u3/3− u)x = 0, also called the Keyfitz-

Kranzer system. In the setting of a product of distributions, which is not defined

by approximation processes, we are able to define a rigourous concept of a solution

which extends the classical solution concept. As a consequence, we will establish

necessary and sufficient conditions for the propagation of distributional profiles and

explicit examples are given. A survey of the main ideas and formulas for multiplying

distributions is also provided.

1. Introduction and contents

Let us consider the Keyfitz Kranzer system

ut + (u2 − v)x = 0,(1.1)

vt +

(
1

3
u3 − u

)
x

= 0,(1.2)

where x ∈ R is the space variable, t ∈ R is the time variable, and u(x, t), v(x, t) are the

unknown real state variables.

Although this model has been invented with the purpose of satisfying certain mathe-

matical properties, it is related with the isentropic gas dynamic system [11] and also with

a model for a nonlinear elastic system [2]. It was also generalized and studied from several

viewpoints [10,12,13,28,29]. In the present paper, travelling wave solutions with a distri-

butional profile are studied; as far as we know this problem has not been addressed in the

literature. The main result is a necessary and sufficient condition for the propagation of

distributional wave profiles. This condition allows us to prove that continuous travelling

wave solutions are necessarily constants. Therefore, if we want to seek for nonconstant

travelling wave solutions we have to seek them among distributions that are not continu-

ous functions. The main result makes also possible the identification of an interesting set
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of distributional profiles. Thus, we will see the possibility of propagation of wave profiles

containing discontinuous functions, Dirac delta measures and also distributions that are

not measures as, for example,

• U = 2
√

3H, and V = 6H with speed c =
√

3;

• U = H + δ, and V = 1
2

(
1−

√
11/3

)
(H + δ) with speed c = 1

2

(
1 +

√
11/3

)
;

• U = Dδ and V = Dδ with speed c = 2;

• U = Dδ and V = 2Dδ with speed c = 1

(H stands for the Heaviside function, δ stands for the Dirac measure and D is the usual

derivative operator in distributional sense).

It is usual to think that distributions cannot satisfy a nonlinear system like (1.1), (1.2)

because a clear explanation of the sense in which they satisfy the system is still lacking.

On the other hand, distributional solutions obtained by limit processes often depend on

the chosen processes (in general asymptotic algorithms) and cannot be substituted into

equations or systems owing to the well known difficulties of multiplying distributions. We

will see that, in several cases, these difficulties can be overcome by defining a solution

concept in the setting of a multiplication of distributions that gives a distribution as a

result. To show the scope of these methods, let us recall some results we have obtained.

For the conservation law

ut + [φ(u)]x = ψ(u),

where φ, ψ are entire functions taking real values on the real axis, we have established [21]

necessary and sufficient conditions for the propagation of a travelling wave with a given

distributional profile and we also have computed its speed. For C1-wave profiles with

one jump discontinuity, our methods easily lead to the well known Rankine-Hugoniot

condition.

Conditions for the propagation of travelling waves with profiles β + mδ and β + mδ′

(where β is a continuous function, m ∈ R and m 6= 0) were also obtained, as well as their

speeds [22].

Gas dynamics phenomena, known as “infinitely narrow soliton solutions”, discovered

by Maslov and collaborators [5, 7, 14, 15], can be obtained directly in distributional form

[19].

For a Riemann problem concerning the generalized pressureless gas dynamics system

ut + [φ(u)]x = 0,

vt + [ψ(u)v]x = 0,
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only assuming φ, ψ : R → R continuous, we were able to show the formation of a delta

shock wave solution [24]. In this case we arrived, more easily and in a much more general

setting, to the same result of Danilov and Mitrovic [6], which have employed the weak

asymptotic method, and also to the same result of Mitrovic et al. [16], which have used a

different approach, based on a linearization process.

In the Brio system

ut +
1

2
(u2 + v2)x = 0,

vt + (uv − v)x = 0,

a simplified model for the study of plasmas, we got a delta shock wave as explicit solu-

tion for a Riemann problem [26]. This problem (suggested by Hayes and LeFlock in [8],

p. 1558), was first studied by Kalish and Mitrovic [9] who also constructed a delta shock

wave using an extension of the weak asymptotic method. Their solution coincides with

our solution (in [9] p. 712 there is a mispring in formula (3.8); the correct α(t) has the

opposite sign and in [26] p. 522, formula (17), −k0/c0 must replace −k0/b0).

