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New Finite Difference Methods for Singularly Perturbed

Convection-diffusion Equations

Xuefei He and Kun Wang*

Abstract. In this paper, a family of new finite difference (NFD) methods for solving

the convection-diffusion equation with singularly perturbed parameters are considered.

By taking account of infinite terms in the Taylor’s expansions and using the triangle

function theorem, we construct a series of NFD schemes for the one-dimensional prob-

lems firstly and derive the error estimates as well. Then, applying the ADI technique,

the idea is extended to two dimensional equations. Besides no numerical oscillation,

there are mainly three advantages for the proposed methods: one is that the schemes

can achieve the predicted convergence orders on uniform mesh regardless of the per-

turbed parameter for 1D equations; Secondly, no matter which convergence order the

scheme is, the generated linear systems have diagonal structures; Thirdly, the meth-

ods are easily expanded to the special mesh technique such as Shishkin mesh. Some

numerical experiments are shown to verify the prediction.

1. Introduction

We consider the following convection-diffusion equation

(1.1) − ε∆u+ αux + βuy = f, (x, y) ∈ Ω = (0, 1)× (0, 1),

where ε > 0 is the diffusion coefficient, the convection coefficients α, β and the source

term f are assumed to be sufficiently smooth functions. As is known to all, this problem

plays an important role in the computational fluid dynamics. When ε is small enough, the

equation (1.1) becomes a singularly perturbed problem, which is very difficult to simulate

due to the well-known nonphysical oscillation [21].

Received March 22, 2017; Accepted October 16, 2017.

Communicated by Ming-Chih Lai.

2010 Mathematics Subject Classification. 65L11, 65N06, 65N15.

Key words and phrases. convection-diffusion equation, finite difference method, singularly perturbed prob-

lem, Shishkin mesh, error estimate.

This work is supported by the Natural Science Foundation of China (No. 11201506), Chongqing Re-

search Program of Basic Research and Frontier Technology (No. cstc2017jcyjAX0231) and Project

No. 106112017CDJXY100006 supported by the Fundamental Research Funds for the Central Universi-

ties.

*Corresponding author.

949



950 Xuefei He and Kun Wang

To overcome this difficulty, lots of methods have been put forward. One of the popular

methods is the up-wind scheme, which is considered in [10, 14, 18]. Unfortunately, simple

up-wind scheme can not capture the features of the boundary layer exactly because of

the pollution effects. Due to the existence of the boundary layer where the solution of

this problem is the most troublesome, lots of researchers also focus on constructing some

special meshes to divide the computational domain (see [1,8,9]). One of the most famous

meshes is the Shishkin mesh proposed in 1990s and has been continued in [15, 16, 18].

Many kinds of robust numerical methods based on layer-adapted meshes were introduced

in [20], which can improve the accuracy and stabilities of the numerical scheme. Based

on the Richardson extrapolation technique, Sun [23] proposed an operator interpolation

scheme that can improve the computational accuracy. Beside special adaptively graded

and patched meshes, another technique named defect-correction is also used in [1, 6, 7].

On the other hand, as one of the famous numerical methods, high-order finite difference

schemes have also been developed for solving the singularly perturbed problem in the past

decades. To enhance the convective stability of the convection-diffusion equation, Chiu

and Sheu [3] constructed a dispersion-relation-preserving dual-compact upwind scheme.

Chu and Fan [4, 5] developed a general combined compact difference scheme which has

sixth-order accuracy. Another high-order finite difference method is the exponential finite

difference method. Pillai [19] developed a fourth-order exponential finite difference method

for the convection-diffusion problem. Similarly research is also done by Tian and Dai [24],

in which fourth order schemes for the convection-diffusion equation with both constant and

variable coefficients are obtained. Other kinds of methods, such as finite element method

and finite volume method, for solving the convection-diffusion equation are investigated

in [2, 11–13,17,29].

It is well-known that only finite terms are calculated when deducing the traditional

finite difference methods based on Taylor’s expansions. And more terms are taken into

account in constructing the scheme, higher convergence order and accurate results will

be got. However, the solution of convection-diffusion equation with singularly perturbed

coefficient satisfies |u(k)| ≤ 1/εk. Thus, the local truncation error will be huge when ε is

very small by applying the classical finite difference method. In this paper, by extending

the idea in [27,28] to the singularly perturbed problem, we investigate a kind of new finite

difference methods by calculating infinite terms in Taylor’s expansions. The proposed

schemes can achieve the predicted convergence order on uniform mesh regardless of the

singularly perturbed coefficient, and reach higher computational accuracy compared with

other well-known ones.

Furthermore, these new finite difference schemes are easily expanded to special mesh

techniques, such as Shishkin mesh, and much better approximation results can be got
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than the ones in the literatures. But different from the well-known Shishkin mesh method

which strongly depend on the location of the boundary layer and the asymptotic behavior

of the analytical solution, the proposed new methods can be easily extend to the multiple

turning point problems and the nonlinear problems in which the oscillation and asymptotic

behavior are much complicated.

The remainder paper is organized as follows. A kind of new finite difference methods

are proposed for one dimensional convection-diffusion equations with constant and variable

coefficients in Section 2. The convergence order is also derived here. Then, in Section 3,

the idea is extended to the problems in two dimension. Some numerical experiments are

shown to verify the efficiency of the algorithms in Section 4 and conclusions are stated in

Section 5.

2. New scheme in 1D

In this section, we will begin with a series of NFD schemes for the one dimensional (1D)

equation with Dirichlet boundary condition which can be reduced from (1.1) directly

(2.1) − ε∂
2u

∂x2
+ α(x)

∂u

∂x
= f(x), x ∈ Ω = (0, 1),

where α(x) 6= 0 for all x ∈ Ω is the convection coefficient. Before proceeding the deduction

of the algorithms, we recall the stability results for the equation (2.1). Since we are

particularly interested in the problem with small singularly perturbed coefficient ε, all of

the deduction in the following will be based on this assumption.

Lemma 2.1. [21] Assume that α(x) > α0 > 0 with α0 being a constant and α(x), f(x)

are sufficiently smooth. Then the solution of the problem (2.1) with homogeneous Direchlet

boundary conditions satisfies

(2.2) |u(n)(x)| ≤ C
[
1 + ε−n exp

(
−α0

1− x
ε

)]
, n ∈ Z+, x ∈ (0, 1).

It is well-known that finite difference schemes are based on the following Taylor’s

expansions

ui+1 − ui = hu
(1)
i +

h2

2!
u

(2)
i + · · ·+ hn

n!
u

(n)
i + · · · ,(2.3)

ui−1 − ui = (−h)u
(1)
i +

(−h)2

2!
u

(2)
i + · · ·+ (−h)n

n!
u

(n)
i + · · · ,(2.4)

where 0 < h < 1 is an uniform mesh size satisfying h = 1/N , and xi = ih, ui = u(xi),

fi = f(xi), (i = 0, 1, 2, . . . , N).

For example, the first two terms are contained in the central finite difference scheme,

the first four terms are included in the compact fourth order finite difference scheme and
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so on. In all of these cases, a local truncation error in the form of hn

n! u
(n)
i will be generated.

Due to Lemma 2.1, it holds that
∣∣hn

n! u
(n)
i

∣∣ = O((h/ε)n), which suggests that the predicted

convergence order of the classical methods can’t be achieved when ε is sufficient small.

Remark 2.2. For general domain (a, b) and inhomogeneous boundary condition, we can

first transform them to (0, 1) and the homogeneous one respectively, then the similar

conclusion as Lemma 2.1 can be obtained as well. Moreover, when α(x) < 0, we just need

to replace 1− x with x in (2.2).

