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The problem of crack propagation along the interface of two bonded dissimilar
orthotropic plates is considered. Using Galilean transformation, the problem is reduced
to a quasistatic one. Then, using Fourier transforms and asymptotic analysis, the prob-
lem is reduced to a pair of singular integral equations with Cauchy-type singularity.
These equations are solved using Gauss-Chebyshev quadrature formulae. The dynamic
stress intensity factors are obtained in closed form expressions. Furthermore, a paramet-
ric study is introduced to investigate the effect of crack growth rate and geometric and
elastic characteristics of the plates on values of dynamic stress intensity factors.

1. Introduction

Composite materials have been extensively employed in many engineering fields such as
mechanical and aerospace structures. When the material used as member of such struc-
tures contains a crack, it is seriously necessary to study the stress field distribution at the
immediate vicinity of crack tips. The inertia action must be considered when the applied
loads or crack length depend on time. Also, the most frequently observed phenomenon
in the experiments shows that the crack growth rate is constant during the extending his-
tory except in the final unstable or arresting stage [11]. So, the elastodynamic analysis of
a moving crack, with constant velocity, is one of the most important problems in fracture
mechanics. The dynamic stress intensity factors (DSIF) play a key role in characteriz-
ing the fracture behaviour of such problems. Thus, analytical determination of DSIF in
predicting the fracture cannot be overemphasized.

In general, there are two approaches for analytical determination of DSIF. The first one
employs the integral transforms and asymptotic analysis to reduce the problem to that of
a system of singular integral equations [1, 3, 10, 15, 20, 22, 23]. The second approach
employs complex analysis to reduce the problem to that of a system of Riemann-Hilbert
problems [12, 13, 14, 19].

The present work is concerned with elastodynamic stress disturbance problem of a
moving Griffith crack with constant velocity. The crack is located at the interface of two
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Figure 1.1. Two bonded dissimilar plates containing moving interfacial crack.

bonded dissimilar orthotropic plates, as shown in Figure 1.1. Each plate possesses a finite
width and is subjected to a static stress distribution along crack surfaces. This is the main
difference between the present work and previous ones [1, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15,
19, 20, 22, 23], which were concerned only with plates of infinite widths. The governing
equations of the problem are described. Then, Fourier transforms and asymptotic anal-
ysis are employed to reduce the solution of the problem to that of a system of first-kind
singular integral equations with Cauchy-type singularity. These are solved numerically
according to the algorithm in [17]. Then, closed-form expressions for the asymptotic
stress field distribution at the immediate vicinity of crack tips are obtained.

2. Governing equations

Assuming that the Cartesian coordinate axes are the axes of symmetry of the elastic ma-
terials, the displacement equations of motion for orthotropic plates are [3]

*Ut rUt *U¢ rUt
e 1 e 1 e e 2 _ . e9 Yl
Cligxy TG LGt Colgrax, =M e o
2 U¢ UYL 22Ut UYL ’
14 2 14 2 0 4 1 _ 4 2
Ces X2 +C, X2 +[C12+C66]8X18X2 =mans

where ¢ is a superscript (£ = 1 for orthotropic material in X, >0, while € = 2 for or-
thotropic material in X; < 0), as shown in Figure 1.1; Uf (j = 1,2) are the displacement
components in direction of X; and X3, respectively; ij (i,j=1,2)and C& are the elastic
constants of orthotropic plate materials; and m¢ and ¢ are the material mass density and
time, respectively.

The boundary conditions along the interface of plates are

Xlzlll(l)* 0'212 (X],Xz,t) = Xlziil(}* 0'222 (Xl,Xz,t) = F1 (Xl),

Xi| <agp+d,
111’1’1 0'112(X1,X2,t) = 111’1‘1 UIZZ(XI,Xz,t) = F2 (Xl), | 1| 0
X,—0* Xo—0~
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: 1 —_ 1 2
X121£16+ Ul (X],Xz,t) = Xlzlil(}* Ul (X],Xz,t),

