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Scaling limits of continuous-time random walks are used in physics to model anomalous
diffusion in which particles spread at a different rate than the classical Brownian mo-
tion. In this paper, we characterize the scaling limit of the average of multiple particles,
independently moving as a continuous-time random walk. The limit is taken by increas-
ing the number of particles and scaling from microscopic to macroscopic view. We show
that the limit is independent of the order of these limiting procedures and can also be
taken simultaneously in both procedures. Whereas the scaling limit of a single-particle
movement has quite an obscure behavior, the multiple-particle analogue has much nicer
properties.

1. Introduction

Continuous-time random walks (CTRWs) were introduced in [24] to study random
walks on a lattice. They are now used in physics to model a wide variety of phenomena
connected with anomalous diffusion (see, e.g., [8, 9, 10, 13, 23, 29, 31, 34]). An approach
different from CTRWs and fractional calculus to anomalous diffusion processes are the
so-called random walks in random environments (see, e.g., [7, 12, 25] and the literature
cited therein). However, this paper focuses on the CTRW approach, but it is an interesting
open problem to discuss multiple-particle processes for random walks in random envi-
ronments too. A CTRW is a random walk subordinated to a renewal process. The random
walk increments represent the magnitude of particle jumps, and the renewal epochs rep-
resent the times of the particle jumps. CTRWs are also called renewal reward processes
(see, e.g., [33] where applications are given to queuing theory). The usual assumption
is that the CTRW is uncoupled, meaning that the random walk is independent of the
subordinating renewal process. In this case, if the time between renewals has finite mean,
then the renewal process is asymptotically equivalent to a constant multiple of the time
variable, and the CTRW behaves like the original random walk for large time [2, 15]. In
many physical applications, the waiting time between renewals has infinite mean [30]. In
[21], we showed that the scaling limit of an uncoupled CTRW with infinite mean waiting
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time is of the form A(E(t)), where A(t) is the scaling limit of the underlying random walk
and E(t) is the hitting time process for a β-stable subordinator independent of A(t).

In this paper, we analyze the limiting behavior of the average over multiple infinite
mean waiting time CTRWs in the context of operator self-similarity of stochastic pro-
cesses. As shown in [21], the limiting process {M(t)}t≥0 of a single uncoupled CTRW
has quite an obscure behavior, as it is not an operator-stable process nor it has indepen-
dent increments (i.i.). It follows from [21, Theorem 4.6] that even for a Brownian motion
{A(t)}t≥0, the distribution of M(t) is not even Gaussian.

We consider the average

Zn(t)= 1
n

n∑
k=1

X (k)(t) (1.1)

of independently moving particles, each moving as a CTRW X (k)(t) = S(k)(N (k)
t ), where

S(k)(n) denotes the random walk andN (k)
t denotes the renewal process. Now there appear

three possible ways of central limiting behavior:

(1) first scale the model from microscopic to macroscopic view and then increase the
number of particles with n→∞;

(2) first increase the number of particles with n→∞ and then scale the model from
microscopic to macroscopic view;

(3) simultaneously increase the number of particles and scale the model, that is, an-
alyze Zn(c)(ct), where n(c)→∞ as c→∞.

It will turn out that in any case of (1), (2), and (3), we get the same limiting process
{M̃(t)}t≥0 which is operator self-similar with exponent F = βE and an operator-stable
process in the sense of Maejima [17] with exponent E and with independent but nonsta-
tionary increments.

Since we are interested in operator self-similarity, the appropriate mode of conver-
gence is convergence in distribution of all finite-dimensional marginal distributions, de-

noted by
f .d.⇒ . The fact that the limiting behavior of {Zn(t)}t≥0 is the same in (1), (2),

and (3) strongly suggests that the limiting process {M̃(t)}t≥0 is a very robust model for
anomalous diffusions with much nicer properties than the single-particle CTRW limit
considered in [14, 21]. In [14], the one-dimensional CTRW limit is considered and, by
abuse of language, is called a fractional-stable distribution.

This paper is organized as follows. In Section 2, we define in detail a multiple-particle
CTRW and state our basic assumptions necessary for our main results as well as some
basic facts on operator-stable processes. In Section 3, our main results are presented to-
gether with its proofs. In Section 4, we compare the models for anomalous diffusions
emerging from the one-particle versus the multiple-particle CTRW limiting processes.
We conclude this paper by discussing an example of a so-called coupled CTRW, that is, a
CTRW where the waiting times and the jumps are dependent.
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2. Basic assumptions and preliminary results

The formulation as well as the proofs of our results rely heavily on the multivariable
central limit theory laid out in detail in [22]. In the following, we use the notation as well
as some of the results of [22] without further citation. See also [5, 21] for more detailed
references.

(A) The model. For a linear operator Q on Rd, let exp(Q) =∑∞
k=0(k!)−1Qk denote the

exponential and for t > 0, define tQ = exp(Q log t). Let Y , Yi, Y
(k)
i , i,k ≥ 1, be i.i.d. Rd-

valued random vectors which model the particle jumps. For t ≥ 0, let

S(t)=
[t]∑
j=1

Yj , S(k)(t)=
[t]∑
j=1

Y (k)
j (2.1)

so that S(t) = S(k)(t) = 0 for 0 ≤ t < 1 and assume that Y belongs to the strict gener-
alized domain of attraction of a full operator-stable random vector A with exponent
E ∈ GL(Rd), where full means that A is not concentrated on any proper hyperplane of
Rd. In summary, there exists a regularly varying norming function B : R+ →GL(Rd) with
exponent−E (denoted by B ∈ RV(−E)), that is, B(λt)B(t)−1 → λ−E as t→∞ for any λ > 0,
such that for any t > 0,

B(n)S(nt)=⇒A(t) as n−→∞, (2.2)

where A(t)
d= tEA is the Lévy process generated by the operator-stable random vector A,

which is called an operator Lévy motion. Here⇒ denotes convergence in distribution and
d= denotes equality in distribution. Note that we have Re(λ)≥ 1/2 for any eigenvalue λ of
the exponent E. Moreover, by independence (see [22, Example 11.2.18]), we obtain

B(n)S(k)(nt)
f .d.=⇒A(k)(t) as n−→∞, (2.3)

where {A(t)}t≥0, {A(k)(t)}t≥0, k ≥ 1, are i.i.d. operator-Lévy motions. Especially, [22, Ex-
ample 11.2.18] shows that {A(t)}t≥0 is operator self-similar with exponent E, that is,

{A(ct)}t≥0
f .d.= {cEA(t)}t≥0 for any c > 0, where

f .d.= denotes equality of all finite-dimensional
marginal distributions.