2.1. Constant coefficient

In this subsection, we will first develop the new finite difference (NFD) schemes for (2.1)

under the assumption that α > 0 is a constant function.

In fact, according to the original equation (2.1), it yields that, for n ≥ 2

(2.5) u(n) =
(α
ε

)n−1
u(1) − 1

ε

n−2∑
k=0

(α
ε

)n−2−k
f (k).

Substituting (2.5) into the right-hand side of (2.3), we obtain

ui+1 − ui = hu
(1)
i +

+∞∑
n=2

hn

n!

[(α
ε

)n−1
u

(1)
i −

1

ε

n−2∑
k=0

(α
ε

)n−2−k
f

(k)
i

]

=
+∞∑
n=1

hn

n!

(α
ε

)n−1
u

(1)
i −

1

ε

+∞∑
n=2

hn

n!

n−2∑
k=0

(α
ε

)n−2−k
f

(k)
i

=
ε

α
(er − 1)u

(1)
i − F

+.

(2.6)

Similarly, (2.4) could also be rewritten in the same way

(2.7) ui−1 − ui =
ε

α
(e−r − 1)u

(1)
i − F

−,

where

r =
αh

ε
,

F+ =
1

ε

+∞∑
n=2

hn

n!

n−2∑
k=0

(α
ε

)n−2−k
f

(k)
i =

+∞∑
n=0

εn+1

αn+2

[
er −

n+1∑
l=0

rl

l!

]
f

(n)
i ,

F− =
1

ε

+∞∑
n=2

(−h)n

n!

n−2∑
k=0

(α
ε

)n−2−k
f

(k)
i =

+∞∑
n=0

εn+1

αn+2

[
e−r −

n+1∑
l=0

(−r)l

l!

]
f

(n)
i .

Multiplying (2.6) and (2.7) by e−r and eliminating u
(1)
i , we have

(e−2r − e−r)ui−1 + (e−r − e−3r)ui + (e−3r − e−2r)ui+1

= (e−r − e−2r)F− − (e−3r − e−2r)F+.
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Multiplying 1/(e−2r − e−r) in the above formula, we get

(2.8) ui−1 − (e−r + 1)ui + e−rui+1 =
+∞∑
m=0

Ym,

where

Ym =
εm+1

αm+2

[
m+1∑
l=1

rl

l!

[
e−r + (−1)l

]]
f

(m)
i .

Let Ui denote the approximation of ui, taking the first n terms on the right-hand side

of (2.8), we will arrive at the NFD scheme for the 1D convection-diffusion equation (2.1)

at the interior grid point as follows

(2.9) Ui−1 − (e−r + 1)Ui + e−rUi+1 =

n∑
m=0

Ym.

And a family of NFD schemes will be got when we take different n into calculation.

2.2. Variable coefficient

This subsection is devoted to deriving the new finite difference (NFD) schemes for the

convection-diffusion equation when α(x) is a function with respect to x. We also assume

that α(x) > 0 for all x ∈ Ω. Thanks to (2.1), it holds, for n ≥ 2, that

u(n) =
1

ε
[α(x)u(1) − f ](n−2)

=
1

ε

[
Cn−2
n−2αu

(n−1) + · · ·+ Ck
n−2α

(n−2−k)u(k+1) + · · ·+ C0
n−2α

(n−2)u(1) − f (n−2)
]
,

where α(k), u(k) denote the k-th order derivative of α(x) and u(x) respectively.

Then, using (2.1) recursively, we can also rewrite u(n) as an analogous form to (2.5)

which only contains u(1) and the derivatives of f . The relationship is shown in Table 2.1.

u(1) f f (1) f (2) f (3) · · · f (n−2) · · ·

u(2) 1 1

u(3) 2, 1 2 1

u(4) 3, 2, 1 3, 2 2 1

u(5) 4, 3, 2, 1 4, 3, 2 3, 2 2 1
...

u(n) n− 1, . . . , 1 n− 1, . . . , 2 n− 2, . . . , 2 n− 3, . . . , 2 n− 4, . . . , 2 · · · 1
...

Table 2.1: The power of 1/ε in the coefficients of u(1) and f (k) (k ≥ 0).
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Obviously, u(n) (n ≥ 3) has the following form which is similar to (2.5)

(2.10) u(n) =

n−1∑
k=1

P ku(1) +

n−3∑
j=0

[
n−j−1∑
k=2

Qk
j

]
f (j) +

1

ε
f (n−2),

where both P k and Qk
j are the coefficients with respect to 1/εk.

Although there are infinite terms in u(n) when n tends to infinity according to Table 2.1,

these terms can be arranged according to the power of 1/ε. By collecting the contribution

of 1/ε with different order, we get different finite-term-approximations to u(n) for all n.

Then substituting these approximation terms into (2.3) and (2.4), and using the triangle

function formula, we have different new finite difference (NFD) schemes. Three of them

are shown in the following.

First, we collect the contribution of the terms which with respect to 1/εn−1 in u(n)

(n ≥ 2) which are included in the coefficients of u(1), f only according to Table 2.1. For

each u(n) (n ≥ 2), after simply calculating, we have

(2.11) u(n) ≈ αn−1

εn−1
u(1) − αn−2

εn−1
f.

For the interior point xi, substituting (2.11) into (2.3) and (2.4), and multiplying them

by e−ri , it follows

e−ri(ui+1 − ui) ≈ P̂ 1
i u

(1)
i + Q̂1

0,ifi,(2.12)

e−ri(ui−1 − ui) ≈ P
1
iu

(1)
i +Q

1
0,ifi,(2.13)

where

ri =
hαi

ε
,

P̂ 1
i =

ε

αi
(1− e−ri), Q̂1

0,i = − ε

α2
i

(1− e−ri − rie−ri),

P
1
i =

ε

αi
(e−2ri − e−ri), Q

1
0,i = − ε

α2
i

(e−2ri − e−ri + rie
−ri).

Combing with (2.12) and (2.13), we have

A1Ui−1 +A2Ui +A3Ui+1 = Y0fi,

where

A1 = −e−riP̂ 1
i , A2 = e−ri(P̂ 1

i − P
1
i ),

A3 = e−riP
1
i , Y0 = P

1
i Q̂

1
0,i − P̂ 1

i Q
1
0,i.

To determine the second NFD scheme, all terms which are with respect to 1/εn−1,

1/εn−2 on the right-hand side of (2.10) are taken into account. The finite-term-approximations
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of u(n) for all n, after simple calculation, is

u(n) ≈ αn−1

εn−1
u(1) − αn−2

εn−1
f +

(n− 1)(n− 2)

2

αn−3α(1)

εn−2
u(1)

− n(n− 3)

2

αn−4α(1)

εn−2
f − αn−3

εn−2
f (1).

(2.14)

Similarly, replacing u(n) (n ≥ 3) in (2.3) and (2.4) with (2.14) and multiplying by e−ri

respectively, we have

e−ri(ui+1 − ui) ≈ (P̂ 1
i + P̂ 2

i )u
(1)
i + (Q̂1

0,i + Q̂2
0,i)fi + Q̂2

1,if
(1)
i ,

e−ri(ui−1 − ui) ≈ (P
1
i + P

2
i )u

(1)
i + (Q

1
0,i +Q

2
0,i)fi +Q

2
1,if

(1)
i .