Also for the Brio system we have subjected u(x, t) and v(x, t) to the initial conditions

u(x, 0) = c0δ(x),

v(x, 0) = h0δ(x)

with c0, h0 ∈ R \ {0}. Under certain assumptions, we got, as solutions, travelling delta

waves with speed (c2
0 + h2

0)/(c2
0 − h2

0) and certain singular perturbations (which are not

measures) propagating with speed 1 [25].

Regarding the interaction of singular waves, we have shown that delta waves under

collision behave just as classical soliton collisions (as in the Korteweg-de Vries equation)

in models ruled by a singular perturbation of Burgers conservative equation [20]. Also

in a conservation law with singular flux, the interaction of a δ wave with a δ′ wave was

studied. Here, we were able to distinguish three distinct dynamics for that collision to

which correspond phenomena of solitonic behavior, scattering, and merging [27].

In our framework, the product of two distributions is a distribution that depends on

the choice of a certain function α encoding the indeterminacy inherent to such products.

This indeterminacy generally is not avoidable and in many cases it also has a physical

meaning; concerning this point let us mention [1,3,4,18]. Thus, the solutions of differential

equations containing such products may depend (or not) of α. We call such solutions α-

solutions. The possibility of their occurrence depends on the physical system: in certain

cases we cannot previously know the behavior of the system, possibly due to physical

features omitted in the formulation of the model with the goal of simplifying it. Thus, the

mathematical indetermination sometimes observed may have this origin.
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Let us now summarize the present paper’s contents. In Section 2, we present the main

ideas of our method for multiplying distributions. In Section 3, we define powers of certain

distributions. In Section 4, we define the concept of α-solution for the system (1.1), (1.2);

this concept is a consistent extension of the classical solution concept. In Section 5, we

present necessary and sufficient conditions for the propagation of distributions as wave

profiles and some examples are given.

2. The multiplication of distributions

2.1. A general product of distributions

Let C∞ be the space of indefinitely differentiable real or complex-valued functions defined

on RN , N ∈ {1, 2, 3, . . .}, and D the subspace of C∞ consisting of those functions with

compact support. Let D′ be the space of Schwartz distributions and L(D) the space of

continuous linear maps φ : D → D, where we suppose D endowed with the usual topology.

We will sketch the main ideas of our distributional product (the reader can look at (2.4),

(2.8), and (2.10) as definitions, if he prefers to skip this presentation). For proofs and

other details concerning this product see [17].

First, we define a product Tφ ∈ D′ for T ∈ D′ and φ ∈ L(D) by

〈Tφ, ξ〉 = 〈T, φ(ξ)〉

for all ξ ∈ D; this makes D′ a right L(D)-module. Next, we define an epimorphism

ζ̃ : L(D)→ D′, where the image of φ is the distribution ζ̃(φ) given by

〈ζ̃(φ), ξ〉 =

∫
φ(ξ)

for all ξ ∈ D (when the domain of the integral is not specified, we consider that it is

extended all over RN ); given S ∈ D′, we say that φ is a representative operator of S if

ζ̃(φ) = S. For instance, if β ∈ C∞ is seen as a distribution, the operator φβ ∈ L(D)

defined by φβ(ξ) = βξ, for all ξ ∈ D, is a representative operator of β because, for all

ξ ∈ D, we have

〈ζ̃(φβ), ξ〉 =

∫
φβ(ξ) =

∫
βξ = 〈β, ξ〉.

For this reason ζ̃(φβ) = β. If T ∈ D′, we also have

〈Tφβ, ξ〉 = 〈T, φβ(ξ)〉 = 〈T, βξ〉 = 〈Tβ, ξ〉

for all ξ ∈ D. Hence,

Tβ = Tφβ.
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Thus, given T, S ∈ D′, we are tempted to define a natural product by setting TS :=

Tφ, where φ ∈ L(D) is a representative operator of S, i.e., φ is such that ζ̃(φ) = S.