. . . , |X1 | >ag+ d
Xlzlil’(}+ U2 (X],Xz,t) = Xlzl—I'I(}* U2 (X],Xz,t),

: 1 . 2
Xlzlf.r(%+ 022 (X] ,X2, t) - Xlzlf.r(%f 022 (X] ,X2, t) >

) . ) . |X1 ! >ag+ d,
Xlzliré+ 01, (X1,X5,t) = XIZII%— o, (X1,X5, 1),

(2.2)

where ay is the initial half crack length, and d = |c|t, where ¢ is the magnitude of crack

propagation velocity. Moreover, F;(X;) (i = 1,2) are known functions. They represent the

applied static stress along crack surfaces; Fi(—X;) = F1(X;) and F,(=X;) = — 2(=X)).
The boundary conditions along the external boundaries are

o1, (X1, Hist) = 03, (X1, Hi,t) = 01, (X1, —Ha, t)
2 (2.3)
=0 (XI:_HZ:t) =0, |X1 ! < 00,

where H, and H, are as shown in Figure 1.1.
Using Galilean transformation: x = (X; — ct)/ay, y = X,/ay, and t = ¢, the governing

equations (2.1), (2.2), and (2.3) can be reduced to a quasistatic form as follows:

Fut  , 000 ,%ut

PYEI 0xdy T ay> 0.
(¢=1,2) (2.4)
PV e Ul e
ox2 " loxay  roayr
where
Y(X1, X, $(X1, X,
u"(x,y) - M’ ve(x,y) - M’ (2.5a)
ap ao
Ch, +Cé Cct
af = ay= 0, (2.5b)
Cii[1-(M7)7] Cii[1-(M7)7]
Ch, +Cé s
b{ = 12 66€ 5> bg = 8—2282’ (25(:)
Cool1 - (M3)7] Cool1 - (M3)7]
¢ C . ¢ i ¢ Cés
Mj = W (j=1,2), Vi= e V5 = Tt (2.5d)

Furthermore, the values of Mach numbers Mf (¢,j =1,2) are assumed to be less than
unity for subsonic crack propagation.
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The boundary conditions for the reduced quasistatic problem can be expressed as fol-

lows:
lim 0 (x,y) = hm 0 = filx
y—0* -0~
. x| <1,
lim axy(x,y) = hm o2 (x y) = f(x),
y—0*
lim u'(x,y) = hm u(x,y),
y—0* y—0-
. ., lx| > 1,
hm v (x,y) = 11mj/ (%),
}1_% ayy(x,y) = hm 0 ,(%,9),
x| >1,
lim axy(x,y) = 11m o’ (x ¥),
y=0*
0y, (x, ) = axy(x,hl) =0,,(x,—hy) = 05, (x,—h2) =0, |x] <o,
where

3. Solution of the problem

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

Decoupling (2.4) then employing Fourier sine (cosine) transforms with respect to x, one

can find that

4

Z(J Af(a) “'ysinocxdoc),
j=1

4 ©
Z (J kaf(oc)e“rfy cosocxd(x),
0

j=1

_1
s

=1|~

(3.1)

where « is the transform variable, A?(oc) (¢ =1,2and j = 1,4) are unknown functions,

and rf (¢ =1,2 andj = 1,4) are the real distinct roots of
firt=2ffr*+1=0 (£=1,2),

provided that

fE=alht, 2ff=al+bt-albt, fL>yfl ft>0,

0(,.0\2
ay(r;)" =1 .
ke = % (E = 1,2, ] = 1,4)

(3.2)

(3.3)

(3.4)
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From the stress-displacement relationship of orthotropic materials [9], one can get

p 't out
0. +

(% y) = 6[$ g]

= % > (Jw(xp"A" (a)e ’fysinaxda> (¢=1,2),

j=1
out ot
G)(;y(x’)’) a[cfz Ep +C§2$]
l Z (J (xoeAe(oc)e chosocxda) (¢=1,2),
m 5\ Jo
where
0 Cgsl”f_kﬂ ¢ |CT, + 22rek€J
pj= —q 0 = T

On suitable substitution from (2.9) into (3.5), one can find that

'S

Ab(@) = D L5, eFmal(@)  (m,e=1,2),
j=3

where

(m = 1)2) _] = 3)4),

2 (=1)"(1 = 8um) [ pLot — plot
I - Zn_l( ) (e ; )e[};n j pj n] (E,m=1,2,j=3,4),
P103 — 207