After simply calculating, we can obtain the specific expression of P̂ 2
i , P

2
i , Q̂

2
0,i, Q

2
0,i and

Q̂2
1,i, Q

2
1,i as follows (P̂ 1

i , P
1
i and Q̂1

0,i, Q
1
0,i have been got before)

P̂ 2
i =

α
(1)
i ε2

2α3
i

[
(r2

i − 2ri + 2)− 2e−ri
]
,

P
2
i =

α
(1)
i ε2

2α3
i

[
e−2ri(r2

i + 2ri + 2)− 2e−ri
]
,

Q̂2
0,i = −

α
(1)
i ε2

2α4
i

[
(1− e−ri − rie−ri)(r2

i − 2ri) + r3
i e
−ri
]
,

Q
2
0,i = −

α
(1)
i ε2

2α4
i

[
(e−2ri − e−ri + rie

−ri)(r2
i + 2ri)− r3

i e
−ri
]
,

Q̂2
1,i = − ε

2

α3
i

(
1− e−ri − rie−ri −

r2
i

2!
e−ri

)
,

Q
2
1,i = − ε

2

α3
i

(
e−2ri − e−ri + rie

−ri − r2
i

2!
e−ri

)
.

Therefore, the second NFD scheme is

(2.15) A1Ui−1 +A2Ui +A3Ui+1 = Y0fi + Y1f
(1)
i ,

where

A1 = e−ri(P̂ 1
i + P̂ 2

i ),

A2 = e−ri(P̂ 1
i + P̂ 2

i )− e−ri(P 1
i + P

2
i ),

A3 = e−ri(P
1
i + P

2
i ),

Y0 = (P
1
i + P

2
i )(Q̂

1
0,i + Q̂2

0,i)− (P̂ 1
i + P̂ 2

i )(Q
1
0,i +Q

2
0,i),

Y1 = (P
1
i + P

2
i )Q̂

2
1,i − (P̂ 1

i + P̂ 2
i )Q

2
1,i.
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The third NFD scheme are constructed by collecting the terms with respect to 1/εn−1,

1/εn−2, 1/εn−3 on the right-hand side of (2.10). And the scheme is

(2.16) A1Ui−1 +A2Ui +A3Ui+1 = Y0fi + Y1f
(1)
i + Y2f

(2)
i ,

where

A1 = e−ri(P̂ 1
i + P̂ 2

i + P̂ 3
i ),

A2 = e−ri(P̂ 1
i + P̂ 2

i + P̂ 3
i )− e−ri(P 1

i + P
2
i + P

3
i ),

A3 = e−ri(P
1
i + P

2
i + P

3
i ),

Y0 = (P
1
i + P

2
i + P

3
i )(Q̂

1
0,i + Q̂2

0,i + Q̂3
0,i)− (P̂ 1

i + P̂ 2
i + P̂ 3

i )(Q
1
0,i +Q

2
0,i +Q

3
0,i),

Y1 = (P
1
i + P

2
i + P

3
i )(Q̂

2
1,i + Q̂3

1,i)− (P̂ 1
i + P̂ 2

i + P̂ 3
i )(Q

2
1,i +Q

3
1,i),

Y2 = (P
1
i + P

2
i + P

3
i )Q̂

3
2,i − (P̂ 1

i + P̂ 2
i + P̂ 3

i )Q
3
2,i,

and

P̂ 3
i =

α
(2)
i ε3

6α4
i

[
(r3

i − 3r2
i + 6ri − 6) + 6e−ri)

]
+

(α
(1)
i )2ε3

8α5
i

[
(r4

i − 4r3
i + 12r2

i − 24ri + 24)− 24e−ri)
]
,

Q̂3
0,i = −

α
(2)
i ε3

6α5
i

[
(r3

i − 3r2
i + 6ri − 12) + e−ri(r3

i + 3r2
i + 6ri + 12))

]
−

(α
(1)
i )2ε3

8α6
i

(r4
i − 4r3

i + 8r2
i − 16ri + 40)

+
(α

(1)
i )2ε3

8α6
i

[
e−ri

(
8

3
r3
i + 12r2

i + 24ri + 40

)]
,

Q̂3
1,i = −

α
(1)
i ε3

2α5
i

[
(r2

i − 2ri − 4) + e−ri
(

2

3
r3
i + 3r2

i + 6ri + 4

)]
,

Q̂3
2,i = − ε

3

α4

(
1− e−ri − rie−ri −

r2
i

2!
e−ri − r3

i

3!
e−ri

)
,

P
3
i =

α
(2)
i ε3

6α4
i

[
e−2ri(−r3

i − 3r2
i − 6ri − 6) + 6e−ri

]
+

(α
(1)
i )2ε3

8α5
i

[
e−2ri(r4

i + 4r3
i + 12r2

i + 24ri + 24)− 24e−ri
]
,

Q
3
0,i = −

α
(2)
i ε3

6α5
i

[
e−2ri(−r3

i − 3r2
i − 6ri − 12) + e−ri(−r3

i + 3r2
i − 6ri + 12)

]
−

(α
(1)
i )2ε3

8α6
i

[
e−2ri(r4

i + 4r3
i + 8r2

i + 16ri + 40)
]
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+
(α

(1)
i )2ε3

8α6
i

[
e−ri

(
−8

3
r3
i + 12r2

i − 24ri + 40

)]
,

Q
3
1,i = −

α
(1)
i ε3

2α5
i

[
e−2ri(r2

i + 2ri − 4) + e−ri
(
−2

3
r3
i + 3r2

i − 6ri + 4

)]
,

Q
3
2,i = − ε

3

α4

[
e−2ri + e−ri

(
−1 + ri −

r2
i

2!
+
r3
i

3!

)]
.

Applying the same process above, other higher order schemes can also be deduced

when more terms with respect to 1/εk on the right-hand side of (2.10) are taken into

calculation.

Remark 2.3. It’s easy to find that if we set α
(k)
i = 0 (k ≥ 1) in the NFD schemes of 1D

equations with variable coefficient, we can get the corresponding NFD schemes for 1D

equations with constant coefficient. Furthermore, for the case of constant coefficient, as

we can see in (2.9), the right-hand terms of the NFD schemes only contain the source term

f and its derivatives f
(n)
i . Thus, if the original equation is homogeneous or f

(n)
i is zero

for some n ≥ N (N ∈ Z+), the numerical solution we obtain is the exact solution actually

when we use the corresponding schemes.

2.3. Error estimate

In this subsection, we will derive the error estimate for the NFD schemes for 1D convection-

diffusion equations. And we will take the NFD scheme (2.9) with n = 2 for example to

complete it. For other cases, the estimates can be derive in a similar way.

First, we give some notes which will be frequently used in the following. Setting

Vh =
{
v | v = {vi | 0 ≤ i ≤ N}

}
,

V 0
h =

{
v | v = {vi | 0 ≤ i ≤ N} ∈ Vh, v0 = vN = 0

}
.

For all v ∈ V 0
h , we define

D+vi =
1

h
(vi+1 − vi), D−vi =

1

h
(vi − vi−1),

δxvi =
1

2h
(vi+1 − vi−1), δ2

xvi =
1

h2
(vi−1 − 2vi + vi+1),

‖v‖∞ = max
0≤i≤N

|vi|, ‖v‖2 =

√√√√h

(
1

2
v2

0 +

N−1∑
i=1

v2
i +

1

2
v2
N

)
,

|v|1 =

√√√√h
N−1∑
i=1

(δxvi−1/2)2, ‖v‖1 =
√
‖v‖2 + |v|1,
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where D+ and D− are forward and backward difference operators respectively; δx, δ2
x are

standard central difference operators; ‖v‖∞, ‖v‖2, |v|1, ‖v‖1 denote L∞ norm, L2 norm,

H1 semi-norm and H1 norm respectively.

