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CAUCHY PROBLEMS

GREGOR NICKEL

Abstract. In this paper, we characterize wellposedness of nonautonomous,
linear Cauchy problems

(NCP )

{
u̇(t) = A(t)u(t)
u(s) = x ∈ X

on a Banach space X by the existence of certain evolution semigroups.
Then, we use these generation results for evolution semigroups to derive

wellposedness for nonautonomous Cauchy problems under some “concrete”
conditions. As a typical example, we discuss the so called “parabolic” case.

1. Basic definitions

In this section, we introduce the basic definitions and notations in order to
discuss nonautonomous Cauchy problems in terms of evolution families and
evolution semigroups. In addition, we mention some of their fundamental
properties.

The solution of a nonautonomous Cauchy problem on some Banach space
X can be given by a so called evolution family which can be defined as
follows.

Definition 1.1 (Evolution family). A family (U(t, s))t≥s of linear, boun-
ded operators on a Banach space X is called an (exponentially bounded)
evolution family if

(i) U(t, r)U(r, s) = U(t, s), U(t, t) = Id for all t ≥ r ≥ s ∈ IR,
(ii) the mapping (t, s) �→ U(t, s) is strongly continuous,
(iii) ‖U(t, s)‖ ≤ Meω(t−s) for some M ≥ 1, ω ∈ IR and all t ≥ s ∈ IR.
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To every (exponentially bounded) evolution family we can associate C0–
semigroups on X–valued function spaces. These semigroups characterize the
behavior of the evolution family completely and, consequently, will be called
evolution semigroups. Evolution semigroups, first introduced in 1974 by
Howland [5] and studied in 1976 by Evans [2], recently attracted a great deal
of interest, see, e. g., [8], [9], [10], [13], [15], [16]. In particular, it was possible
to characterize certain asymptotic behavior of evolution families by spectral
properties of the corresponding evolution semigroup and its generator. Here,
we choose the Banach space

C0 := C0(IR, X) = {f : IR → X : f is continuous and lim
|t|→∞

f(t) = 0},

normed by ‖f‖ := supt∈IR ‖f(t)‖ , for f ∈ C0.
It is an easy exercise to show that the following definition yields a strongly
continuous semigroup.

Definition 1.2 (Evolution semigroup). For every evolution family (U(t, s)),
t ≥ s, we define the corresponding evolution semigroup (T (t))t≥0 on the
space C0 by

(T (t)f)(s) := U(s, s− t)f(s− t)(1.1)

for f ∈ C0, s ∈ IR and t ≥ 0. We denote its generator by (G, D(G)).

Since each operator of the above evolution semigroup is a product of a
multiplication operator and a translation, it is useful to consider also the
following concepts. We denote by

C1 := {f ∈ C1(IR, X) : f, f ′ ∈ C0}
the domain of the generator (− d

dx , D(− d
dx)) of the right translation (semi)-

group (T r(t))t≥0 on the space C0 defined by

(T r(t)f)(s) := f(s− t) for f ∈ C0 and s ∈ IR, t ≥ 0.

Thus, the evolution semigroup operators can be written as

T (t)f = U(·, · − t)T r(t)f.
We can recover the evolution family from the evolution semigroup by choos-
ing a function f ∈ C0 with f(s) = x. Then we obtain, for every s ∈ IR and
t ≥ s, U(t, s)x = (T r(s− t)T (t− s)f)(s)

Multiplication operators stem from bounded, strongly continuous oper-
ator valued functions F ∈ Cb(IR,Ls(X)) and are defined on the space
C0 by (Ff)(s) := F (s)f(s), s ∈ IR, (cf. [4]). In particular, for every
scalar function φ ∈ Cb(IR) we obtain a multiplication operator Mφ by
(Mφf)(s) := φ(s)f(s), s ∈ IR.
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For a family (A(t), D(A(t)))t∈IR of unbounded operators on X we consider
the corresponding multiplication operator (A(·), D(A(·))) on the space C0
defined by

D(A(·)) := {f ∈ C0 : f(s) ∈ D(A(s))
for all s ∈ IR, and s �→ A(s)f(s) ∈ C0},

(A(·)f)(s) := A(s)f(s) for all s ∈ IR.