Oum 1s the Kronecker delta.
Substituting (3.5) and (3.7) into (2.8), one can find that

E;D} - D}E} E;D} — D}E}
AZ() 4 3A 43A%((X)+ 4 4A 44A411((X),
D2E1 _EZDI D2E1 _EZDI
Aﬁ(oc) — %A%(a) + %Ai(“)’

where

A:%ﬁ—%@,

PJ+ZPm fm> E€_0+Zom ]m ﬁ‘fm (€:1’2’j23y4)-

m=1

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)



60 Dynamic crack propagation between two bonded plates

The boundary conditions (2.6) and (2.7) in conjunction with (3.7), (3.8), (3.9), (3.10),
and (3.11) lead to

1 J alE}AN(a) + EjAL(a) | cosaxda = fi(x),
f 0 x| <1, (3.12)
- J a[D}A(a)+ DjAL(a)]sinaxda = fo(x),
0
1 I a7 (0)A}(a) + 12 (a)Ad (@) ] sinaxda = 0,
’1’ ° x| > 1, (3.13)
. alé (0)Ad () + & (a)Al(a)] cosaxda = 0,
0
where
i 2 1 2 2 2 2
mw=1+Zum%~0+2ﬁw%ﬂm—Q+ZﬁM%QM}
L m=1 m=1 m=1
i 2 1 2 2 2 2
n(a) =1+ > Li,ePm — (1 + > Lgme“ﬁsm> As — (1 + > Lﬁme“ﬁm) A4},
m=1 m=1

m=1

-] 2
mw=@+z@@mm_@+2%@ﬂayl
m=1 m=1

2
~ K2+ k}anmeaﬁim>A }
( i+ 2 knld ’ (3.14)

m=1

m=1

2 2
o) = [+ S Rt (4 S Rz, ),

m=1

2
— (ki + Z kfnLime“ﬁim> A4:| >
m=1
EiD; — DiE; D3E; — E3D;
M=" e M

. _EDI-DiE| . DiE-ED
3= A > 4 = A .

>

The unknown functions A}(a) (j = 3,4) can be determined through solving the integral

equations (3.12) and (3.13) as follows [21].

Let
1 2
lim 2200 i, Y on - G- 1),
y—0+  ox y—0- X (3.15)
I ou'(x,y) . ou*(x,y) (O[1—Hix - 1] '
m e T im T Tl b

where H(x — 1) is the unit step function [2], while ¢;(x) (j = 1,2) are unknown odd and

even functions of x, respectively.
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From (3.13) and (3.15), one can deduce that

Ale) = Tzq%(“()“; f)z%(oo’
Lo = m0(@) +E D ()] (3.16)
Ay(a) = () ,
where
1
®1(a) = 2J ¢1(x) sinaxdx,
0
(3.17)

Dy (a) =2 JOI ¢2(x) cosaxdx,

¥ =1 -1

Substituting (3.16) into (3.12), the problem is reduced to the following system of integral
equations:

2
Zf Hij(x,)p;(dt = fi(x), |xI<1,i=12, (3.18)
j=171

where the kernels I:Iij (x,t) are

Hyi(x,8) = lj l[E§Tz—E‘{TI]sinoc(t—x)doc,
T Jo v

“ 1(*1

Hipy(x,t) = —J —[E3&, — E}é ] cosa(t — x)da,
T Jo b4
o (3.19)

Hy (x,t) = —J — D}ty — Dity] cosa(t — x)da,
T Jo v

. 1 (*1

Hyy (x,t) = ——J —[Di& — D& ] sina(t — x)da.