Lemma 2.4. [22] Assume v = {vi | 0 ≤ i ≤ N} ∈ V 0
h , then the following conclusions

hold

h
N−1∑
i=1

(−δ2
xvi)vi = |v|21, ‖v‖∞ ≤

√
b− a
2
|v|1, ‖v‖2 ≤

b− a√
6
|v|1,

where a, b are the left and right boundary point of computational domain.

Before deriving the error estimate, we need to define some new finite difference op-

erators for the NFD scheme (2.9) with n = 2 which is deduced from the following two

formulas according to (2.6) and (2.7)

e−r(ui+1 − ui)

=
ε

α
(1− e−r)u(1)

i −
4∑

n=2

εn−1

αn

[
1− e−r

n−1∑
l=0

rl

l!

]
f

(n−2)
i + R̂i,

(2.17)

e−r(ui−1 − ui)

=
ε

α
(e−2r − e−r)u(1)

i −
4∑

n=2

εn−1

αn

[
e−2r − e−r

n−1∑
l=0

(−r)l

l!

]
f

(n−2)
i +Ri,

(2.18)

where r = αh/ε and

R̂i = − ε
4

α5

[
1− e−r − e−r

(
r +

r2

2!
+
r3

3!
+
r4

4!

)]
f

(3)
i ,

Ri = − ε
4

α5

[
e−2r − e−r + e−r

(
r − r2

2!
+
r3

3!
− r4

4!

)]
f

(3)
i .

And R̂i, Ri are regarded as reminder terms, the rest terms that with respect to εm (m ≥ 5)

are neglected due to ε considered is sufficient small.

Adding (2.17) and (2.18) and subtracting (2.18) from (2.17) respectively, we have

e−r(ui−1 − 2ui + ui+1) = P̂ u
(1)
i + Q̂0fi + Q̂1f

(1)
i + Q̂2f

(2)
i + R̂i +Ri,(2.19)

e−r(ui+1 − ui−1) = Pu
(1)
i +Q0fi +Q1f

(1)
i +Q2f

(2)
i + R̂i −Ri,(2.20)

where

P̂ =
ε

α
(1 + e−2r − 2e−r), P =

ε

α
(1− e−2r),

Q̂0 = − ε

α2
(1 + e−2r − 2e−r), Q0 = − ε

α2
(1− e−2r − 2re−r),

Q̂1 = − ε
2

α3
(1 + e−2r − 2e−r − r2e−r), Q1 = − ε

2

α3
(1− e−2r − 2re−r),

Q̂2 = − ε
3

α4
(1 + e−2r − 2e−r − r2e−r), Q2 = − ε

3

α4

(
1− e−2r − 2re−r − 1

3
r3e−r

)
,
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R̂i +Ri = − ε
4

α5

(
1 + e−2r − 2er − r2e−r − 1

12
r4e−r

)
f

(3)
i ,

R̂i −Ri = − ε
4

α5

(
1− e−2r − 2re−r − 1

3
r3e−r

)
f

(3)
i .

On the one hand, from (2.19) and the original equation (2.1), we get

u
(2)
i =

e−rα2(ui−1 − 2ui + ui+1)

ε2(1 + e−2r − 2e−r)
+D2

0fi +D2
1f

(1)
i +D2

2f
(2)
i

− α2(R̂i +Ri)

ε2(1 + e−2r − 2e−r)
,

(2.21)

where

D2
0 = 0, D2

1 =
1 + e−2r − 2e−r − r2e−r

α(1 + e−2r − 2e−r)
, D2

2 =
ε(1 + e−2r − 2e−r − r2e−r)

α2(1 + e−2r − 2e−r)
.

On the other hand, (2.20) also suggests that

(2.22) u
(1)
i =

αe−r(ui+1 − ui−1)

ε(1− e−2r)
+D1

0fi +D1
1f

(1)
i +D1

2f
(2)
i − α(R̂i −Ri)

ε(1− e−2r)
,

where

D1
0 =

1− e−2r − 2re−r

α(1− e−2r)
, D1

1 =
ε(1− e−2r − 2re−r)

α2(1− e−2r)
,

D1
2 =

ε2
(
1− e−2r − 2re−r − 1

3r
3e−r

)
α3(1− e−2r)

.

Thus, overlooking the remainder terms in (2.21) and (2.22), we can define two new differ-

ence operators as follows

Πxui =
αe−r(ui+1 − ui−1)

ε(1− e−2r)
+D1

0fi +D1
1f

(1)
i +D1

2f
(2)
i ,(2.23)

Π2
xui =

α2e−r(ui−1 − 2ui + ui+1)

ε2(1 + e−2r − 2e−r)
+D2

0fi +D2
1f

(1)
i +D2

2f
(2)
i .(2.24)

Substituting (2.23) and (2.24) into the original equation (2.1), we have

(2.25) − εΠ2
xUi + αΠxUi = fi.

And it is very easy to verify that (2.25) which is used to error estimates is equivalent to

the NFD scheme (2.9) with n = 2.

The above deducing indicates that we can obtain all the NFD schemes by constructing

new difference operators for u
(2)
i and u

(1)
i . And from (2.25), we can also observe that

different NFD schemes need different new operators for the reason that the new operators

contain the source term fi and its derivatives.
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Substituting (2.21) and (2.22) into the equation (2.1), we have

(2.26) − εΠ2
xui + αΠxui = fi +Ri,

where

Ri =
α2(R̂i −Ri)

ε(1− e−2r)
− α2(R̂i +Ri)

ε(1 + e−2r − 2e−r)
.

Then, subtracting (2.25) from (2.26) and setting ei = ui − Ui, we get

(2.27) − εΠ̃2
xei + αΠ̃xei = Ri,

where

Π̃xei =
αe−r(ui+1 − ui−1)

ε(1− e−2r)
, Π̃2

xei =
α2e−r(ui−1 − 2ui + ui+1)

ε2(1 + e−2r − 2e−r)
.

Comparing with the central difference operators δx and δ2
x, we have

Π̃xei =
2re−r

1− e−2r
δxei,(2.28)

Π̃2
xei =

r2e−r

1 + e−2r − 2e−r
δ2
xei.(2.29)

Putting (2.28) and (2.29) into (2.27), we have

(2.30) C1(−δ2
xei) + C2(δxei) = Ri = C3f

(3)
i ,

where

C1 =
εr2e−r

1 + e−2r − 2e−r
, C2 =

2αre−r

1− e−2r
,

C3 =
ε3

α3

[
e−r
(
2r + 1

3r
3
)

1− e−2r
−
e−r
(
r2 + 1

12r
4
)

1 + e−2r − 2e−r

]
.

Theorem 2.5. Let u(x) (0 ≤ x ≤ 1) be the solution of equation (2.1) (α > 0 is a

constant) with Dirichlet boundary condition, {Ui | 0 ≤ i ≤ N} be the solution of the NFD

scheme (2.9) (n = 2) or (2.25). The local error at the grid point xi be ei = ui − Ui, then,

we have

‖e‖∞ ≤
Mh2

24
√

6α
,

where M = max0≤i≤N |f (3)
i |.