Unfortunately, this product is not well defined, because TS depends on the representative

φ ∈ L(D) of S ∈ D′.
This difficulty can be overcome, if we fix α ∈ D with

∫
α = 1 and define sα : L(D)→

L(D) by

(2.1) [(sαφ)(ξ)](y) =

∫
φ[(τyα̌)ξ]

for all ξ ∈ D and all y ∈ RN , where τyα̌ is given by (τyα̌)(x) = α̌(x− y) = α(y− x) for all

x ∈ RN . It can be proved that for each α ∈ D with
∫
α = 1, sα(φ) ∈ L(D), sα is linear,

sα ◦ sα = sα (sα is a projector of L(D)), ker sα = ker ζ̃, and ζ̃ ◦ sα = ζ̃.

Now, for each α ∈ D, we can define a general α-product �
α

of T ∈ D′ with S ∈ D′ by

setting

(2.2) T �
α
S := T (sαφ),

where φ ∈ L(D) is a representative operator of S ∈ D′. This α-product is independent of

the representative φ of S, because if φ, ψ are such that ζ̃(φ) = ζ̃(ψ) = S, then φ − ψ ∈
ker ζ̃ = ker sα. Hence,

T (sαφ)− T (sαψ) = T [sα(φ− ψ)] = 0.

Since φ in (2.2) satisfies ζ̃(φ) = S, we have
∫
φ(ξ) = 〈S, ξ〉 for all ξ ∈ D, and by (2.1)

[(sαφ)(ξ)](y) = 〈S, (τyα̌)ξ〉 = 〈Sξ, τyα̌〉 = (Sξ ∗ α)(y)

for all y ∈ RN , which means that (sαφ)(ξ) = Sξ ∗ α. Therefore, for all ξ ∈ D,

〈T �
α
S, ξ〉 = 〈T (sαφ), ξ〉 = 〈T, (sαφ)(ξ)〉 = 〈T, Sξ ∗ α〉

= [T ∗ (Sξ ∗ α)̌ ](0) = [(Sξ)̌ ∗ (T ∗ α̌)](0) = 〈(T ∗ α̌)S, ξ〉,

and we obtain an easier formula for the general product (2.2),

(2.3) T �
α
S = (T ∗ α̌)S.

In general, this α-product is neither commutative nor associative but it is bilinear and

satisfies the Leibniz rule written in the form

Dk(T �
α
S) = (DkT )�

α
S + T �

α
(DkS),

whereDk is the usual k-partial derivative operator in distributional sense (k = 1, 2, . . . , N).
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Recall that the usual Schwartz products of distributions are not associative and the

commutative property is a convention inherent to the definition of such products (see

the classical monograph of Schwartz [30] pp. 117, 118, and 121, where these products

are defined). Unfortunately, the α-product (2.3), in general, is not consistent with the

classical Schwartz products of distributions with functions.

2.2. How to get a product consistent with the Schwartz product of a distribution with a

C∞-function

In order to obtain the referred consistency, we are going to introduce some definitions and

single out a certain subspace Hα of L(D).

An operator φ ∈ L(D) is said to vanish on an open set Ω ⊂ RN , if and only if φ(ξ) = 0

for all ξ ∈ D with support contained in Ω. The support of an operator φ ∈ L(D) will be

defined as the complement of the largest open set in which φ vanishes.

Let N be the set of operators φ ∈ L(D) whose support has Lebesgue measure zero, and

ρ(C∞) the set of operators φ ∈ L(D) defined by φ(ξ) = βξ for all ξ ∈ D, with β ∈ C∞.

For each α ∈ D, with
∫
α = 1, let us consider the space Hα = ρ(C∞) ⊕ sα(N ) ⊂L(D).

It can be proved that ζα := ζ̃|Hα : Hα → C∞ ⊕D′µ is an isomorphism (D′µ stands for the

space of distributions whose support has Lebesgue measure zero). Therefore, if T ∈ D′

and S = β+ f ∈ C∞⊕D′µ, a new α-product, α̇, can be defined by Tα̇S := Tφα, where for

each α, φα = ζ−1
α (S) ∈ Hα. Hence,

Tα̇S = Tζ−1
α (S) = T [ζ−1

α (β + f)]

= T [ζ−1
α (β) + ζ−1

α (f)] = Tβ + T �
α
f = Tβ + (T ∗ α̌)f,

and putting α instead of α̌ (to simplify), we get

(2.4) Tα̇S = Tβ + (T ∗ α)f.