Further, let J , Ji, J
(k)
i be i.i.d. random variables with J ≥ 0 almost surely that model the

waiting times between successive jumps of the particles. For t ≥ 0, let

T(s)=
[s]∑
j=1

J j , T(k)(s)=
[s]∑
j=1

J (k)
j , (2.4)

where again T(t) = T(k)(t) = 0 if 0 ≤ t < 1 and assume that J belongs to the domain
of attraction of some β-stable random variable D with 0 < β < 1. To summarize this,
there exists a regularly varying norming function b : R+ → R+ with index −1/β, that is,
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b(λt)b(t)−1 → λ−1/β as t→∞ for any λ > 0, such that for any s > 0,

b(n)T(ns)=⇒D(s) as n−→∞, (2.5)

where D(s)
d= s1/βD is a β-stable subordinator. Note that due to 0 < β < 1, the random

variable J necessarily has infinite mean. Moreover, by independence we obtain

b(n)T(k)(ns)
f .d.=⇒D(k)(s) as n−→∞, (2.6)

where {D(s)}s≥0, {D(k)(s)}t≥0, k ≥ 1, are i.i.d. β-stable subordinators.

Now for k ≥ 1 and t ≥ 0, let N (k)
t =max{n≥ 0 : T(k)(n)≤ t} denote the renewal pro-

cess of the cumulative waiting times and let E(k)(t) = inf{s ≥ 0 : D(k)(s) > t} be the cor-

responding hitting time process by (2.6). Let Nt be i.i.d. as N (k)
t , k ≥ 1, and let E(t) be

i.i.d. as E(k)(t), k ≥ 1. Note that {E(t)}t≥0 has nondecreasing sampling paths and by [21,
Corollary 3.2] has moments of all orders. Moreover, for some regularly varying function
b̃ with index β and c · b(b̃(c))→ 1 as c→∞, we have by [21, Theorem 3.6] that

1

b̃(c)
N (k)
ct

f .d.=⇒ E(k)(t) as c −→∞ (2.7)

for any k ≥ 1.
Now for k ≥ 1 and t ≥ 0, let

X (k)(t)= S(k)
(
N (k)
t

)
, X(t)= S(Nt

)
(2.8)

be CTRWs, each describing the movement of a single-particle. Then {X (k)(t)}t≥0 are i.i.d.

as {X(t)}t≥0. In the following, we assume that {Y ,Yi,Y
(k)
i , J , Ji, J

(k)
i : i,k ≥ 1} are indepen-

dent so that each CTRW {X (k)(t)}t≥0 is uncoupled. Let B̃(c) = B(b̃(c)). It follows from
[21, Theorem 4.2] that for any k ≥ 1,

B̃(c)X (k)(ct)
f .d.=⇒M(k)(t)= A(k)(E(k)(t)

)
as c −→∞, (2.9)

where {M(k)(t)}t≥0 are i.i.d. as {M(t)}t≥0 = {A(E(t))}t≥0, each describing the macro-
scopic movement of a particle. It is shown in [21, Section 4] that {M(k)(t)}t≥0 is operator
self-similar with exponent F = βE, that is,

{
M(k)(ct)

}
t≥0

f .d.= {
cFM(k)(t)

}
t≥0 (2.10)

for any k ≥ 1 and any c > 0, but neither is operator-stable nor has stationary or indepen-
dent increments.

(B) Operator-stable processes. In this section, we briefly recall the definition of an
operator-stable process and analyze in detail the example of an operator Lévy motion,
which is crucial for our main results. We follow the basic definition of [17]. Assume that
A is some strictly operator-stable random vector with exponent E and distribution ν,
that is, ν is infinitely divisible and νt = (tEν) for any t > 0, where νt denotes the t-fold
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convolution power of ν. It follows from [22, Theorem 7.2.1] that the real parts of the
eigenvalues of E are greater than or equal to 1/2.

Definition 2.1. An Rd-valued stochastic process {Z(t)}t≥0 is called an operator-stable pro-
cess with exponent E, if for any 0 < t1 < ··· < tm and m≥ 1, the random vector (Z(t1), . . . ,
Z(tm)) is operator-stable with exponent E(m) = diag(E, . . . ,E) on (Rd)m.

This definition generalizes the well-known notion of a Gaussian or symmetric α-stable
process. See [27] for details on those processes.

The following example is crucial for our main results: let {A(t)}t≥0 be an operator Lévy
motion with exponent E and without normal component, that is, the distribution ν of
A=A(1) has the Lévy representation [a,0,ϕ], where a∈Rd and ϕ denotes the Lévy mea-
sure of ν (see [22, Theorem 3.1.11]). It then follows from the operator stability of ν that
A(t) has distribution νt and hence by [22, Definition 3.1.23] has Lévy measure t ·ϕ. Then
by [17], we have that {A(t)}t≥0 is an operator-stable process in the sense of Definition 2.1.
We now describe the Lévy measure of its finite-dimensional marginal distributions. Let
0 = t0 < t1 < ··· < tm be arbitrary. Then the random vectors A(ti)−A(ti−1), i = 1, . . . ,m,
are independent and A(ti)−A(ti−1)

d= A(ti− ti−1) has Lévy measure (ti− ti−1) ·ϕ. It fol-
lows from the independence of the Rd-valued components that the (Rd)m-valued random
vector

ξm =
(
A
(
t1
)
,A
(
t2
)−A(t1), . . . ,A(tm)−A(tm−1

))
(2.11)

is operator-stable on (Rd)m with exponent E(m) and has Lévy measure

Φ̃t1,...,tm =
m∑
i=1

(
ti− ti−1

) ·ϕi, (2.12)

with

ϕi = ε0⊗···⊗ ε0⊗ϕ⊗ ε0⊗···⊗ ε0 (2.13)

for i = 1, . . . ,m, where ϕ appears in the ith component of the product measure and ε0

denotes Dirac measure at the origin. Now let

Ψm :
(
R
d
)m −→ (

R
d
)m

, Ψm
(
x1, . . . ,xm

)= (x1,x1 + x2, . . . ,x1 + ···+ xm
)
. (2.14)

Then Ψm is linear and invertible and we have Ψm ◦ tE(m) = tE(m) ◦Ψm. Hence (A(t1),A(t2),
. . . ,A(tm))=Ψm(ξm) is operator-stable on (Rd)m with exponent E(m) and has Lévy mea-
sure

Φt1,...,tm =Ψm
(
Φ̃t1,...,tm

)= m∑
i=1

(
ti− ti−1

) ·Ψm
(
ϕi
)
. (2.15)
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3. Main results

In this section, we present our main results together with their proofs. We show that
the multiple-particle average CTRW process {Zn(t)}t≥0 defined in (1.1) will, properly

normalized, converge in the
f .d.=⇒-sense in all three cases (1), (2), and (3) to the same

limiting process {M̃(t)}t≥0. It will turn out that this limiting process is an operator-stable
process with exponent E which is operator self-similar with exponent F = βE, where β
and E are as in Section 2. Let f d−� denote the convergence in distribution of finite-
dimensional marginals of the process.