Proof. For every interior point xi (1 ≤ i ≤ N − 1), multiplying (2.30) by hei and then

summing for i from 1 to N − 1, we get

(2.31) C1h

N−1∑
i=1

(−δ2
xei)ei + C2h

N−1∑
i=1

(δxei)ei = h
N−1∑
i=1

Riei.
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Noticing that the original equation has Dirichlet boundary condition, so e = {ei | 0 ≤ i ≤
N} ∈ V 0

h . Then according to Lemma 2.4, we have

(2.32) h
N−1∑
i=1

(−δ2
xei)ei = |e|21.

After simple calculation, it holds

N−1∑
i=1

(δxei)ei =
1

2h
[(e2 − e0)e1 + (e3 − e1)e2 + · · ·+ (eN − eN−2)eN−1]

=
1

2h
(eNeN−1 − e1e0)

= 0.

(2.33)

And the following formula is obvious as well

(2.34) h

N−1∑
i=1

Riei ≤ ‖R‖2‖e‖2.

Substituting (2.32)–(2.34) into (2.31), we have

C1|e|21 ≤ ‖R‖2‖e‖2.

Using the inequations in Lemma 2.4, we get

C1|e|21 ≤
1√
6
‖R‖2|e|1,

and

(2.35) ‖e‖∞ ≤
1

2
|e|1 ≤

1

C12
√

6
‖R‖∞.

Due to expression of Ri in (2.30), we have

(2.36) ‖R‖∞ = max
0≤i≤N

|C3f
(3)
i | ≤M |C3|,

where

M = max
0≤i≤N

|f (3)
i |.

Then, after substituting (2.36) into (2.35), we have

‖e‖∞ ≤
M |C3|
2
√

6C1

.
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For α > 0, C3 < 0, then we get

|C3|
C1

=
ε3

α3

[
e−r
(
r2 + 1

12r
4
)

1 + e−2r − 2e−r
−
e−r
(
2r + 1

3r
3
)

1− e−2r

]
1 + e−2r − 2e−r

εr2e−r

=
ε2

α3

(
1 +

1

12
r2

)
− 1 + e−2r − 2e−r

1− e−2r

ε2

α3

(
2

r
+
r

3

)
.

And it is obvious that 2/r + r/3 ≥ 2
√

2/3 for r = αh/ε > 0, thus

|C3|
C1
≤ ε2

α3

(
1 +

α2h2

12ε2

)
− 2

1 + e−2r − 2e−r

1− e−2r

√
2

3

ε2

α3

=
h2

12α
+

[
1− 2

1 + e−2r − 2e−r

1− e−2r

√
2

3

]
ε2

α3

≤ h2

12α
.

Thus, the proof is completed.

Remark 2.6. (1) If the convection coefficient α < 0 for all x ∈ Ω, by multiplying (2.6),

(2.7) and other formulas by er (r = αh/ε), the similar new finite difference (NFD) schemes

can also be got via the same processes. And the error estimates can also be done in the

same way.

(2) If the convection coefficient α(x) = 0, (2.1) will reduce to the diffusion equation.

And the following formula which is similar with (2.5) will be obtained as well

u(n) = −1

ε
f (n−2), n ≥ 2.

Applying the similar process above, we have

ui+1 + ui−1 − 2ui = −2

ε

+∞∑
m=1

(−h)2m

(2m)!
f

(2m−2)
i .

Thus, a kind of new schemes can be also derived in this case when finite terms are con-

sidered in the right-hand side of the above formula.

3. New scheme in 2D

In the previous sections, a family of NFD schemes for 1D convection-diffusion equations

have been proposed. Next, we will extend this idea to the 2D equation (1.1).

Suppose that Ω has been divided into Nx×Ny parts with hx = 1/Nx, hy = 1/Ny being

the mesh size in x and y directions respectively, (xi, yj) (0 ≤ i ≤ N , 0 ≤ j ≤ M) are the
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mesh points. Rewrite the 2D equation as follows

−ε∂
2u

∂x2
+ α(x, y)

∂u

∂x
= f̃(x, y),(3.1)

−ε∂
2u

∂y2
+ β(x, y)

∂u

∂y
= f̂(x, y),(3.2)

where

f̃(x, y) = f(x, y) + ε
∂2u

∂y2
− β(x, y)

∂u

∂y
,

f̂(x, y) = f(x, y) + ε
∂2u

∂x2
− α(x, y)

∂u

∂x
.

Obviously, (3.1) and (3.2) can be regarded as two 1D problems, thus the all NFD schemes

achieved in Section 2 can be used to deduce the NFD schemes for 2D equations.

For example, applying the scheme (2.15) to them, it follows that

Ax
1

Y x
0

Ui−1,j +
Ax

2

Y x
0

Ui,j +
Ax

3

Y x
0

Ui+1,j = f̃i,j +
Y x

1

Y x
0

f̃xi,j ,(3.3)

Ay
1

Y y
0

Ui,j−1 +
Ay

2

Y y
0

Ui,j +
Ay

3

Y y
0

Ui,j+1 = f̂i,j +
Y y

1

Y y
0

f̂yi,j ,(3.4)

where Ui,j denotes the approximation of ui,j = u(xi, yj), A
x
k (k = 1, 2, 3), Y x

0 , Y x
1 and Ay

k

(k = 1, 2, 3), Y y
0 , Y y

1 denote the coefficients in x and y directions respectively, which are

analog to that in (2.15), and

f̃xi,j =
∂f̃

∂x

∣∣∣∣
i,j

, f̂yi,j =
∂f̂

∂y

∣∣∣∣
i,j

.

Using the standard second order finite difference scheme to approximate ∂u/∂x, ∂2u/∂x2

and ∂u/∂y, ∂2u/∂y2, it is valid that

f̃xi,j = fxi,j + Φ1
1Ui−1,j−1 + Φ1

2Ui,j−1 + Φ1
3Ui+1,j−1 + Φ1

4Ui−1,j + Φ1
5Ui,j

+ Φ1
6Ui+1,j + Φ1

7Ui−1,j+1 + Φ1
8Ui,j+1 + Φ1

9Ui+1,j+1,
(3.5)

f̂yi,j = fyi,j + Ψ1
1Ui−1,j−1 + Ψ1

2Ui,j−1 + Ψ1
3Ui+1,j−1 + Ψ1

4Ui−1,j + Ψ1
5Ui,j

+ Ψ1
6Ui+1,j + Ψ1

7Ui−1,j+1 + Ψ1
8Ui,j+1 + Ψ1

9Ui+1,j+1,
(3.6)

where

Φ1
1 = − ε

2hxh2
y

− βi,j
4hxhy

, Φ1
2 =

βxi,j
2hy

, Φ1
3 =

ε

2hxh2
y

+
βi,j

4hxhy
,

Φ1
4 =

ε

hxh2
y

, Φ1
5 = 0, Φ1

6 = − ε

hxh2
y

,

Φ1
7 = − ε

2hxh2
y

+
βi,j

4hxhy
, Φ1

8 = −βxi,j
2hy

, Φ1
9 =

ε

2hxh2
y

− βi,j
4hxhy

,
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and

Ψ1
1 = − ε

2h2
xhy
− αi,j

4hxhy
, Ψ1

2 =
ε

h2
xhy

, Ψ1
3 = − ε

2h2
xhy

+
αi,j

4hxhy
,

Ψ1
4 =

αyi,j

2hx
, Ψ1

5 = 0, Ψ1
6 = −αyi,j

2hx
,

Ψ1
7 =

ε

2h2
xhy

+
αi,j

4hxhy
, Ψ1

8 = − ε

h2
xhy

, Ψ1
9 =

ε

2h2
xhy
− αi,j

4hxhy
.

