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We address the pricing of American straddle options. We use partial
Laplace transform techniques due to Evans et al. (1950) to derive a pair
of integral equations giving the locations of the optimal exercise bound-
aries for an American straddle option with a constant dividend yield.

1. Introduction and analysis

Options are derivative financial instruments which give the holder cer-
tain rights. A call option carries the right (but not the obligation) to buy
an underlying security at some predetermined price, while a put allows
the holder to sell the underlying security. The value V (S,t) of many op-
tions can be found using the Black-Scholes partial differential equation
(PDE) (see, e.g., [6]),

∂V

∂t
+
σ2S2

2
∂2V

∂S2
+
(
r −D0

)
S
∂V

∂S
− rV = 0, (1.1)

together with appropriate boundary conditions, where S is the price of
the underlying security and t < T is the time, with T being the expiry
time. The parameters in the above equation are the risk-free rate, r, the
dividend yield, D0, and the volatility, σ; all of them are assumed con-
stant. In addition, we assume that r > D0 > 0.

If an option is European, it can only be exercised at the expiration
date. If an option is American, it can be exercised at or before expiry,
and a rational investor will exercise the option early if it is to his advan-
tage. There are therefore regions where it is optimal to hold the option
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and others where exercise is optimal, and the need to find the bound-
ary between these regions means that American options are more chal-
lenging mathematically than their European counterparts. Indeed, apart
from one or two very special cases, closed form solutions have yet to
be found for most American options, whereas for European options, so-
lutions can usually be found using error functions or equivalently the
cumulative distribution function for the normal distribution. Numerical
methods and approximations can however be used to value American
options.

In this study, we consider an American straddle, which in this con-
text gives us the right, but not the obligation, to either buy or sell (but
not both) an underlying stock at a predetermined price at or before ex-
piry. Thus we have both a put and a call with the same expiry and strike
price, but we are allowed to use only one of them. For a European strad-
dle, where exercise is only allowed at expiry, this limitation does not
constitute a problem, and a European straddle is worth exactly the same
as a European put and call combined. It is important to note that a call
and a put with the same exercise price cannot be simultaneously in the
money, so for a European straddle when exercise is permitted only at
expiry, the option which is currently in the money will be exercised. For
an American straddle, by contrast, when early exercise is permitted, it is
perfectly possible that the price of the underlying stock moves in such
a way that sometimes the call is in the money while at others the put is
in the money; and an investor holding a separate call and put would be
able to exercise both at different times while an investor holding a strad-
dle can only exercise one of the two, and would therefore have a lower
expected return. Because of this limitation, the option value is not simply
the sum of the values of a call and a put option. Such an option might be
useful if an investor expects a large change in the value of the underlying
stock that makes a significant move, but is unsure in terms of the direc-
tion of the change, which, as an example, might occur if a company were
involved in a major lawsuit or when a major bank or corporation is about
to fail. This problem involves two free boundaries: if the option price is
sufficiently high, S ≥ S+

f(t), then the holder will exercise the call, while
if it is sufficiently low, S ≤ S−

f(t), then the holder will exercise the put,
and between these two boundaries, S−

f
(t) ≤ S ≤ S+

f
(t), the holder would

retain the option for the time being. We will tackle this problem using
a modified Laplace transform, and the end result of our study is not
an exact solution (very few of which exists for American options), but
rather a pair of integral equations for the location of the optimal exercise
boundaries. Previously, in [2], we looked at the corresponding problems
for the call and put options, and derived in each case an integral equa-
tion with a general form similar to those found here.
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The starting point of our analysis is the Black-Scholes PDE (1.1), to-
gether with the pay-off at expiry,

V (S,T) = max(S−E,E −S). (1.2)

For the European straddle, the PDE (1.1) can be solved fairly easily. For
an American option, we have also the constraint that the price of the
option cannot fall below the pay-off from immediate exercise,

V (S,t) ≥ max(S−E,E−S), (1.3)

with the PDE (1.1) being valid only where V (S,t) > max(S − E,E − S).
There is of course a region in which it is optimal to hold the option
to expiry rather than to exercise it, and the boundary of this region is
known as the optimal exercise boundary. For this particular problem,
there are in fact both an upper boundary S = S+

f
(t) and a lower bound-

ary S = S−
f(t). In the present analysis, it is convenient to invert these re-

lations, and write instead a single relation, t = Tf(S). We will use a mod-
ified Laplace transform to arrive at an integral equation giving the loca-
tion of this free boundary. Integral equation methods have been used to
tackle American options before, including the early works [3, 5] on calls
and the recent paper by Kuske and Keller [1] on the put, as well as our
own previous work on the put and call [2]. We discuss the differences
between those studies and our own in Section 2.