Theorem 3.1 (case (1)).

f d−�− lim
n→∞ lim

c→∞B
(
b̃(c)n

)
nZn(ct)= M̃(t), (3.1)

where {M̃(t)}t≥0 is operator self-similar with exponent F = βE. Moreover, {M̃(t)}t≥0 is an
operator-stable process with exponent E. In caseA=A(1) in (2.3) has no normal component,
for 0 < t1 < ··· < tm, the random vector (M̃(t1), . . . ,M̃(tm)) has Lévy measure

Ξt1,...,tm =Φ
Cβt

β
1 ,...,Cβt

β
m

, (3.2)

where Φs1,...,sm is as in (2.15) and Cβ = E(E(1)); E denoting expectation. Especially,

{M̃(t)}t≥0 has independent increments and M̃(t)− M̃(s)
d= (Cβ(tβ− sβ))EA for 0≤ s < t.

Theorem 3.2 (case (2)).

f d−�− lim
c→∞ lim

n→∞B
(
b̃(c)n

)
nZn(ct)= M̃(t), (3.3)

where the limiting process {M̃(t)}t≥0 is as in Theorem 3.1.

Theorem 3.3 (case (3)). Let n(c)→∞ as c→∞. Then

f d−�− lim
c→∞B

(
b̃(c)n(c)

)
n(c)Zn(c)(ct)= M̃(t), (3.4)

where the limiting process {M̃(t)}t≥0 is as in Theorem 3.1.

We now give the proofs of our main results together with a technical lemma necessary
for the proofs. We start with Theorem 3.1.

Proof of Theorem 3.1. Fix any 0 = t0 < t1 < ··· < tm. Let for all i mean for i = 1, . . . ,m. It
follows from [21, Theorem 4.2] (see (2.9)) that for all k ≥ 1, we have

(
B̃(c)X (k)(cti) :∀i)=⇒ (

M(k)(ti) :∀i) as c −→∞. (3.5)
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Since B ∈ RV(−E), we know B(b̃(c)n)B(b̃(c))−1 → n−E as c→∞. Hence, by independence
in k, we conclude that

(
B
(
b̃(c)n

)
nZn

(
cti
)

:∀i)= n∑
k=1

((
B
(
b̃(c)n

)
B
(
b̃(c)

)−1)
B̃(c)X (k)(cti) :∀i

)

=⇒
n∑
k=1

(
n−EM(k)(ti) :∀i) as c −→∞.

(3.6)

Now for any Borel sets Ui ⊂Rd, i= 1, . . . ,m, we have by independence of {A(k)(t)}t≥0 and
{E(k)(t)}t≥0 for any k that

P

{ n∑
k=1

(
M(k)(ti) :∀i)∈U1×···×Um

}

= P
{ n∑
k=1

A(k)(E(k)(t1))∈U1, . . . ,
n∑
k=1

A(k)(E(k)(tm))∈Um

}

=
∫

R
m
+

···
∫

R
m
+

P

{ n∑
k=1

A(k)
(
x(1)
k

)
∈U1, . . . ,

n∑
k=1

A(k)
(
x(m)
k

)
∈Um

}

×dP(E(1)(t1),...,E(1)(tm))

(
x(1)

1 , . . . ,x(m)
1

)
···dP(E(n)(t1),...,E(n)(tm))

(
x(1)
n , . . . ,x(m)

n

)

=
∫

R
m
+

···
∫

R
m
+

P
{
A
(
x(1)

1 + ···+ x(1)
n

)
∈U1, . . . ,A

(
x(m)

1 + ···+ x(m)
n

)
∈Um

}

×dP(E(1)(t1),...,E(1)(tm))

(
x(1)

1 , . . . ,x(m)
1

)
···dP(E(n)(t1),...,E(n)(tm))

(
x(1)
n , . . . ,x(m)

n

)

= P
{
A

( n∑
k=1

E(k)(t1)
)
∈U1, . . . ,A

( n∑
k=1

E(k)(tm)
)
∈Um

}
.

(3.7)

In order to justify the formula above, we have to show that

P

{ n∑
k=1

A(k)
(
x(1)
k

)
∈U1, . . . ,

n∑
k=1

A(k)
(
x(m)
k

)
∈Um

}

= P
{
A
(
x(1)

1 + ···+ x(1)
n

)
∈U1, . . . ,A

(
x(m)

1 + ···+ x(m)
n

)
∈Um

}
.

(3.8)

For m= 1, we have by independence that

P

{ n∑
k=1

A(k)
(
x(1)
k

)
∈U1

}
= P

{
A
(
x(1)

1 + ···+ x(1)
n

)
∈U1

}
. (3.9)

Note that since the sample paths of {E(t)}t≥0 are nondecreasing, we necessarily have

x(1)
i ≤ ··· ≤ x(m)

i for all i= 1, . . . ,n. By induction and using the fact that {A(k)(t)}t≥0 has
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stationary and independent increments, we therefore get that

P

{ n∑
k=1

A(k)
(
x(1)
k

)
∈U1, . . . ,

n∑
k=1

A(k)
(
x(m)
k

)
∈Um

}

= P
{ n∑
k=1

A(k)
(
x(1)
k

)
∈U1, . . . ,

n∑
k=1

A(k)
(
x(m−1)
k

)
∈Um−1,

n∑
k=1

(
A(k)

(
x(m−1)
k

)
+
(
A(k)

(
x(m)
k

)
−A(k)