Then adding (3.3) and (3.4), and substituting (3.5) and (3.6) into it, a nine-point scheme

for the 2D convection-diffusion equation with variable coefficients is obtained

(3.7) A · U = fi,j +
Y x

1

Y x
0

fxi,j +
Y y

1

Y y
0

fyi,j ,

where

A = (A1, A2, A3, A4, A5, A6, A7, A8, A9),

U = (Ui−1,j−1, Ui,j−1, Ui+1,j−1, Ui−1,j , Ui,j , Ui+1,j , Ui−1,j+1, Ui,j+1, Ui+1,j+1),

Ak = −Y
x

1

Y x
0

Φ1
k −

Y y
1

Y y
0

Ψ1
k (k = 1, 3, 7, 9),

A2 = −Y
x

1

Y x
0

Φ1
2 −

Y y
1

Y y
0

Ψ1
2 +

Ay
1

Y y
0

,

A4 = −Y
x

1

Y x
0

Φ1
4 −

Y y
1

Y y
0

Ψ1
4 +

Ax
1

Y x
0

,

A5 = −Y
x

1

Y x
0

Φ1
5 −

Y y
1

Y y
0

Ψ1
5 +

Ay
2

Y y
0

+
Ax

2

Y x
0

,

A6 = −Y
x

1

Y x
0

Φ1
6 −

Y y
1

Y y
0

Ψ1
6 +

Ax
3

Y x
0

,

A8 = −Y
x

1

Y x
0

Φ1
8 −

Y y
1

Y y
0

Ψ1
8 +

Ay
3

Y y
0

.

Similarly, applying the scheme (2.16) to (3.1) and (3.2), we can get a more accuracy

scheme as follows

(3.8) A · U = fi,j +
Y x

1

Y x
0

fxi,j +
Y y

1

Y y
0

fyi,j +
Y x

2

Y x
0

fxxi,j +
Y y

2

Y y
0

fyyi,j ,

where

Ak = −Y
x

1

Y x
0

Φ1
k −

Y y
1

Y y
0

Ψ1
k −

Y x
2

Y x
0

Φ2
k −

Y y
2

Y y
0

Ψ2
k (k = 1, 3, 7, 9),

A2 = −Y
x

1

Y x
0

Φ1
2 −

Y y
1

Y y
0

Ψ1
2 −

Y x
2

Y x
0

Φ2
2 −

Y y
2

Y y
0

Ψ2
2 +

Ay
1

Y y
0

,

A4 = −Y
x

1

Y x
0

Φ1
4 −

Y y
1

Y y
0

Ψ1
4 −

Y x
2

Y x
0

Φ2
4 −

Y y
2

Y y
0

Ψ2
4 +

Ax
1

Y x
0

,
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A5 = −Y
x

1

Y x
0

Φ1
5 −

Y y
1

Y y
0

Ψ1
5 −

Y x
2

Y x
0

Φ2
5 −

Y y
2

Y y
0

Ψ2
5 +

Ay
2

Y y
0

+
Ax

2

Y x
0

,

A6 = −Y
x

1

Y x
0

Φ1
6 −

Y y
1

Y y
0

Ψ1
6 −

Y x
2

Y x
0

Φ2
6 −

Y y
2

Y y
0

Ψ2
6 +

Ax
3

Y x
0

,

A8 = −Y
x

1

Y x
0

Φ1
8 −

Y y
1

Y y
0

Ψ1
8 −

Y x
2

Y x
0

Φ2
8 −

Y y
2

Y y
0

Ψ2
8 +

Ay
3

Y y
0

,

and

Φ2
1 =

ε

h2
xh

2
y

+
βi,j

2h2
xhy
− βxi,j

2hxhy
, Φ2

2 = − 2ε

h2
xh

2
y

− βi,j
h2
xhy

+
βxxi,j
2hy

,

Φ2
3 =

ε

h2
xh

2
y

+
βi,j

2h2
xhy

+
βxi,j

2hxhy
, Φ2

4 = − 2ε

h2
xh

2
y

,

Φ2
5 =

4ε

h2
xh

2
y

, Φ2
6 = − 2ε

h2
xh

2
y

,

Φ2
7 =

ε

h2
xh

2
y

− βi,j
2h2

xhy
+

βxi,j
2hxhy

, Φ2
8 = − 2ε

h2
xh

2
y

+
βi,j
h2
xhy
− βxxi,j

2hy
,

Φ2
9 =

ε

h2
xh

2
y

− βi,j
2h2

xhy
− βxi,j

2hxhy
, Ψ2

1 =
ε

h2
xh

2
y

+
αi,j

2hxh2
y

− αyi,j

2hxhy
,

Ψ2
2 = − 2ε

h2
xh

2
y

, Ψ2
3 =

ε

h2
xh

2
y

− αi,j

2hxh2
y

+
αyi,j

2hxhy
,

Ψ2
4 = − 2ε

h2
xh

2
y

− αi,j

hxh2
y

+
αyyi,j

2hx
, Ψ2

5 =
4ε

h2
xh

2
y

,

Ψ2
6 = − 2ε

h2
xh

2
y

+
αi,j

hxh2
y

− αyyi,j

2hx
, Ψ2

7 =
ε

h2
xh

2
y

+
αi,j

2hxh2
y

+
αyi,j

2hxhy
,

Ψ2
8 = − 2ε

h2
xh

2
y

, Ψ2
9 =

ε

h2
xh

2
y

− αi,j

2hxh2
y

− αyi,j

2hxhy
.

4. Numerical experiments

To test the effectiveness of the proposed schemes in above two sections, several numerical

experiments are presented in this section. Attention will be focus on the problems with

small diffusion coefficients. Moreover, not only the numerical results of the NFD schemes

based on uniform mesh are shown, but also we test the NFD schemes based on Shishkin

mesh. Using Shishkin mesh, we can simulate the solution inside the boundary layer more

accurate and obtain the convergence order in the whole interval.

The Shishkin mesh we used could be constructed as follows. Let N be a positive

even integer which denotes the total number of subintervals in Shishkin mesh. Set σ =

min{1/2, 2ε lnN}, and the transition point λ used in Shishkin mesh is 1− σ when α > 0

which case is considered in the following numerical experiments. Thus, the mesh sizes
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outside and inside the boundary layer are

h1 =
2λ

N
, h2 =

2(1− λ)

N
.

And the mesh points of Shishkin mesh are

xi =

ih1 i = 0, 1, 2, . . . , N/2,

λ+ (i−N/2)h2 i = N/2 + 1, . . . , N.
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(c) NFD (2.9) with n = 1
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(d) NFD (2.9) with n = 2

Figure 4.1: Convergence order of different schemes for Problem 1.

Problem 1. 1D problem with constant coefficient

Set α = 1 and the exact solution of (2.1) be u(x) = sinπx+ (exp(x/ε)−1)/(exp(1/ε)−1)

(see [19]). For the uniform mesh, we first compare the convergence order of the NFD

scheme (2.9) (n = 1, 2) with the standard finite difference (SFD) scheme and the expo-

nential finite difference (EFD) method in [24] with ε = 10−1, 10−3, 10−8 (see Figure 4.1).

It can be found that the NFD schemes can keep the convergence order stable even the

diffusion coefficient ε is very small. Then, let h = ε, we investigate the development of

the error in l∞-norm for four schemes in Figure 4.2. We can see that the error of the SFD

scheme almost doesn’t change as ε decreases, but the errors got from other three schemes

decrease as ε decreases. The interesting thing is that the scheme (2.9) with n = 2 and the
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EFD scheme in [24] have almost the same computational accuracy for the problem with

constant coefficients.
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Figure 4.2: Development of the maximum error for Problem 1 with h = ε.