Several properties of the free boundaries are known (e.g., [6]). Firstly,
we know that the value of the option and its derivative with respect to S
must be continuous across the free boundaries, so that V = S+

f
(t)−E and

(∂V/∂S) = 1 at S+
f , and V = E−S−

f(t) and (∂V/∂S) = −1 at S−
f . Continuity

of these maximizes the value of an American option. The value of the
option must be continuous, as if it were greater than the return from
immediate exercise the holder would not exercise, and if it were less than
that, it would result in an arbitrage opportunity, in that an investor could
buy an option and immediately exercise it for a risk-free profit. Similarly,
if the delta of the option at the free boundary were greater than the delta
of the pay-off, delaying exercise would lead to a higher expected return,
while if the delta of the option was less than the delta of the pay-off,
exercising earlier would increase the expected return. Secondly, if we
evaluate (∂V/∂t) right at expiry using (1.1), we can deduce that S+

f
(T) =

S0 = Er/D0 > E and S−
f(T) = E. In the unusual event that D0 > r, the two

locations are reversed. In addition, we know that S+
f moves upwards and

S−
f

downwards as we move away from expiry. Hence we can deduce that
Tf(S) = T for E ≤ S ≤ S0. Thirdly, we know the position of the boundaries
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as T − t → ∞. If we consider the perpetual American straddle (which
never expires and therefore has no time dependence), the value of this
option is V =ASα+

+BSα−
[6], where

α± =
1

2σ2

[
σ2 − 2

(
r −D0

)±√
4
(
r −D0

)2 + 4σ2
(
r +D0

)
+σ4

]
. (1.4)

If we denote the upper and lower boundaries for this perpetual op-
tion by S+

∗ and S−
∗ , then we require that V = S+

∗ − E and (∂V/∂S) = 1 at
S = S+

∗ , while V = E − S−
∗ and (∂V/∂S) = −1 at S−

∗ . This yields four non-
linear equations, from which we find that the ratio R = S+

∗/S
−
∗ obeys the

equation

α+(α− − 1
)(
Rα−

+ 1
)(
Rα+

+R
)
= α−(α+ − 1

)(
Rα+

+ 1
)(
Rα−

+R
)
, (1.5)

with S+
∗ = Eα−(Rα+

+ 1)/[(α− − 1)(Rα+
+R)]. In our terms, we require that

Tf(S)→−∞ as S→ S+
∗ from below and as S→ S−

∗ from above. The upper
optimal exercise boundary will lie between the limits, S0 ≤ S+

f
(t) ≤ S+

∗ ,
while the lower one will lie between the limits S−

∗ ≤ S−
f(t) ≤ E.

Having formulated the problem, we now attempt to solve it using a
Laplace transform in time. This technique is known to work well with
European options, but with American options, one perceived difficulty
has been that the Black-Scholes PDE only holds where it is optimal to
retain the option. Because of this, we modify the usual definition

L(G)(p) =
∫∞

0
g(t)e−pt dt (1.6)

somewhat, and define our version as follows for S−
∗ ≤ S ≤ S+

∗ :

V(S,p) =
∫Tf (S)

−∞
V (S,t)ept dt, (1.7)

so that the sign of t is reversed from the usual definition, and also the
upper limit is t = Tf(S) rather than t = 0. This is of course equivalent to
setting V (S,t) = 0 in the region where it is not optimal to hold. Because of
this definition, the price of the option V (S,t) will obey the Black-Scholes
equation everywhere where we integrate. We require the real part of p
to be positive, that is, �(p) > 0, for the integral in (1.7) to converge. We
know from the definition that V(S,p)→ 0 as S→ S±

∗ . We also know that
as p → ∞, we have V(S,p) → 0 and pV bounded, and in this limit, we
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can show that

lim
p→∞

pV = lim
p→∞

V
(
Tf(S),S

)
epTf (S). (1.8)