(
x(m−1)
k

)))
∈Um

}

=
∫

Rd
···

∫
Rd
P

{ n∑
k=1

A(k)
(
x(1)
k

)
∈U1, . . . ,

n∑
k=1

A(k)
(
x(m−1)
k

)
∈Um−1,

n∑
k=1

(
A(k)

(
x(m−1)
k

)
+ yk

)
∈Um

}

×dPA(x(m)
1 −x(m−1)

1 )

(
y1
)···dPA(x(m)

n −x(m−1)
n )

(
yn
)

=
∫

Rd
···

∫
Rd
P
{
A
(
x(1)

1 + ···+ x(1)
n

)
∈U1, . . . , A

(
x(m−1)

1 + ···+ x(m−1)
n

)
∈Um−1,

A
(
x(m−1)

1 + ···+ x(m−1)
n

)
+ y1 + ···+ yn ∈Um

}
×dPA(x(m)

1 −x(m−1)
1 )

(
y1
)···dPA(x(m)

n −x(m−1)
n )

(
yn
)

= P
{
A
(
x(1)

1 + ···+ x(1)
n

)
∈U1, . . . , A

(
x(m−1)

1 + ···+ x(m−1)
n

)
∈Um−1,

A

(
x(m−1)

1 + ···+ x(m−1)
n +

n∑
k=1

(
x(m)
k − x(m−1)

k

))
∈Um

}

= P
{
A
(
x(1)

1 + ···+ x(1)
n

)
∈U1, . . . , A

(
x(m)

1 + ···+ x(m)
n

)
∈Um

}
,

(3.10)

proving (3.8).
Therefore, by (3.6) and (3.7), we have shown that

{
B
(
b̃(c)n

)
nZn(t)

}
t≥0

f .d.=⇒
{
n−EA

( n∑
k=1

E(k)(t)

)}
t≥0

(3.11)

as c→∞. Since by [21, Corollary 3.2], we have E(E(t)γ)= Cβtβγ for any γ > 0, the weak
law of large numbers implies

1
n

n∑
k=1

E(k)(ti)−→ E
(
E
(
ti
))

as n−→∞ (3.12)



P. Becker-Kern and H.-P. Scheffler 221

in probability for 1 ≤ i ≤ m. In view of (3.7), we therefore get for any continuity sets

Ui ⊂Rd, i= 1, . . . ,m, using that {A(ct)}t≥0
f .d.= {cEA(t)}t≥0,

P

{ n∑
k=1

(
n−EM(k)(ti) :∀i

)
∈U1×···×Um

}

= P
{
n−EA

( n∑
k=1

E(k)(t1)
)
∈U1, . . . , n−EA

( n∑
k=1

E(k)(tm)
)
∈Um

}

= P
{
A

(
1
n

n∑
k=1

E(k)(t1)
)
∈U1, . . . , A

(
1
n

n∑
k=1

E(k)(tm)
)
∈Um

}

−→ P
{
A
(
E
(
E
(
t1
)))∈U1, . . . , A

(
E
(
E(tm

)))∈Um
}

(3.13)

as n→∞, using the continuity in distribution of (y1, . . . , ym) �→ (A(y1), . . . ,A(ym)) and
(3.12). Hence (3.1) follows, where

{
M̃(t)

}
t≥0

f .d.= {
A
(
E
(
E(t)

))}
t≥0 =

{
A
(
Cβt

β
)}

t≥0. (3.14)

Hence {M̃(t)}t≥0 has independent increments with M̃(t) − M̃(s)
d= (Cβ(tβ − sβ))EA.

Moreover,

{
cFM̃(t)

}
t≥0

f .d.=
{(
cβ
)E
A
(
Cβt

β
)}

t≥0

f .d.= {
A
(
Cβc

βtβ
)}

t≥0
f .d.= {

M̃(ct)
}
t≥0, (3.15)

proving that {M̃(t)}t≥0 is operator self-similar with exponent F = βE. Finally, if A has
no normal component and Lévy measure ϕ, by (2.15) the operator-stable random vector
(A(s1), . . . ,A(sm)) for 0 < s1 < ··· < sm has Lévy measure Φs1,...,sm . Hence the Lévy measure
of the operator-stable random vector (M̃(t1), . . . ,M̃(tm)) with exponent E(m) has Lévy
measure Ξt1,...,tm as in (3.2). This concludes the proof. �

For the proof of Theorems 3.2 and 3.3, we need the following lemma, which might be
of independent interest.

Lemma 3.4. For any γ > 0, we have

E

((
1

b̃(c)
Nct

)γ)
−→ E

(
E(t)γ

)
as c −→∞. (3.16)

Proof. Note that

E

((
1

b̃(c)
Nct

)γ)
= γ

∫∞
0
xγ−1P

{
1

b̃(c)
Nct ≥ x

}
dx (3.17)

and that by [21, Theorem 3.6], we have

P
{

1

b̃(c)
Nct ≥ x

}
−→ P

{
E(t)≥ x} as c −→∞. (3.18)
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We now show that for some small δ > 0, there exists a c0 > 0 such that

P
{

1

b̃(c)
Nct ≥ x

}
≤ ete(−1+δ)x (3.19)

for all c ≥ c0 and all x > 0. Then by dominated convergence, we obtain

γ
∫∞

0
xγ−1P

{
1

b̃(c)
Nct ≥ x

}
−→ γ

∫∞
0
xγ−1P

{
E(t)≥ x}dx = E

(
E(t)γ

)
(3.20)

as c→∞.
It remains to show (3.19). Since b(b̃(c)) ∼ 1/c as c→∞, we have c−1T(b̃(c))⇒ D as

c→∞. In view of [28, Example 24.12], for a suitable choice of the norming function b
in (2.6), we get for the Laplace transform E(e−sD) = exp(−sβ) for s ≥ 0. Hence by the
continuity theorem for Laplace transforms, we have for any s≥ 0 that

E
(
e−sc

−1T(b̃(c)))−→ E
(
e−sD

)= e−sβ as c −→∞. (3.21)

Therefore, for s= 1, we obtain

(
E
(
e−c

−1J
))[b̃(c)] −→ e−1 as c −→∞, (3.22)

so for any 0 < δ < 1, there exists a c0 > 0 such that

(
E
(
e−c

−1J
))b̃(c) ≤ e−1+δ ∀c ≥ c0. (3.23)