Thus, the referred consistency is obtained when the C∞-function is placed at the right-

hand side: if S ∈ C∞, then f = 0, S = β, and Tα̇S = Tβ.

2.3. How to obtain the consistency with all Schwartz products of D′p-distributions with

Cp-functions

The α-product (2.4) can be easily extended for T ∈ D′p and S = β + f ∈ Cp ⊕D′µ, where

p ∈ {0, 1, 2, . . . ,∞}, D′p is the space of distributions of order ≤ p in the sense of Schwartz

(D′∞ means D′), Tβ is the Schwartz product of a D′p-distribution with a Cp-function,

and (T ∗α)f is the usual product of a C∞-function with a distribution. This extension is

clearly consistent with all Schwartz products of D′p-distributions with Cp-functions, if the
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Cp-functions are placed at the right-hand side. It also keeps the bilinearity and satisfies

the Leibniz rule written in the form

Dk(Tα̇S) = (DkT )α̇S + Tα̇(DkS),

clearly under certain natural conditions; for T ∈ D′p, we must suppose S ∈ Cp+1 ⊕ D′µ.

Moreover, these products are invariant by translations, that is,

τa(Tα̇S) = (τaT )α̇(τaS),

where τa stands for the usual translation operator in distributional sense. These products

are also invariant for the action of any group of linear transformations h : RN → RN with

| deth| = 1, that leave α invariant.

Thus, for each α ∈ D with
∫
α = 1, formula (2.4) allows us to evaluate the product of

T ∈ D′p with S ∈ Cp⊕D′µ; therefore, we have obtained a family of products, one for each

α.

From now on, we always consider the dimension N = 1. For instance, if β is a

continuous function we have for each α by applying (2.4),

δα̇β = δα̇(β + 0) = δβ + (δ ∗ α)0 = β(0)δ,

βα̇δ = βα̇(0 + δ) = β0 + (β ∗ α)δ = [(β ∗ α)(0)]δ,

δα̇δ = δα̇(0 + δ) = δ0 + (δ ∗ α)δ = αδ = α(0)δ,(2.5)

Hα̇δ = (H ∗ α)δ =

[∫ +∞

−∞
α(−τ)H(τ) dτ

]
δ =

(∫ 0

−∞
α

)
δ,(2.6)

(Dδ)α̇(Dδ) = [(Dδ) ∗ α]Dδ = α′(0)Dδ − α′′(0)δ.(2.7)

For each α, the support of the α-product (2.4) satisfies supp(Tα̇S) ⊂ suppS, as for usual

functions, but it may happen that supp(Tα̇S) 6⊂ suppT .

2.4. Other products we need in the present paper

It is also possible to multiply many other distributions preserving the consistency with all

Schwartz products of distributions with functions. For instance, using the Leibniz formula

to extend the α-products, it is possible to write

(2.8) Tα̇S = Tw + (T ∗ α)f

with T ∈ D′−1 and S = w+f ∈ L1
loc⊕D′µ, where D′−1 stands for the space of distributions

T ∈ D′ such that DT ∈ D′0 and Tw is the usual pointwise product of T ∈ D′−1 with

w ∈ L1
loc. Recall that, locally, T can be read as a function of bounded variation (see [23],

Section 2 for details). For instance, since H ∈ D′−1 and H = H + 0 ∈ L1
loc ⊕D′µ, we have

(2.9) Hα̇H = HH + (H ∗ α)0 = H.
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More generally, if T ∈ D′−1 and S ∈ L1
loc, then Tα̇S = TS; actually, using (2.8) we can

write

Tα̇S = Tα̇(S + 0) = TS + (T ∗ α)0 = TS.

Thus, in distributional sense, the α-products of functions that, locally, are of bounded

variation coincide with the usual pointwise product of these functions considered as a

distribution. We stress that in (2.4) or (2.8) the convolution T ∗α is not to be understood

as an approximation of T . Those formulas are exact.