T Jo v

Since the integrands of (3.19) are continuous functions of «, then it is clear that any
possible singularity of the kernels must result from the asymptotic analysis of the inte-
grands as t — x and a — co [16, 21]. Then, by adding and subtracting the asymptotic
expressions of these integrands under the integral sign, the problem can be reduced to
the following pair of singular integral equations with Cauchy-type singularity:

12
P

1 . 1
(SijGij J_l (f]f(t;dHJ_lHij(xat)(Pj(t)dt) = filx), IxI<l,i=12, (3.20)
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where

(¥
Hi(x,t) = J <$[E§£2 - Ej& ] - G12> cosa(t — x)da,
0
Hy (x,t) = J <$[D%T2 -Dirt]| - G21> cosa(t — x)da,
0
Hy(x,t) = <% [D}& — Di&y] — G22> sina(t — x)da,
0
(03(B—s;)/B—o05(B~s1)/B)
G11 = Z b)
(03 (kiB —s4)/B — 0j(kiB — 53)/B)
G12 = Z >
G — (p3(B—s,)/B—py(B—s1)/B)
21 — Z >
(pi(k3B —s3)/B — p} (kB —s4)/B)
Gy = )
Z (3.21)

s—satkisy —kisi | sis4— 583
B * B2 ?
_ (72 12 2 72 22 22
B = (L3, Ly, — L3, L3,) (pios — psoy),

Z= (ki — k) +°

S1 = (313 +Bz4)L%1Li2 + (Blz +Bz7)L‘2HL%2,
S = (B33 +B44)L§1Lﬁz + (332 +B47)LEIL§2,
S§3 = (k%Bl_v, + k%B24)L%1L[212 + (k%Blz + k%By)LilL%b

S4 = (k%B33 + k§B44)L§1Liz + (k§B32 + k%B47)L4211L§2,

Bi3 = p303 — p305,  Bas = pioj— pioj,
Biy = pjo; — pio}, By = pj0i — pios,
Bss = pjo5s — pj0y,  Ba = pioy— pyoi,
Bs; = pjo; — proy,  Buy = pj0i — pio3.

From (3.15) and (2.5d), one can deduce the single-valuedness conditions ensuring the
uniqueness of ¢;(«) (i = 1,2) as follows:

! ! 2( |c? el
J_1¢1(t)dt=0, J_lgbz(t)dt:C( ﬁ— m‘j) (3.22)

Equations (3.20) and (3.22) can be solved as follows [17].
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Assume that

qi(t)
V1—12

¢i(t) = (i=1,2), (3.23)

where g;(t) (i = 1,2) are bounded continuous functions for all € [-1,1].

By substituting from (3.23) into (3.20) and (3.22) then employing Gauss-Chebyshev
integration formulae, the solution of the problem can be reduced to the following system
of linear algebraic equations [17]:

2 m 8;:Gii
Zz(wk[ . ]+Hij(xl,tk)]Qj(tk)>:fi(xl) (i=1,2) (x=1,m —1),
j=1k=1 te =i
> wiqi(t) =0, (3.24)
k=1
S 2 ( ey |ch
Zquz(tk)=< — == |
el TIC m? m!

where #; is the number of collocation points in the interval [-1,1],

1
Wl—Wnl—m, Wk_n1—1 (fork—Z,nlfl),
tx = cos (ﬂ(k_ 1)) (k=1,m), (3.25)
1’11—1
- n(Zl—l)) L
x| = cos(izi11 - (I=1,n;-1).

For the concerned problem, one can deduce that the DSIF at the left and right crack
tips are equal. Then, by making use of the following asymptotic relations, as a« — oo, [5]:

O (a) = J: \/qll(__t)ﬂsin(xtdt ~ ql(l)\/%sin (oc— %) +9(é),
1

Dy (a) = » %coscxtdt ~ q2(1), /%cos (oc— %) +9<é), (3.26)

o sinha sin
J Le_b"‘{ }doc=i025{ }(O.Stan_l(h)>, b>0,
0 Ve cosha (b2+h2)"" Leos

|
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the leading terms of the asymptotic stress field distribution (3.5) at the immediate vicinity
of the right crack tip (x — 1 and y — 0*) can be obtained as follows:

2o T ;2
€ 0, (4 0, )