Since {T(n)≤ t} = {Nt ≥ n}, using Markov’s inequality, we have

P
{

1

b̃(c)
Nct ≥ x

}
= P{Nct ≥ b̃(c)x

}
= P{c−1T

(
b̃(c)x

)≤ t}
= P{exp

(− c−1T
(
b̃(c)x

))≥ e−t}
≤ etE(exp

(− c−1T
(
b̃(c)x

)))
= et(E(e−c−1J

))b̃(c)x

≤ ete(−1+δ)x

(3.24)

for all c ≥ c0 and all x > 0, proving (3.19). This concludes the proof. �

Proof of Theorem 3.2. Again, fix any 0 < t1 < ··· < tm and note that by (2.3) and indepen-
dence, we have for all k ≥ 1 that

(
B(n)S(k)(nti) :∀i)=⇒ (

A(k)(ti) :∀i) as n−→∞. (3.25)
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Similar to the proof of (3.7) and (3.8), we have for any Borel sets Ui ⊂Rd that

P

{ n∑
k=1

(
X (k)(ti) :∀i)∈U1×···×Um

}

= P
{ n∑
k=1

S(k)
(
N (k)
t1

)
∈U1, . . . ,

n∑
k=1

S(k)
(
N (k)
tm

)
∈Um

}

= P
{
S

( n∑
k=1

N (k)
t1

)
∈U1, . . . , S

( n∑
k=1

N (k)
tm

)
∈Um

}
.

(3.26)

Using (3.25), we therefore get for any continuity sets Ui ⊂Rd that

P
{(
B
(
b̃(c)n

)
nZn

(
cti
)

:∀i)∈U1×···×Um
}

= P
{
B
(
b̃(c)n

)
S

( n∑
k=1

N (k)
ct1

)
∈U1, . . . , B

(
b̃(c)n

)
S

( n∑
k=1

N (k)
ctm

)
∈Um

}

=
∫

R
m
+

P
{
B
(
b̃(c)n

)
S
(
nx1

)∈U1, . . . , B
(
b̃(c)n

)
S
(
nxm

)∈Um
}

×dP((1/n)
∑n
k=1N

(k)
ct1 ,...,(1/n)

∑n
k=1N

(k)
ctm )

(
x1, . . . ,xm

)
.

(3.27)

Note that by [4, (4.3)], together with the regular variation of B, that is, B(b̃(c)n)B(n)−1 →
b̃(c)−E, we have

P
{
B
(
b̃(c)n

)
S
(
nxi
)∈Ui :∀i}−→ P

{
b̃(c)−EA

(
xi
)∈Ui :∀i} (3.28)

as n→∞ uniformly on compact subsets of {0≤ x1 ≤ ··· ≤ xm}. Moreover, by the weak

law of large numbers, we have n−1
∑n

k=1N
(k)
cti → E(Ncti) as n→∞ in probability and hence

in distribution. Then by [4, Proposition 4.1], we conclude

P
{(
B
(
b̃(c)n

)
nZn

(
cti
)

:∀i)∈U1×···×Um
}−→ P

{
b̃(c)−EA

(
E
(
Ncti

))∈Ui :∀i}
(3.29)

as n→∞.
In view of the operator self-similarity of {A(t)}t≥0 with exponent E together with

Lemma 3.4, we finally obtain

P
{
b̃(c)−EA

(
E
(
Ncti

))∈Ui :∀i}= P{A(E

(
1

b̃(c)
Ncti

))
∈Ui :∀i

}

−→ P
{
A
(
E
(
E
(
ti
)))∈Ui :∀i} (3.30)

as c→∞ which concludes the proof. �
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Proof of Theorem 3.3. We argue as before. Fix any 0 < t1 < ··· < tm and continuity sets

Ui ∈Rd. Using (3.26) and using the independence of {S(k)(t)}t≥0 and {N (k)
t }t≥0 again, we

have that

P
{(
B
(
b̃(c)n(c)

)
n(c)Zn(c)

(
cti
)

:∀i)∈U1×···×Um
}

= P
{
B
(
b̃(c)n(c)

)n(c)∑
k=1

S(k)
(
N (k)
cti

)
∈Ui :∀i

}

= P
{
B
(
b̃(c)n(c)

)
S

(
b̃(c)n(c) · 1

n(c)

n(c)∑
k=1

1

b̃(c)
N (k)
cti

)
∈Ui :∀i

}

=
∫

R
m
+

P
{
B
(
b̃(c)n(c)

)
S
(
b̃(c)n(c)xi

)∈Ui :∀i}dP(T(1)
c ,...,T(m)

c )

(
x1, . . . ,xm

)
,

(3.31)

where for i= 1, . . . ,m,

T(i)
c = 1

n(c)

n(c)∑
k=1

1

b̃(c)
N (k)
cti . (3.32)

Now by Lemma 3.4, we have E(b̃(c)−1Ncti)→ E(E(ti)) as c→∞ and by Tschebyschev’s
inequality,

P
{∣∣∣∣T(i)

c −E

(
1

b̃(c)
Ncti

)∣∣∣∣ > ε
}
= P

{∣∣∣∣ 1
n(c)

n(c)∑
k=1

1

b̃(c)

(
N (k)
cti −E

(
Ncti

))∣∣∣∣ > ε
}

≤ 1
ε2

V

(
1

n(c)

n(c)∑
k=1

1

b̃(c)

(
N (k)
cti −E

(
Ncti

)))

= 1
ε2

1
n(c)

V

(
1

b̃(c)
Ncti

)
−→ 0

(3.33)

as c→∞, using Lemma 3.4 again. Hence T(i)
c → E(E(ti)) in probability as c→∞ for any

i= 1, . . . ,m and in view of (3.25) and (3.31), we get by the same argument as in the proof
of Theorem 3.2 that

P
{
B
(
b̃(c)n(c)

)
n(c)Zn(c)

(
cti
)∈Ui :∀i}−→ P

{
A
(
E
(
E
(
ti
)))∈Ui :∀i} (3.34)

as c→∞ and the proof is complete. �

Remark 3.5. It is shown in [16, Section 5] that in case of a Lévy motion {A(t)}t≥0 without
normal component, the distribution of the scaling limitM(t)= A(E(t)) of a single CTRW
is regularly varying with exponent E in the sense of [22, Definition 6.1.1] and hence
belongs to the generalized domain of attraction of A = A(1). The proof of Theorem 3.2
shows that the distribution of X(t) for any fixed t > 0 belongs to the generalized domain
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of attraction of A as well and hence, by [22, Corollary 8.2.11], also has a regularly varying
distribution with exponent E.