Another useful extension that will be applied is given by the formula

(2.10) Tα̇S = D(Yα̇S)− Yα̇(DS)

for T ∈ D′0 ∩ D′µ and S,DS ∈ L1
loc ⊕ D′c, where D′c ⊂ D′µ is the space of distributions

whose support is at most countable, and Y ∈ D′−1 is such that DY = T (the products

Yα̇S and Yα̇(DS) are supposed to be computed by (2.4) or (2.8)). The value of Tα̇S given

by (2.10) is independent of the choice of Y ∈ D′−1 such that DY = T (see [23] p. 1004 for

the proof). For instance, by (2.10) and (2.6) we have, for any α,

(2.11) δα̇H = D(Hα̇H)−Hα̇(DH) = DH −Hα̇δ = δ −
(∫ 0

−∞
α

)
δ =

(∫ +∞

0
α

)
δ

so that

(2.12) Hα̇δ + δα̇H = δ

for any α. The products (2.4), (2.8), and (2.10) are compatible, that is, if an α-product

can be computed by two of them, the result is the same.

3. Powers of distributions

Let M ⊂ D′ be a set of distributions such that, if T1, T2 ∈M , then T1 α̇T2 is well defined

and T1 α̇T2 ∈M . For each T ∈M we define the α-power Tnα by the recurrence relation

(3.1) Tnα = (Tn−1
α )α̇T for n ≥ 1, with T 0

α = 1 for T 6= 0;

naturally, if 0 ∈M , 0nα = 0 for all n ≥ 1.

Since our distributional products are consistent with the Schwartz products of dis-

tributions with functions, when the functions are placed at the right-hand side, we have

βnα = βn for all β ∈ C0 ∩M . Thus, this definition is consistent with the usual definition

of powers of C0-functions. Moreover, if M is such that τaT ∈ M for all T ∈ M and all

a ∈ R, then we also have (τaT )nα = τa(T
n
α ).
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Taking, for instance, M = Cp ⊕ (D′p ∩ D′µ) and supposing T1, T2 ∈ M , we have

T1 = β1 + f1, T2 = β2 + f2 and by (2.4), we can write

T1 α̇T2 = T1β2 + (T1 ∗ α)f2 = (β1 + f1)β2 + [(β1 + f1) ∗ α]f2

= β1β2 + f1β2 + [(β1 + f1) ∗ α]f2 ∈M.

Therefore, we can define α-powers Tnα of distributions T ∈ Cp ⊕ (D′p ∩D′µ). For instance,

we have δ0
α = 1, δ1

α = δ, and for n ≥ 2, δnα = α(0)n−1δ, as can be easily seen by induction

applying (2.5).

Setting M = D′−1 and supposing T1, T2 ∈ D′−1, we have T1 α̇T2 ∈ D′−1. Thus, we can

also define α-powers Tnα of distributions T ∈ D′−1 by the recurrence relation (3.1) and

clearly we get,

Tnα = Tn,

that is, in distributional sense the α-powers of functions that, locally, are of bounded vari-

ation, coincide with the usual powers of these functions when considered as distributions.

The usual rule of the derivative of a power, in general, cannot be applied. In the sequel

we will write, in all cases, Tn instead of Tnα , supposing α fixed. For instance, we will write

δ3 = α(0)2δ instead of δ3
α = α(0)2δ.

4. The α-solution concept

Let I be an interval of R with more that one point, and let F(I) be the space of contin-

uously differentiable maps ũ : I → D′ in the sense of the usual topology of D′. For t ∈ I,

the notation [ũ(t)](x) is sometimes used for emphasizing that the distribution ũ(t) acts on

functions ξ ∈ D depending on x.

Let Σ(I) be the space of functions u : R× I → R such that:

(a) for each t ∈ I, u(x, t) ∈ L1
loc(R);

(b) ũ : I → D′, defined by [ũ(t)](x) = u(x, t) is in F(I).

The natural injection u 7→ ũ from Σ(I) into F(I) identifies any function in Σ(I) with

a certain map in F(I). Since C1(R× I) ⊂ Σ(I), we can write the inclusions

C1(R× I) ⊂ Σ(I) ⊂ F(I).