O‘X)’(x’)’)z%(l)( S G 02>

+q2(1)( 2or cos — s cos -

(3.27)
N N R/ @)
ay},(x,y)qu(l)(mcos > mcos 5
3. 6 s @)
+q2(1)( = 1sm > szs 5 )
where
pr=A&x-12+ (k) pr=x- 12+ (rly)%
1 1
0, =tan™! ( Y ), 0, =tan! ( 14y ),
x—1 x—1
g = D(1-52/B) g, - i1 =s51/B)
1 7 ) 2 7 >
(3.28)
pi(ki—s4/B) pa(k; —s3/B)
&= A &= A
03 (1 —s,/B) 05 (1 —5,/B)
n=—— 2=
0} (ki — s4/B) 05 (k3 — s3/B)
Y3 = 7 > Y4 = 7 .
Therefore, the DSIF, K;, and K;; can be determined as follows [18]:
K; +iKpr = Q24 %im o VX~ 1[ay,(x, y) +ioey(x, )] (3.29)
x—1, y—0*

such that by substituting from (3.27) and (3.28) into (3.29) then evaluating the limits,
one can find that

K = QVao[y1 — y2]q: (1),

Kir = Q/ao[& — &]q2(1). (3.30)
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Figure 4.1. Variation of the normalized K; with the crack growth rate and initial crack length.

4. Numerical results

A parametric study is introduced to investigate the effects of crack growth rate, initial
crack length, and the plate width on the values of DSIE. Consider that a structure of two
bonded orthotropic plates as in Figure 1.1 possesses the following elastic characteristics:

m' =m? = lg/cms,

Cls = Ci = 1 MPa,
C), =2.5MPa,
C3, = 4MPa, (4.1)
2
Chy = (1+7)Cé — 11 (r5)°C5,  (£=1,2),

Ch = [VHL() 11 = [+ (D)1 - 1] (e=1,2),

where (4.1) are derived from (2.5), (3.2), and (3.3). Also, for the concerned numerical
results, it is assumed that 1 > rf >7¢ >0, 5 = —r{, and r{ = —#{. The initial crack length
2ay ranges from 0.2 to 1.5 cm, while the width of plates ranges from 5 to 10 m. For sim-
plicity, the numerical results are obtained for constant uniform stress distribution along
the crack surfaces, |x| <1 and y — =0.

Furthermore, we have found that | [, Lij (o, x, t)do — fglij(a,x, t)da| < 1071, where
Iij(e,x,t) (i,j = 1,2), are the integrands of (3.21). Therefore, the improper integrals of
(3.21) are approximated and evaluated numerically from o = 0 — 4 by using the trape-
zoidal rule. Then, the values of DSIF are normalized such that

K;
1 b
022+/40

Kir
1 bl
012+/40

Normalized K; = Normalized K;; = (4.2)

where 0}, and ¢}, represent the applied stress along the upper crack surface.
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Figure 4.2. Variation of the normalized K;; with the crack growth rate and initial crack length.
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Figure 4.3. Variation of the normalized K; with the crack growth rate for different plate widths.

Figure 4.1 shows that the value of normalized K; continuously decreases with increas-
ing the crack growth rate, where 0 < ¢ < 0.32 and 0.5 < ¢ < 0.6, while it increases else-
where. Also, it shows increasing the pathological oscillatory behaviour [3] for the nor-
malized K; with increasing the initial crack length.

Figure 4.2 shows that the value of normalized Kj; continuously increases with increas-
ing the crack growth rate except for 0.5 < ¢ < 0.65. But this decreasing interval is shifted
to 0.4 < ¢ < 0.5 for the case of a relatively long initial crack length 2ay = 1.5 cm. One can
notice as well that the pathological oscillatory behaviour of the normalized Kj; increases
with increasing ay.

For the prescribed elastic and geometric characteristics, Figure 4.3 shows that the value
of normalized K; continuously increases with increasing the crack growth rate except
when ¢ < 0.5 and H, > H,, it is decreased. Also, Figure 4.4 shows that the value of normal-
ized Kj; continuously decreases with increasing the crack growth rate, while it increases
with increasing ¢ when ¢ > 0.62 and H, < H,.
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Figure 4.4. Variation of the normalized K;; with the crack growth rate for different plate widths.

5. Conclusion

The present work is concerned with elastodynamic analysis of crack propagation between
two bonded dissimilar orthotropic plates. The width of each plate is assumed to be finite.
This is the new trend and the main difference between this work and the previous ones
[1,3,4,6,7,8,10, 12, 13, 14, 15, 19, 20, 22, 23]. So, the present work can be considered
as an extension for the analysis of interfacial crack problems.
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