We can also define an inverse transform

V (S,t) =
1

2πi

∫ γ+i∞

γ−i∞
V(S,p)ept dp. (1.9)

Given our definition of the forward transform, this inverse is only mean-
ingful where it is optimal to hold the option. In the above, we have
adopted the convention that Tf(S) is the location of the free boundary
for S−

∗ < S < E and S0 < S < S+
∗ , while for E < S < S0, we set Tf = T since

there it is optimal to hold the option to expiry.
Transform methods in general can be useful when dealing with lin-

ear partial differential equations such as (1.1), because they can be used
to reduce the dimension of the problem. The appropriate transform to
use will obviously depend both on the form of the equation and the
geometry of the domain, and for (1.1) it is well known that taking a
Laplace transform in time of (1.1) will eliminate the temporal deriv-
ative, reducing the problem to an ordinary differential equation; this
same technique is regularly used with the heat conduction equation into
which the Black-Scholes equation can be transformed. In addition to our
earlier work [2] (and that of Knessl (2001)) in applying Laplace trans-
forms to American options, Laplace transforms have been used for path-
dependent options before, though we believe that our earlier work was
the first to consider an option problem with a free boundary. Geman
and Yor (1996) used Laplace transforms to price barrier options, where
there are fixed rather than free boundaries, and Geman and Yor (1993)
used them to price Asian options, where the pay-off motivation for using
Laplace transforms was that they reduced the dimension of the problem.

Applying this modified Laplace transform to the Black-Scholes PDE
(1.1), we arrive at the following (nonhomogeneous Euler) ordinary dif-
ferential equation ODE for the transform of the option price,

[
1
2
σ2S2 ∂2

∂S2
+
(
r −D0

)
S

∂

∂S
− (p+ r)

]
V +F(S) = 0, (1.10)

where the nonhomogeneous term F(S) takes a different value in each of
the following regions:
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Region (a)

S−
∗ < S < E, where we have V (S−

f(t), t) = E − S−
f , (∂V/∂S)(S−

f(t), t) = −1,
and Tf < T , we have

F(S) = (E−S)epTf (S) +
[
σ2S2 − (

r −D0
)
S(E−S)

]
T ′
f(S)

− σ2S2

2
(E−S)T ′′

f (S).
(1.11a)

Region (b)

E < S < S0, where Tf = T and

F(S) = (S−E)epT . (1.11b)

Region (c)

S0 < S < S+
∗ , where V (S+

f
(t), t) = S−E, (∂V/∂S)(S+

f
(t), t) = 1, Tf < T , and

F(S) = (S−E)epTf (S) +
[
σ2S2 − (

r −D0
)
S(S−E)

]
T ′
f(S)

− σ2S2

2
(S−E)T ′′

f (S).
(1.11c)

The general solution of (1.10) is

V =
2

λ(p)
S(1/2σ2)(2D0−2r+σ2+λ(p))

[
C+(p)−

∫
S−(1/2σ2)(2D0−2r+3σ2+λ(p))F(S)dS

]

+
2

λ(p)
S(1/2σ2)(2D0−2r+σ2−λ(p))

[
C−(p)+

∫
S−(1/2σ2)(2D0−2r+3σ2−λ(p))F(S)dS

]
,

(1.12)

where λ(p) = [4(r −D0)2 + 4σ2(r +D0 + 2p) + σ4]1/2, and C± are the con-
stants of integration, which may depend on the transform variable p. Ap-
plying this solution (1.12) to the three separate regions outlined above,
we find that in region (a) in order to get a solution which vanishes as
S→ S−

∗ , we have
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V=
2S−1

λ(p)

∫S

S−∗

(
S̃

S

)−(1/2σ2)(2D0−2r+3σ2)
[(

S̃

S

)λ(p)/2σ2

−
(
S̃

S

)−λ(p)/2σ2]
F(S̃)dS̃,

(1.13)
and similarly in region (c) in order to get a solution which vanishes as
S→ S+

∗ , we have

V=
2S−1

λ(p)

∫S+
∗

S

(
S̃

S

)−(1/2σ2)(2D0−2r+3σ2)
[(

S̃

S

)−λ(p)/2σ2

−
(
S̃

S

)λ(p)/2σ2]
F(S̃)dS̃,

(1.14)

while in region (b), we have

V=
2

λ(p)
S(1/2σ2)(2D0−2r+σ2+λ(p))

[
C

(b)
+ (p)−

∫S

E

S̃−(1/2σ2)(2D0−2r+3σ2+λ(p))F(S̃)dS̃
]

+
2

λ(p)
S(1/2σ2)(2D0−2r+σ2−λ(p))

×
[
C

(b)
− (p) +

∫S

E

S̃−(1/2σ2)(2D0−2r+3σ2−λ(p))F(S̃)dS̃
]
.