Thus, identifying u with ũ and v with ṽ the system (1.1), (1.2) can be read as follows:

dũ

dt
(t) +D[ũ(t)2 − ṽ(t)] = 0,(4.1)

dṽ

dt
(t) +D

(
1

3
ũ(t)3 − ũ(t)

)
= 0.(4.2)
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Definition 4.1. Given α, the pair (ũ, ṽ) ∈ F(I) × F(I) will be called an α- solution for

the system (4.1), (4.2) on I, if ũ(t)2 and ũ(t)3 are well defined distributions, and if both

equations are satisfied for all t ∈ I.

This definition sees the system (1.1), (1.2) as an evolution system and we have the

following results:

Theorem 4.2. If (u, v) is a classical solution of (1.1), (1.2) on R×I then, for any α, the

pair (ũ, ṽ) ∈ F(I)×F(I) defined by [ũ(t)](x) = u(x, t), [ṽ(t)](x) = v(x, t) is an α-solution

of (4.1), (4.2) on I.

Note that, by a classical solution of (1.1), (1.2) on R×I, we mean a pair (u(x, t), v(x, t))

of C1-functions that satisfies (1.1), (1.2) on R× I.

Theorem 4.3. If u, v : R× I → R are C1-functions and, for a certain α, the pair (ũ, ṽ) ∈
F(I) × F(I) defined by [ũ(t)](x) = u(x, t), [ṽ(t)](x) = v(x, t) is an α-solution of (4.1),

(4.2) on I, then the pair (u(x, t), v(x, t)) is a classical solution of (1.1), (1.2) on R× I.

For the proof, it is enough to observe that any C1-functions u(x, t) can be read as

continuously differentiable function ũ ∈ F(I) defined by [ũ(t)](x) = u(x, t) and to use the

consistency of the α-products with the classical Schwartz products of distributions with

functions.

Definition 4.4. Given α, any α-solution (ũ, ṽ) of (4.1), (4.2) on I, will be called an

α-solution of the system (1.1), (1.2) on I.

As a consequence, an α-solution (ũ, ṽ) in this sense, read as a usual distributional

solution (u, v), affords a consistent extension of the concept of a classical solution for the

system (1.1), (1.2). Thus, and for short, we also call to (u, v) an α-solution of (1.1), (1.2).

5. Travelling waves for the Keyfitz Kranzer system

For the sake of simplicity we introduce the following definition:

Definition 5.1. Let γ : R → R be a C1-function. Then, given α, the wave profiles

U, V ∈ D′ are said to α-propagate, according to (1.1), (1.2), with the movement γ(t) (and

speed γ′(t)) if the travelling waves ũ(t) = τγ(t)U and ṽ(t) = τγ(t)V are α-solutions of (4.1),

(4.2) on R.

Theorem 5.2. Given α, let U, V ∈ D′ be such that U2 and U3 are well defined distribu-

tions. Then,

• if DU 6= 0, the wave profiles U , V α-propagate with the movement γ(t) if and only

if the following three conditions are satisfied:
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(a) γ′(t) = c is a constant function;

(b) cDU = DU2 −DV ;

(c) cDV = 1
3DU

3 −DU .

• if DU = 0, the wave profiles U , V α-propagate if and only if DV = 0; in this case

the movement γ(t) is arbitrary.

Remark 5.3. Recall that U2 and U3 may depend on α and also that, in general, we cannot

apply the usual law of the derivative of a power.

Proof of Theorem 5.2. Suppose that the profiles U , V α-propagate with the movement

γ(t). Then, by Definition 5.1, ũ(t) = τγ(t)U and ṽ(t) = τγ(t)V are α-solutions of (4.1),

(4.2) on R, which means that, for all t ∈ R,

τγ(t)DU [−γ′(t)] +D
[
τγ(t)U

2 − τγ(t)V
]

= 0,

τγ(t)DV [−γ′(t)] +D

[
1

3
τγ(t)U

3 − τγ(t)U

]
= 0.