Figures 4.3 and 4.4 exhibit the numerical solutions of the NFD scheme (2.9) with n = 2

based on the unform mesh and Shishkin mesh, respectively. We can see that there is no

numerical oscillation near the boundary layer despite using the uniform mesh. The NFD

scheme performs very well in this case. Since less information is captured in the boundary

layer when uniform mesh is used, there is no surprise that the maximum error based on

Shishkin mesh is slightly larger than that based on the uniform mesh.
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Figure 4.3: Numerical solution and error of the scheme (2.9) with n = 2 based on uniform

mesh for Problem 1 (ε = 10−8, N = 80).
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Figure 4.4: Numerical solution and error of the scheme (2.9) with n = 2 based on Shishkin

mesh for Problem 1 (ε = 10−8, N = 80).
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Problem 2. 1D problem with variable coefficient

Then, let α(x) = 1/(1 +x) and the exact solution u(x) = ex + 2−1/ε(1 +x)1+1/ε (see [24]),

we consider the 1D equation with a variable coefficient. In Figure 4.5, we compare the

convergence order and the computational accuracy of the EFD methods in [24] and the

NFD scheme (2.16) with ε = 10−1, 10−3, 10−8, respectively. As exhibiting in this figure,

when ε decreases, the new proposed scheme can keep the convergence rate stable better

and reach much higher accuracy. Furthermore, we perform the development of the error in

l∞-norm with h = ε in Figure 4.6 as well. It can be found that the maximum error almost

does not change as ε is dropping for the SFD scheme and the CFD scheme. However, for

the NFD scheme (2.16) and the EFD scheme in [24], the maximum errors are decreasing

and the former decreases more sharply. On the other hand, from Figures 4.7–4.10, we

can see that the NFD schemes could achieve high accuracy based on both the uniform

mesh and Shishkin mesh in the whole computational interval even though ε = 10−8 and

N = 80.
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Figure 4.5: Convergence order of different schemes for Problem 2.
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Figure 4.6: Development of the maximum error for Problem 2 with h = ε.
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Figure 4.7: Numerical solution and error of the scheme (2.15) based on uniform mesh for

Problem 2 (ε = 10−8, N = 80).
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Figure 4.8: Numerical solution and error of the scheme (2.15) based on Shishkin mesh for

Problem 2 (ε = 10−8, N = 80).
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Figure 4.9: Numerical solution and error of the scheme (2.16) based on uniform mesh for

Problem 2 (ε = 10−8, N = 80).
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Figure 4.10: Numerical solution and error of the scheme (2.16) based on Shishkin mesh

for Problem 2 (ε = 10−8, N = 80).
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N NFD (2.15) Order NFD (2.16) Order SFD Order

ε = 10−1

8 1.1178e-03 - 7.7762e-06 - 3.3512e-02 -

16 2.7729e-04 2.0112 5.1966e-07 3.9034 8.4051e-03 1.9954

32 6.9211e-05 2.0023 3.3620e-08 3.9502 2.0794e-03 2.0151

64 1.7310e-05 1.9994 2.1384e-09 3.9747 5.1851e-04 2.0037

128 4.3277e-06 2.0000 1.3483e-10 3.9873 1.2959e-04 2.0004

ε = 10−3

8 3.5721e-03 - 1.4123e-05 - 1.0202e+01 -

16 6.0209e-04 2.5687 7.1407e-06 0.9839 2.7982e+00 1.8663

32 1.7871e-04 1.7524 7.1086e-07 3.3284 1.5577e+00 0.8451

64 3.0068e-05 2.5713 7.5017e-08 3.2443 1.1888e+00 0.3899

128 2.6891e-06 3.4831 8.5108e-09 3.1398 6.8794e-01 0.7891

ε = 10−5

8 3.7548e-03 - 2.7291e-05 - 1.0437e+03 -

16 1.0260e-03 1.8717 4.0343e-06 2.7580 2.6041e+02 2.0029

32 2.6748e-04 1.9395 5.5058e-07 2.8733 6.5049e+01 2.0012

64 6.8166e-05 1.9723 6.3234e-08 3.1222 1.6312e+01 1.9956

128 1.7721e-05 1.9436 9.5414e-09 2.7284 4.3591e+00 1.9038

ε = 10−7

8 3.7572e-03 - 2.7322e-05 - 1.0440e+05 -

16 1.0273e-03 1.8708 4.0447e-06 2.7560 2.6056e+04 2.0024

32 2.6813e-04 1.9378 5.5641e-07 2.8618 6.5112e+03 2.0006

64 6.8465e-05 1.9695 7.3253e-08 2.9252 1.6276e+03 2.0002

128 1.7296e-05 1.9849 9.4068e-09 2.9611 4.0689e+02 2.0001

ε = 10−9

8 3.7572e-03 - 2.7322e-05 - 1.0440e+07 -

16 1.0273e-03 1.8708 4.0448e-06 2.7559 2.6056e+06 2.0024

32 2.6814e-04 1.9378 5.5644e-07 2.8618 6.5113e+05 2.0006

64 6.8469e-05 1.9695 7.3260e-08 2.9251 1.6277e+05 2.0002

128 1.7298e-05 1.9849 9.4098e-09 2.9608 4.0690e+04 2.0000

Table 4.1: Convergence order based on uniform mesh in l∞-norm for Problem 2.

Furthermore, the convergence orders are compared among the NFD scheme (2.15),

(2.16) and the SFD scheme based on the uniform mesh and Shishkin mesh in Tables 4.1 and

4.2, respectively. It is shown that two NFD schemes can achieve their uniform convergence
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order in both cases, respectively.

N NFD (2.15) Order NFD (2.16) Order SFD Order

ε = 10−1

8 1.0518e-03 - 2.9727e-05 - 2.1580e-02 -

16 3.0628e-04 1.7799 2.4918e-06 3.5765 1.0672e-02 1.0159

32 1.1443e-04 1.4204 3.9895e-07 2.6429 4.2527e-03 1.3273

64 4.4461e-05 1.3639 5.7873e-08 2.7852 1.5256e-03 1.4790

128 1.6242e-05 1.4529 6.7988e-09 3.0895 4.9809e-04 1.6149

ε = 10−3

8 1.5859e-02 - 9.5848e-04 - 5.9210e-01 -

16 4.0155e-03 1.9817 6.8910e-05 3.7980 2.2446e-01 1.3994

32 7.7199e-04 2.3789 2.2299e-05 1.6278 7.1098e-02 1.6586

64 1.8009e-04 2.0998 1.8894e-06 3.5610 2.4556e-02 1.5337

128 2.9835e-05 2.5937 1.9881e-07 3.2485 9.2483e-03 1.4088

ε = 10−5

8 1.6639e-02 - 1.0523e-03 - 6.4086e-01 -

16 4.3230e-03 1.9445 1.3584e-04 2.9536 2.8346e-01 1.1769

32 1.0990e-03 1.9758 1.7199e-05 2.9815 1.3245e-01 1.0977

64 2.7669e-04 1.9899 2.1451e-06 3.0033 6.2647e-02 1.0801

128 6.9307e-05 1.9972 2.2673e-07 3.2420 2.8230e-02 1.1500

ε = 10−7

8 1.6647e-02 - 1.0532e-03 - 6.4137e-01 -

16 4.3266e-03 1.9440 1.3604e-04 2.9526 2.8417e-01 1.1744

32 1.1007e-03 1.9749 1.7251e-05 2.9793 1.3361e-01 1.0888

64 2.7744e-04 1.9881 2.1709e-06 2.9904 6.4695e-02 1.0462

128 6.9638e-05 1.9942 2.7223e-07 2.9954 3.1783e-02 1.0254

ε = 10−9

8 1.6647e-02 - 1.0532e-03 - 6.4138e-01 -

16 4.3266e-03 1.9440 1.3604e-04 2.9526 2.8418e-01 1.1744

32 1.1007e-03 1.9748 1.7252e-05 2.9793 1.3362e-01 1.0887

64 2.7745e-04 1.9881 2.1692e-06 2.9915 6.4716e-02 1.0459

128 6.9641e-05 1.9942 2.7318e-07 2.9893 3.1823e-02 1.0241

Table 4.2: Convergence order based on Shishkin mesh in l∞-norm for Problem 2.