In the subsequent sections we need a characterization of evolution semigroups
on the space C0. Its proof is based on ideas of Evans [2], Theorem 1.6 and
Howland [5], Theorem 1. It was, later on, extended to Banach function
spaces in [13], Theorem 3.4. A proof for evolution semigroups on the space
C0 can be found in [18].

Proposition 1.3. Let (T (t))t≥0 be a C0–semigroup with generator (G, D(G))
on the Banach space C0. Then the following assertions are equivalent.
(i) The semigroup (T (t))t≥0 is an evolution semigroup, i. e., there exists
an evolution family (U(t, s))t≥s on the space X such that T (t) =
U(·, · − t)T r(t).

(ii) For all φ ∈ C0(IR), f ∈ C0 we have
(T (t)φf)(s) = φ(s− t)(T (t)f)(s), s ∈ IR, t ≥ 0.

(iii) There exists a core D for G such that for all φ ∈ C1
c (IR), f ∈ D we

have φf ∈ D(G) and Gφf = −φ′f + φGf .
For later use, we add a characterization for unbounded multiplication

operators on C0.

Lemma 1.4. For a linear operator (A, D(A)) on the space C0 the following
statements are equivalent.
(i) The operator (A, D(A)) ⊆ (A(·), D(A(·))) is contained in a multiplica-
tion operator given by a family of linear operators (A(t), D(A(t)))t∈IR
on X.

(ii) For all f ∈ D(A) with f(s) = 0 we have (Af)(s) = 0.

Proof. If A is a multiplication operator and f ∈ D(A) with f(s) = 0 we
clearly have (Af)(s) = A(s)f(s) = 0.

Conversely, if property (ii) holds we define for every t ∈ IR a linear oper-
ator (A(t), D(A(t))) on X by

D(A(t)) := {x ∈ X : there exists fx ∈ D(A) with fx(t) = x},
A(t)x := (Afx)(t) for all x ∈ D(A(t)).

By using property (ii) we obtain a well-defined linear operator
(A(t), D(A(t))) on X for every t ∈ IR and we see easily that (A, D(A)) ⊆
(A(·), D(A(·))).
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2. Wellposedness of nonautonomous Cauchy problems — an
abstract characterization

In the first part of this section we define our concept of wellposedness for
nonautonomous Cauchy problems

(NCP )s,x
{
u̇(t) = A(t)u(t)
u(s) = x

(2.2)

for t ≥ s ∈ IR, where (A(t), D(A(t)))t∈IR is family of linear operators on
some Banach space X. If the Cauchy problem is considered for all initial
times s ∈ IR we denote it by (NCP ).

Definition 2.1. A continuous function u : [s,∞) → X is called
(i) classical solution of (NCP )s,x if u ∈ C1((s,∞), X), u(t) ∈ D(A(t))
for all t > s, u(s) = x, and u̇(t) = A(t)u(t) for t > s,

(ii) (strict) solution of (NCP )s,x if u ∈ C1([s,∞), X), u(t) ∈ D(A(t))
for all t ≥ s, u(s) = x, and u̇(t) = A(t)u(t) for t ≥ s.

By examples, it can be shown that the spaces Ys ⊆ X of initial values
with differentiable solution of (NCP )s,x may vary dramatically with s ∈ IR
(see [3]) and that it is useful to differ between these spaces and the domains
of the righthand side operators D(A(s)) ([11], Example 3.5).

So, the following slight modification of Kellermann’s definition, [6], Defi-
nition 1.1, seems to be an appropriate definition of wellposedness.

Definition 2.2 (Wellposedness). For a family (A(t), D(A(t)))t∈IR of linear
operators on the Banach space X the nonautonomous Cauchy problem
(NCP ) is called wellposed with regularity subspaces (Ys)s∈IR if
(i) (Existence) For all s ∈ IR the subspace

Ys := {y ∈ X : there exists a strict solution for (NCP )s,y}
⊂ D(A(s))

is dense in X.
(ii) (Uniqueness) For every y ∈ Ys the solution us(·, y) is unique.
(iii) (Continuous dependence) The solution depends continuously on s

and y, i. e., if sn → s ∈ IR, yn → y ∈ Ys with yn ∈ Ysn then we have
‖ûsn(t, yn) − ûs(t, y)‖ → 0 uniformly for t in compact subsets of IR,
where

ûr(t, y) :=
{
ur(t, y) if r ≤ t

y if r > t.