These equations are respectively equivalent to

τγ(t){DU [−γ′(t)] +DU2 −DV } = 0,

τγ(t)

{
DV [−γ′(t)] +

1

3
DU3 −DU

}
= 0,

and applying the operator τ−γ(t) to both equalities we conclude that, for all t,

γ′(t)DU = DU2 −DV,(5.1)

γ′(t)DV =
1

3
DU3 −DU.(5.2)

Suppose DU 6= 0. Then, since the right-hand side of (5.1) is independent of t we conclude

that γ′(t) = c is a constant function and (b),(c) follow. Suppose DU = 0. Then U can be

seen as an almost everywhere constant function and DU2 = DU3 = 0. From (5.1) DV = 0

follows and (5.1), (5.2) are clearly satisfied with γ(t) arbitrarily chosen. The statement is

proved.

Now, let us suppose that U, V ∈ C1. Then, using the consistency of the α-products

with the Schwartz products of distributions with functions, (b) and (c) turn out to be

cU ′ = 2UU ′ − V ′,

cV ′ = U2U ′ − U ′,

and this is the system we obtain when, for the system (1.1), (1.2), we seek for travelling

wave solutions u(x, t) = U(x − ct), v(x, t) = V (x − ct). This shows that Definition (5.1)
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provides a consistent extension of the travelling wave classical concept for the system (1.1),

(1.2).

Theorem 5.4. Suppose that the wave profiles U, V ∈ C0 α-propagate, according to (1.1),

(1.2), with the movement γ(t). Then, U and V are constant functions.

Proof. By assumption and Theorem 5.2, if DU 6= 0 we would have (a), (b) and (c).

However this is impossible. Actually, from (b) we would have DV = DU2 − cDU and

from (c) we would also have

D

[
1

3
U3 − cU2 + (c2 − 1)U

]
= 0.

Taking F = 1
3U

3 − cU2 + (c2 − 1)U , we have F ∈ C0 and DF = 0, which implies F ∈ C1

and F ′ = 0 in the usual sense (see lemma of Du Bois-Reymond for instance, in [31] p. 162),

that is, F = k is a constant function. Thus, for all x ∈ R we have

1

3
U3(x)− cU2(x) + (c2 − 1)U(x)− k = 0.

This means that, for each x, U(x) is a root of the polynomial P (z) = 1
3z

3−cz2+(c2−1)z−k.

Since this third degree polynomial does not vanish identically, its real roots are a nonempty

set of isolated points. Thus, the continuous function U takes values on a non empty set

of isolated points, that is, U is a constant function, which is a contradiction. Hence we

always have DU = 0, and from Theorem 5.2, DV = 0 follows. Then U, V ∈ C1 and

U ′ = V ′ = 0. The theorem is proved.

As a consequence, if we ask for nonconstant travelling waves of (1.1), (1.2), then we

have to seek them among distributions which are not continuous functions. The following

result provides an interesting particular class of travelling waves for the system (1.1), (1.2):

Theorem 5.5. Given α, let U, V ∈ D′ be such that U2 and U3 are well defined distri-

butions and U2 = a + bU for certain a, b ∈ R. Then, if DU 6= 0, the profiles U, V ∈ D′

α-propagate with the movement γ(t) if and only if the following four conditions are satis-

fied:

(i) b2 − 4a ≤ 12;

(ii) γ′(t) = c is a constant function;

(iii) 3c2 − 3bc+ a+ b2 − 3 = 0;

(iv) DV = (b− c)DU .
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Proof. By assumption we have DU2 = bDU and since U3 = (U2)α̇U = (a + bU)α̇U =

aU + bU2, we have

DU3 = aDU + bDU2 = (a+ b2)DU.

Now, suppose that the profiles U , V α-propagate with the movement γ(t). Then, by

Theorem 5.2, this is possible if and only if (a), (b) and (c) are satisfied. From (a) we have

(ii) and (b),(c) turn out to be respectively

cDU = bDU −DV,(5.3)

cDV =
1

3
(a+ b2)DU −DU.(5.4)

Thus, (iv) follows from (5.3). From (5.4) we can write

(3c2 − 3bc+ a+ b2 − 3)DU = 0,

and, since DU 6= 0, (iii) follows. Also because c is a real number, (i) follows from (iii).