In particular, the NFD scheme (2.16) based on Shishkin mesh is third order, which is
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much better than the almost second ones in the literatures. All of these results show that

the NFD schemes are very efficiency.
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Figure 4.11: Numerical solution and error of the scheme (3.8) based on uniform mesh for

Problem 3 (ε = 10−8, Nx = Ny = 30).
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Figure 4.12: Numerical solution and error of the scheme (3.8) based on Shishkin mesh for

Problem 3 (ε = 10−8, Nx = Ny = 30).
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Figure 4.13: Development of the maximum error for Problem 3 with hx = hy = ε.

Problem 3. 2D problem with variable coefficient

In this subsection, we will verify the proposed new scheme for the convection-diffusion

problem in 2D. Assume that α(x, y) = 0, β(x, y) = 1/(1 + y) in (1.1), and the exact

solution u(x) = exp(y−x) + 2−1/ε(1 +y)1+1/ε (see [24]). The source term f is determined
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by (1.1). Due to α(x, y) = 0, the NFD scheme for x direction (3.3) will reduce to the one

mentioned in Remark 2.6.

Nx ×Ny NFD (3.8) Order EFD [24] Order

ε = 10−1

10× 10 9.2127e-06 - 2.7214e-05 -

20× 20 5.8688e-07 3.9725 1.7155e-06 3.9877

40× 40 3.6636e-08 4.0017 1.0745e-07 3.9969

80× 80 2.2895e-09 4.0002 6.7194e-09 3.9992

ε = 10−3

10× 10 1.5268e-05 - 1.5538e-04 -

20× 20 1.0106e-05 0.5954 4.6988e-05 1.7254

40× 40 8.0871e-07 3.6434 1.4614e-05 1.6850

80× 80 9.8258e-08 3.0410 1.0982e-04 -2.9098

ε = 10−5

10× 10 5.6088e-05 - 1.5526e-04 -

20× 20 8.0633e-06 2.7982 5.2017e-05 1.5776

40× 40 1.0574e-06 2.9308 1.4899e-05 1.8037

80× 80 7.1938e-08 3.8777 3.9769e-06 1.9055

ε = 10−7

10× 10 5.6223e-05 - 1.5522e-04 -

20× 20 8.1239e-06 2.7909 5.1993e-05 1.5779

40× 40 1.0997e-06 2.8851 1.4884e-05 1.8046

80× 80 1.4506e-07 2.9223 3.9730e-06 1.9054

ε = 10−9

10× 10 2.0081e-04 - 1.5522e-04 -

20× 20 1.0825e-05 4.2135 5.1993e-05 1.5779

40× 40 8.8350e-07 3.6149 1.4883e-05 1.8046

80× 80 1.6068e-07 2.4591 3.9728e-06 1.9055

Table 4.3: Convergence order based on uniform mesh in l∞-norm for Problem 3.

We first show the numerical solutions and the absolute errors for the new scheme (3.8)

based on the unform mesh and Shishkin mesh in Figures 4.11 and 4.12 respectively when

ε = 10−8 and Nx = Ny = 30. It is obvious that no numerical oscillation can be found.

Figure 4.13 is also devoted to the development of the error in l∞-norm when hx = hy = ε

based on the uniform mesh. The similar results with that for the 1D equation are obtained:
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the maximum error obtained from the NFD scheme decreases more sharply than that of

the EFD scheme. Then, in Table 4.3, for series of fixed ε, the maximum errors and

convergence rates are compared between the NFD scheme (3.8) and the EFD scheme.

Nx ×Ny NFD (3.7) Order NFD (3.8) Order

ε = 10−1

10× 10 4.7257e-04 - 7.0962e-06 -

20× 20 1.6449e-04 1.5226 9.3634e-07 2.9219

40× 40 6.1951e-05 1.4088 1.2866e-07 2.8635

80× 80 2.2536e-05 1.4589 3.5285e-08 1.8664

ε = 10−3

10× 10 8.6043e-03 - 7.8792e-04 -

20× 20 2.2807e-03 1.9156 1.3722e-05 5.8434

40× 40 4.1783e-04 2.4485 9.7671e-06 0.4905

80× 80 9.3091e-05 2.1662 7.7608e-07 3.6536

ε = 10−5

10× 10 9.7846e-03 - 8.9399e-04 -

20× 20 2.6423e-03 1.8887 8.9094e-05 3.3268

40× 40 6.8022e-04 1.9577 1.0128e-05 3.1370

80× 80 1.7266e-04 1.9781 1.1557e-06 3.1316

ε = 10−7

10× 10 9.7977e-03 - 8.9442e-04 -

20× 20 2.6527e-03 1.8850 8.9675e-05 3.3182

40× 40 6.8925e-04 1.9444 1.0336e-05 3.1170

80× 80 1.7556e-04 1.9731 1.2572e-06 3.0394

ε = 10−9

10× 10 9.7978e-03 - 8.6099e-03 -

20× 20 2.6528e-03 1.8849 1.7403e-04 5.6286

40× 40 6.8934e-04 1.9442 1.1075e-05 3.9740

80× 80 1.7566e-04 1.9726 1.6324e-06 2.7622

Table 4.4: Convergence order based on Shishkin mesh in l∞-norm for Problem 3.

It can be observed that the new method has much higher computational accuracy and

convergence order although ε is very small. Based on Shishkin mesh, the maximum errors

and convergence orders of the NFD schemes (3.7) and (3.8) are also shown in Table 4.4.

Again, the NFD schemes work very well in this case. Moreover, the NFD scheme (3.8)
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achives third convergence order which, to the best of our knowledge, is the first time to get

this accuracy for the two-dimensional singularly perturbed convection-diffusion equations

on Shishkin mesh.

5. Conclusions

A series of new finite difference methods are constructed for the 1D and 2D convection-

dominate diffusion equations with constant and variable coefficients. For 1D problems,

although the new schemes are high order methods, they have the same structure linear

system as the standard difference scheme. The new schemes have the attractive advan-

tages that there are no numerical oscillation and much higher accuracy than other methods

when solving the singularly perturbed problems. Moreover, the new methods can keep

the convergence order stable much better than others when the diffusion coefficient be-

comes smaller. Since the schemes in 2D are directly derived from the schemes for 1D case,

these advantages are also hold when solving the 2D problems. Although better simulation

results can be got by applying the special mesh technique to the NFD scheme, the new

scheme is constructed based on the stability of the analytical solution, not the local asymp-

totic behavior. It can be easily extended to other types of linear and nonlinear singular

perturbed problems [25,26,30,31] whose oscillation location and asymptotic behavior are

usually very complicated. These will be considered in the future.
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