Remark 3.6. Note that since t �→ E(E(t)) = Cβtβ is continuous and {A(t)}t≥0 is a Lévy
process, the Hausdorff dimension of the range of the sample paths of the limiting process
is

dimM̃
(
[0,1]

)= dimA
(
E
(
E[0,1]

))= dimA
(
[0,1]

)
almost surely. (3.35)

Now dimA([0,1]) can be computed using the formulas in [3, Theorems 2.1 and 2.2]
which only depend on the real parts of the eigenvalues of the exponent E together with the
dimensions of the corresponding generalized eigenspaces. Hence the operator stability
exponent E of {M̃(t)}t≥0 determines the tail behavior and thus the Hausdorff dimension
of the sample paths, whereas the operator self-similarity exponent F = βE determines the
space-time scaling behavior.

Remark 3.7. We now present the governing equation for the density q(x, t) of the dis-
tribution of M̃(t), where {M̃(t)}t≥0 is the limiting process obtained in Section 3. Recall
from [11, Section 2] that the density p(x, t) of A(t), where {A(t)}t≥0 is an operator Lévy
motion, solves the pseudodifferential equation

∂p

∂t
(x, t)= Lx p(x, t), p(x,0)= δ(x), (3.36)

where Lx is the generator of the corresponding continuous convolution semigroup of
probability measures of {A(t)}t≥0. The suffix x indicates that Lx is only acting on the space
variable x. Note that Lx is a (nonlocal) pseudodifferential operator generated by the log-
characteristic function of the distribution of A(1). See [19, 20] for further information
and applications to hydrology. If {A(t)}t≥0 is a standard Brownian motion, then Lx =
∆x =

∑d
i=1(∂2/∂x2

i ) is the Laplace operator.
Recall from Section 3 that M̃(t) = A(Cβtβ) and hence if q(x, t) denotes the density of

M̃(t), we have q(x, t) = p(x,Cβtβ). Since M̃(0) = A(0) = 0 almost surely, it follows from
(3.36) that q(x, t) solves the pseudodifferential equation

∂

∂t
q(x, t)= Lx(t)q(x, t), q(x,0)= δ(x), (3.37)

where Lx(t)= Cββtβ−1Lx and Lx is the generator of {A(t)}t≥0. Here δ(x) denotes the Dirac
distribution. Note that since 0 < β < 1, the now time-dependent generator Lx(t) has a
singularity at t = 0.

Now, if the real parts of the eigenvalues of E are smaller than 1/β, it follows from [18,
Theorem 5.4] that the fractional operator Lévy motion

Θ(t)=ΘβE,E(t)=
∫∞
−∞

(|t−u|(β−1)E−|u|(β−1)E)dZ(u), (3.38)
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where {Z(t)}t∈R is an operator Lévy motion with exponent E, exists and {Θ(t)}t≥0 is
operator self-similar with exponent F = βE and an operator-stable process with exponent
E, similar to our limiting process {M̃(t)}t≥0. Now, using the operator self-similarity and
operator stability, we obtain

Θ(t)
d= tFΘ(1)

d= (tβ)EΘ(1)
d= Ã(tβ) (3.39)

for some operator Lévy motion {Ã(t)}t≥0 with exponent E, generated by Ã(1) = Θ(1).
Hence, the density f (x, t) of Θ(t) also solves a variant of (3.37), with Lx replaced by the

generator of {Ã(t)}t≥0. Therefore, we have Θ(t)
d= Ã(tβ) for any t > 0. The difference be-

tween the two processes {Θ(t)}t≥0 and {Ã(tβ)}t≥0 is that {Ã(tβ)}t≥0 has independent but
nonstationary increments, whereas {Θ(t)}t≥0 has stationary but no independent incre-
ments.

4. Comparison of anomalous diffusion models

In this section, we compare the two different models for anomalous diffusions emerging
from the single-particle CTRW scaling limit and the multiple-particle CTRW limiting
process. Our discussion includes stochastic properties of the limiting process as well as
the corresponding pseudodifferential equations for their densities.

We start with the single-particle CTRW scaling limit {M(t)}t≥0. Complementary to
the results in [21], we first provide the following result which is of independent inter-
est. Recall from [21, Theorem 4.2] that M(t)= A(E(t)), where {A(t)}t≥0 is the operator
Lévy motion modelling the jumps and {E(t)}t≥0 is the hitting time process of a β-stable
subordinator. Note that both processes are independent.

Theorem 4.1. Let {M(t)}t≥0 be the scaling limit of an uncoupled CTRW. Then {M(t)}t≥0

does not have independent increments.

Proof. Let ν denote the distribution of A(1). Then the strict operator stability implies
that νt = tEν for all t > 0. Hence, if ν̂(ξ) = exp(ψ(ξ)) with log-characteristic function ψ,
we obtain

t ·ψ(ξ)= ψ(tE∗ξ) ∀t > 0, ξ ∈R
d. (4.1)

Assume that {M(t)}t≥0 has independent increments. Fix any 0 < t1 < t2. Then, using
the i.i. assumption, we get that for any ξ1,ξ2 ∈Rd,

E
[

exp
(
i
〈
ξ1,M

(
t2
)−M(t1)〉+ i

〈
ξ2,M

(
t1
)〉)]

= E
[

exp
(
i
〈
ξ1,M

(
t2
)−M(t1)〉)] ·E

[
exp

(
i
〈
ξ2,M

(
t1
)〉)]

= R̃(t1, t2;ξ1,ξ2
)
.

(4.2)
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Now, since {A(t)}t≥0 has stationary and independent increments (s.i.i.), we obtain

E
[

exp
(
i
〈
ξ1,M

(
t2
)−M(t1)〉)]=

∫
E
[

exp
(
i
〈
ξ1,A(v)−A(u)

〉)]
dP(E(t1),E(t2))(u,v)

=
∫

E
[

exp
(
i
〈
ξ1,A(v−u)

〉)]
dP(E(t1),E(t2))(u,v)

=
∫

exp
(
(v−u)ψ

(
ξ1
))
dP(E(t1),E(t2))(u,v),

E
[

exp
(
i
〈
ξ2,M

(
t1
)〉)]=

∫
E
[

exp
(
i
〈
ξ2,A(u)

〉)]
dPE(t1)(u)

=
∫

exp
(
uψ
(
ξ2
))
dPE(t1)(u).