The theorem is proved.

We will apply Theorems 5.5 and 5.2 to some examples.

Example 5.6. Taking U = r + (s− r)H, with s, r ∈ R and s 6= r, it is easy to see that

U2 = r2 + (s2 − r2)H = a+ bU

with a = −sr and b = s + r. Since U3 is also well defined, by Theorem 5.5 we conclude

that, for any α, and any constant k, the α-propagation of the wave profiles

U = r + (s− r)H and V = (s− r)(s+ r − c)H + (s+ r − c)r + k,

becomes possible with constant speed c, if and only if

s2 + 6sr + r2 ≤ 12,

and c satisfies the equation

3c2 − 3(s+ r)c+ r2 + rs+ s2 − 3 = 0.

A particular simple case can be obtained taking, for example, r = 0, s = 2
√

3 and k = 0:

we conclude that, for any α, the wave profiles U = 2
√

3H and V = 6H α-propagate with

speed c =
√

3. Exactly the same results can be obtained, within the classical setting, by

applying the well known Rankine-Hugoniot conditions.
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Example 5.7. Travelling waves for (1.1), (1.2) can also contain Dirac measures. Taking

U = H + δ, we have

U2 = (H + δ)α̇(H + δ) = Hα̇H +Hα̇δ + δα̇H + δα̇δ.

Using (2.5), (2.9) and (2.12) we get

U2 = H + [1 + α(0)]δ,

and U3 is also clearly defined. Since U2 = a+ bU if and only if a = 0, b = 1 and α(0) = 0,

by Theorem 5.5 we conclude that, for any α such that α(0) = 0 and any constant k, the

α-propagation of the wave profiles

(5.5) U = H + δ and V = (1− c)(H + δ) + k

is possible with constant speed c if and only if 3c2 − 3c− 2 = 0.

In particular, taking c = 1
2

(
1 +

√
11/3

)
and k = 0, we conclude that, for any α such

that α(0) = 0 the α-propagation of wave profiles

U = H + δ and V =
1

2

(
1−

√
11

3

)
(H + δ)

is possible with speed c = 1
2

(
1 +

√
11/3

)
.

However, if α(0) 6= 0 it is not possible to apply Theorem 5.5. Hence, if in this setting

we want a general solution, we must apply Theorem 5.2. Thus, using (2.11), we have

U3 = U2
α̇U = H +

[
1 + α(0) + α(0)

∫ +∞

0
α

]
δ,

and conditions (b),(c) of Theorem 5.2 turn out to be respectively,

c(δ +Dδ) = δ + [1 + α(0)]Dδ −DV,

cDV =
1

3
δ +

1

3

[
1 + α(0) + α(0)

∫ +∞

0
α

]
Dδ − δ −Dδ.

These conditions are satisfied if and only if

3c2 − 3c− 2 = 0,(5.6)

3c2 − 3[1 + α(0)]c+ α(0)

(
1 +

∫ +∞

0
α

)
− 2 = 0.(5.7)

Thus, we conclude that, in general, the α-propagation of the profiles (5.5) is possible if

and only if c and α satisfy (5.6) and (5.7). Clearly, our first result can also be obtained

as a particular case taking α(0) = 0.
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Example 5.8. Certain distributions which are not measures can also take the form of

travelling waves for (1.1), (1.2). Taking U = Dδ, we have, applying (2.7), U2 = α′(0)Dδ−
α′′(0)δ = a + bDδ if and only if α′′(0) = 0, a = 0 and b = α′(0). Since U3 is also clearly

defined, by Theorem 5.5 we conclude that, for any α such that α′′(0) = 0 and α′(0)2 ≤ 12,

and any k, the α-propagation of the wave profiles

U = Dδ and V = [α′(0)− c]Dδ + k

is possible with constant speed

c =
1

2
α′(0)± 1

2
√

3

√
12− α′(0)2.

Two particular simple and interesting cases take place for k = 0, and any α such that

α′′(0) = 0 and α′(0) = 3:

• the wave profiles U = Dδ and V = Dδ α-propagate with speed c = 2;

• the wave profiles U = Dδ and V = 2Dδ α-propagate with speed c = 1.
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