(1.15)

We require the transform V and its derivative with respect to S to be
continuous at S = E as we move from region (a) to (b), and also at S0, as
we move from (b) to (c), which tells us that

C
(b)
± (p) = ∓

∫E

S−∗

S̃−(1/2σ2)(2D0−2r+3σ2±λ(p))F(S̃)dS̃

= ±
∫S+

∗

S0

S̃−(1/2σ2)(2D0−2r+3σ2±λ(p))F(S̃)dS̃

± 2σ2epTS
−(1/2σ2)(2D0−2r+σ2±λ(p))
0

×
[

E

2D0 − 2r +σ2 ±λ(p)
− S0

2D0 − 2r −σ2 ±λ(p)

]

± 2σ2epTE−(1/2σ2)(2D0−2r−σ2±λ(p))

×
[

1
2D0 − 2r −σ2 ±λ(p)

− 1
2D0 − 2r +σ2 ±λ(p)

]
.

(1.16)

Comparing these two pairs of expressions, we require that
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S−∗

S̃−(1/2σ2)(2D0−2r+3σ2±λ(p))F
(
S̃)dS̃+

∫S+
∗

S0

S̃−(1/2σ2)(2D0−2r+3σ2±λ(p))F(S̃)dS̃

= −2σ2epTS
−(1/2σ2)(2D0−2r+σ2±λ(p))
0

×
[

E

2D0 − 2r +σ2 ±λ(p)
− S0

2D0 − 2r −σ2 ±λ(p)

]

± 2σ2epTE−(1/2σ2)(2D0−2r−σ2±λ(p))

×
[

1
2D0 − 2r −σ2 ±λ(p)

− 1
2D0 − 2r +σ2 ±λ(p)

]
.

(1.17)

The reader’s attention is drawn to the fact that there is a “±” in front of
λ(p) in the exponent of S̃, so that (1.17) is actually a pair of equations,
one for either sign.

2. Discussion

This last pair of (1.17) is the main result of this paper. They constitute
integral equations for the location of the free boundary, Tf(S), or more
specifically, Urysohn equations of the first kind [4]. Since these equations
involve the variable p, and must be true for each value of p for which
�(p) > 0, we can think of them as a form of integral transform operat-
ing on Tf(S), and inverting this transform would give Tf(S). However,
this inversion would appear to be extremely difficult to do analytically
because of the term involving epTf (S) in F(S) as given in (1.11a), (1.11b),
and (1.11c); if this term were absent, we could regard the equations as
a form of (finite) Mellin transform. In theory, (1.17) could be solved nu-
merically, but that is outside the range of expertise of the present authors.

As we mentioned briefly in Section 1, other authors have previously
used integral equation methods to analyze American options, includ-
ing the studies [1, 3, 5]. However, those studies tackled the problem in
very different ways to that used here, and ended up with equations of
a somewhat different form to (1.17). For example, in their recent study,
Kuske and Keller [1] used Green’s functions to solve the Black-Scholes
PDE for the American put, and their result involved an integral equa-
tion for Sf(t), whereas we have an integral equation for the inverse of
that function, Tf(S). As is the case here, those authors were unable to
obtain exact solutions of their integral equations. Studies similar to the
present have been performed for both the American put and call [2];
each of these problems involved a single free boundary, and in each case
the end result was a single integral equation of the same general form as
those found here.
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Moving on to the issue of the value of the option, in (1.13), (1.14), and
(1.15), we have a series of expressions for V(p,S), the transform of the
option price V (S,t). In theory, given these expressions, we could apply
the inverse transform (1.10), and then we would arrive at the option
price itself. Unfortunately, these expressions involve Tf(S), the location
of the free boundary, which we know only abstractly as the solution of
the integral equations (1.17); however, if Tf(S) were known explicitly,
taking the inverse Laplace transform would give the value of the option.
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