(4.3)

Hence

R̃
(
t1, t2;ξ1,ξ2

)=
∫

exp
(
(v−u)ψ

(
ξ1
))
dP(E(t1),E(t2))(u,v) ·

∫
exp

(
uψ
(
ξ2
))
dPE(t1)(u).

(4.4)

Now fix any ξ̃1, ξ̃2 ∈Rd \ {0} and let ξ1 = sE∗1 ξ̃1 and ξ2 = sE∗2 ξ̃2 for s1,s2 > 0. Note that since
ν is full and operator-stable, we have |ν̂(ξ)| = |exp(ψ(ξ))| = exp(Reψ(ξ)) < 1 (see, e.g.,
[22, Corollary 7.1.12]). Hence Reψ(ξ) < 0 for any ξ �= 0. Using (4.1), we get

R
(
t1, t2;s1,s2

)= R̃(t1, t2;sE
∗

1 ξ̃1,sE
∗

2 ξ̃2
)

=
∫

exp
(
(v−u)s1ψ

(
ξ̃1
))
dP(E(t1),E(t2))(u,v) ·

∫
exp

(
us2ψ

(
ξ̃2
))
dPE(t1)(u).

(4.5)

Note that this expression extends continuously to s1 = 0, s2 = 0 by dominated conver-
gence. Using dominated convergence together with Reψ(ξ) < 0 again, we get by [21,
Corollary 3.2] that for some Cβ > 0,

F
(
t1, t2

)= ∂2

∂s2∂s1
R
(
t1, t2;s1,s2

)∣∣
s1=0,s2=0

= ψ(ξ̃1
)∫

(v−u)dP(E(t1),E(t2))(u,v) ·ψ(ξ̃2
)∫

udPE(t1)(u)

= ψ(ξ̃1
)
ψ
(
ξ̃2
)
E
[
E
(
t2
)−E(t1)] ·E

[
E
(
t1
)]

= C2
βψ
(
ξ̃1
)
ψ
(
ξ̃2
)(
t
β
2 − tβ1

)
t
β
1 .

(4.6)

On the other hand, using that {A(t)}t≥0 has s.i.i., we get

L̃
(
t1, t2;ξ1,ξ2

)= E
[

exp
(
i
〈
ξ1,M

(
t2
)−M(t1)〉+ i

〈
ξ2,M

(
t1
)〉)]

=
∫

E
[

exp
(
i
〈
ξ1,A(v)−A(u)

〉
+ i
〈
ξ2,A(u)

〉)]
dP(E(t1),E(t2))(u,v)

=
∫

E
[

exp
(
i
〈
ξ1,A(v−u)

〉)] ·E
[

exp
(
i
〈
ξ2,A(u)

〉)]
dP(E(t1),E(t2))(u,v)

=
∫

exp
(
(v−u)ψ

(
ξ1
)) · exp

(
uψ
(
ξ2
))
dP(E(t1),E(t2))(u,v).

(4.7)
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Let ξ1 = sE∗1 ξ̃1 and ξ2 = sE∗2 ξ̃2 as above to get

L
(
t1, t2;s1,s2

)= L̃(t1, t2;sE
∗

1 ξ̃1,sE
∗

2 ξ̃2
)

=
∫

exp
(
(v−u)s1ψ

(
ξ̃1
)) · exp

(
us2ψ

(
ξ̃2
))
dP(E(t1),E(t2))(u,v).

(4.8)

Note that R(t1, t2;s1,s2)= L(t1, t2;s1,s2). Now, as before,

G
(
t1, t2

)= ∂2

∂s2∂s1
L
(
t1, t2;s1,s2

)∣∣
s1=0,s2=0

= ψ(ξ̃1
)
ψ
(
ξ̃2
)∫

(v−u)udP(E(t1),E(t2))(u,v)

= ψ(ξ̃1
)
ψ
(
ξ̃2
)(

E
[
E
(
t1
)
E
(
t2
)]−E

[
E
(
t1
)2
])
.

(4.9)

Since F(t1, t2)=G(t1, t2) for all 0 < t1 < t2, we also have

∂2

∂t1∂t2
F
(
t1, t2

)= ∂2

∂t1∂t2
G
(
t1, t2

)
. (4.10)

But by [21, (3.4)] (see also [6, Proposition 1(a)]), we have for some constant C > 0,

∂2

∂t1∂t2
G
(
t1, t2

)= ψ(ξ̃1
)
ψ
(
ξ̃2
) ∂2

∂t1∂t2
E
[
E
(
t1
)
E
(
t2
)]

= Cψ(ξ̃1
)
ψ
(
ξ̃2
)(
t1t2

)β−1
(

1− t1
t2

)β−1

,

∂2

∂t1∂t2
F
(
t1, t2

)= C2
ββ

2ψ
(
ξ̃1
)
ψ
(
ξ̃2
)(
t1t2

)β−1
.

(4.11)

Since ψ(ξ) �= 0 for ξ �= 0, this gives a contradiction. �

The limiting process {M(t)}t≥0 of a single-particle CTRW has the following proper-
ties.

(S1) Operator self-similarity:

{
M(ct)

}
t≥0

f .d.= {
cFM(t)

}
t≥0 for any c > 0, (4.12)

where F = βE.
(S2) The distribution ofM(t) is not operator-stable (see [21, Theorem 4.6]) and hence

{M(t)}t≥0 is not an operator-stable process.
(S3) The process {M(t)}t≥0 has neither stationary (see [21, Corollary 4.5]) nor inde-

pendent increments (see Theorem 4.1).
(S4) Let h(x, t) denote the density of M(t). Then h is the solution to the fractional

diffusion equation

∂β

∂tβ
h(x, t)= Lxh(x, t) + δ(x)

t−β

Γ(1−β)
, h(x,0)= δ(x), (4.13)
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where Lx denotes the generator of the Lévy motion {A(t)}t≥0 and the fractional
derivative of order β is given by

∂β

∂tβ
h(x, t)= C

∫ t
0

∂

∂t
h(x,τ)(t− τ)−βdτ. (4.14)

See [1, 21] for details and [26] for a comprehensive treatment of fractional calcu-
lus. By [21, Corollary 4.4 and Theorem 5.1], the solution of (4.13) is given by

h(x, t)=
∫∞

0
p
(
x, (t/s)β

)
gβ(s)ds, (4.15)

where p(x, t) is the density of A(t) and gβ is the density of the β-stable random
variable D(1).

Interpretation of the first model. Due to the nonlocal nature of the fractional time deriv-
ative in (4.13), a possible interpretation is that the moving particle has a memory. This
is also reflected by the fact that M(t) = A(E(t)) and E(t) is a stopping time for the β-
stable subordinator, so {E(t)≤ s} is measurable with respect to the σ-field generated by
{D(u) : 0≤ u≤ s}.

For comparison, we now collect in the same order some of the properties of the
multiple-particle limiting process {M̃(t)}t≥0 obtained in this paper. Recall from Section 3
that M̃(t)= A(Ctβ) for some C > 0 and an operator Lévy motion {A(t)}t≥0 modelling the
jumps. Then we have the following properties.

(M1) Operator self-similarity:

{
M̃(ct)

}
t≥0

f .d.= {
cFM̃(t)

}
t≥0 for any c > 0, (4.16)

where F = βE.
(M2) The distribution of M̃(t) is operator-stable and {M̃(t)}t≥0 is an operator-stable

process.
(M3) The process {M̃(t)}t≥0 has independent but nonstationary increments with

M̃(t)− M̃(s)
d= C(tβ− sβ)EA(1) (4.17)

for 0 < s < t.
(M4) Let q(x, t) denote the density of M̃(t). Then it is shown in (3.37) that q(x, t) solves

the equation

∂

∂t
q(x, t)= Lx(t)q(x, t), q(x,0)= δ(x), (4.18)

where Lx(t)= Ctβ−1Lx and Lx is the generator of {A(t)}t≥0. Note that by Remark
3.7,

q(x, t)= p
(
x,Cβtβ

)
, (4.19)

where p(x, t) is the density of A(t).
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Interpretation of the second model. The cloud of particles is carrying a nonstandard
watch running at tβ (t is standard time), so the physical time for the particles is deformed.
This is reflected by the time-dependent pseudodifferential operator Lx(t) for the space
variables and even more by M̃(t)= A(Ctβ).

In summary, both limiting processes {M(t)}t≥0 and {M̃(t)}t≥0 are operator self-similar
with the same exponent F = βE, so they model anomalous diffusions since 0 < β < 1.
However, the distributional and process properties of {M̃(t)}t≥0 are much nicer than
those of the single-particle limiting process {M(t)}t≥0. The multiple-particle model sug-
gests that the cloud of particles is moving along the deformed time tβ, whereas the single-
particle model suggests that the particle has a memory.

Remark 4.2. In order to compare our results with [32], we consider the special case
of {A(t)}t≥0 being a one-dimensional symmetric α-stable Lévy motion. Since A(t)

d=
t1/αA(1), it follows easily that for the density p(x, t) ofA(t), we have p(x, t)= t−1/α p(t−1/αx,
1). Hence, by (4.15) for some constant C > 0,

h(0, t)∼ Ct−β/α as t −→∞ (4.20)

if α > 1, which coincides with [32, (49)]. Moreover, in [32], using a different method, the
asymptotic behavior h(0, t)∼ Ct−β in the case 0 < α < 1 is also obtained. It is interesting
to note that for the density q(x, t) of our multiple-particle limit process M̃(t), we have by
(4.19) that q(0, t)∼ Ct−β/α as t→∞ independent of 0 < α < 2.

5. Example of a coupled multiple-particle CTRW

Complementary to the so-called uncoupled CTRWs, where the waiting time Ji is assumed
to be independent from the ith jump Yi, considered in [21] and analyzed further in the
present paper, there are also investigations in the so-called coupled case, where depen-
dence between Ji and Yi is allowed. In [5], we derived a limit theorem for coupled CTRWs
allowing arbitrary dependence between the waiting time Ji and the jump Yi, by assuming
that (Y1, J1) belongs to some generalized domain of attraction. It is natural to investigate
multiple-particle coupled CTRWs similar to the uncoupled case considered in this work.
Of course, the introduction of dependence into the model complicates the analysis as can
be seen in [5]. We show now, by computing a specific example, that it is possible to get
a limit theorem for the coupled case at least for one fixed time point t > 0 as well. Our
example is based on [5, Example 5.6] and we use the notation used there.

Let D be β-stable for some 0 < β < 1 and let A be a symmetric, that is, A
d= −A,

operator-stable random vector with exponent E. Let {A(t)}t≥0 be the operator Lévy mo-
tion generated by A. We define the distribution of the jumps Y by the conditional distri-

bution (Y |D = t) d= A(t). Now let (Y (k)
i , J (k)

i ), i,k ≥ 1, be i.i.d. as (Y ,D). Define X (k)(t)=
S(k)(N (k)

t ) as in Section 2 and note that in contrast to the uncoupled case considered in

this paper, now {S(k)(t)}t≥0 and {N (k)
t }t≥0 are dependent for any fixed k ≥ 1 but

{X (k)(t)}t≥0 are i.i.d. It is shown in [5, Example 5.6] that for any fixed t > 0, we have

c−EX (k)(ct)=⇒M(k)(t) as c −→∞ (5.1)
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for all k ≥ 1. Moreover,M(k)(t)
d= A(k)(tB(k)), where {A(k)(t)}t≥0 are i.i.d. as {A(t)}t≥0 and

B(k) are i.i.d. having a β-distribution with probability density uβ−1(1− u)−β/(Γ(β)Γ(1−
β)) on (0,1) and {A(k)(t)}t≥0, B(k), k ≥ 1, are independent. Hence

c−E
n∑
k=1

X (k)(ct)=⇒
n∑
k=1

A(k)(tB(k)) as c −→∞. (5.2)

By a variant of (3.7) and A(ct)
d= cEA(t), we have

n−E
n∑
k=1

A(k)(tB(k)) d= n−EA
(
t

n∑
k=1

B(k)

)
d=A

(
t

1
n

n∑
k=1

B(k)

)
. (5.3)

Since by the weak law of large numbers n−1
∑n

k=1B
(k) → E(B(1)) = β as n→∞ in proba-

bility, we have shown that for any fixed t > 0

�− lim
n→∞ lim

c→∞(cn)−EnZn(ct)= A(βt). (5.4)

The example shows that in the coupled case, the limiting behavior of Zn(t) is quite dif-
ferent from the uncoupled case considered in Section 3. This parallels the differences be-
tween the limiting behavior of single-particle uncoupled and coupled CTRWs, respec-
tively. See [5, 21]. The derivation of a general limit theorem for multiple-particle coupled
CTRWs is an open and challenging problem and will be pursued elsewhere.
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