If, in addition, there exist constants M ≥ 1 and ω ∈ IR such that

‖us(t, y)‖ ≤ Meω(t−s)‖y‖
for all y ∈ Ys and t ≥ s the nonautonomous Cauchy problem (NCP ) is
called wellposed with exponentially bounded solutions.
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In the second part of this section we want to connect the Definition 2.2
of wellposedness to the existence of an evolution family (cf. Definition 1.1)
solving the nonautonomous Cauchy problem. In general, however, and in
contrast to the behavior of C0–semigroups (the autonomous case), the alge-
braic properties of an evolution family do not imply any differentiability on
a dense subspace. This already occurs in one dimension (cf. [9], Counterex-
ample 2.3).

Example 2.3. Take a continuous function p : IR → [1, 2] and define U(t, s)
:= p(t)

p(s) for s ≤ t. Then (U(t, s))t≥s is a (uniformly) continuous evolution
family on C which is not differentiable if we choose the function p nowhere
differentiable.

So we have to add some differentiability assumptions in order to solve a
nonautonomous Cauchy problem by an evolution family.

Definition 2.4 (EVF solving (NCP)). An evolution family (U(t, s))t≥s is
called an evolution family solving (NCP ), if for every s ∈ IR the regu-
larity subspace

Ys := {y ∈ X : [s,∞) � t �→ U(t, s)y solves (NCP )s,y}
is dense in X.

Now we can characterize wellposedness of a nonautonomous Cauchy prob-
lem by the existence of a unique solving evolution family (see [6], Proposition
1.4). A proof can be found in [11], Proposition 3.10.

Proposition 2.5. Let X be a Banach space, (A(t), D(A(t)))t∈IR a family
of linear operators on X and consider the nonautonomous Cauchy problem
(NCP ).
The following assertions are equivalent.
(i) The nonautonomous Cauchy problem (NCP ) is wellposed.
(ii) There exists a unique evolution family (U(t, s))t≥s solving (NCP ).

Corollary 2.6. The nonautonomous Cauchy problem is wellposed with ex-
ponentially bounded solutions if and only if there exists a unique exponen-
tially bounded evolution family solving it.

In the last part of this section, the point of departure is a strongly continu-
ous evolution family (U(t, s))t≥s and the corresponding evolution semigroup
(T (t))t≥0. In general, no differentiability holds for the evolution family, but
the evolution semigroup is always differentiable on the domain of its gen-
erator. The differentiability of the evolution family, i. e. wellposedness of a
corresponding (NCP ), will now be characterized by some properties of the
generator (G, D(G)) of (T (t))t≥0.
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Let (U(t, s))t≥s be an evolution family, (T (t))t≥0 the corresponding evo-
lution semigroup with generator (G, D(G)) on the space C0 := C0(IR, X). On
this space we define the operator (A, D(A)) by

D(A) := {f ∈ C0 : lim
t↘0

[U(·, · − t) − Id]
t

f(·) ∈ C0},

Af := s �→ lim
t↘0

[U(s, s− t) − Id]
t

f(s).

From the definition and Lemma 1.4 we see that (A, D(A)) is contained in a
multiplication operator on C0. We denote its extension again by A = A(·).
For this multiplication operator we also consider the operators
(A(t), D(A(t))) defined as in Lemma 1.4 by

D(A(t)) := {x ∈ X : ∃fx ∈ D(A) with fx(t) = x}
A(t)x := (Afx)(t).

As a first step towards a characterization of wellposedness we give a con-
nection between the spaces C1, D(G), and D(A). Remark that the space ∆
defined below can be zero (cf. Example 2.3).

Proposition 2.7. With the notation above we have

∆ := C1 ∩D(A) = C1 ∩D(G) = D(G) ∩D(A),

and

Gf = Af − f ′ for f ∈ ∆.(2.3)

Moreover, for f ∈ ∆, the differential equation

− ∂

∂s
U(t, s)f(s) = U(t, s)[A(s)f(s) − f ′(s)](2.4)

holds for all t ≥ s ∈ IR with

lim
|s|→∞

‖A(s)f(s) − f ′(s)‖ = 0.(2.5)

Proof. For f ∈ C0 and t > 0 we consider the identity

(2.6)

1
t
(T (t)f − f)︸ ︷︷ ︸

I

=
1
t
(U(·, · − t)f(· − t) − f(·))

= U(·, · − t)
f(· − t) − f(·)

t︸ ︷︷ ︸
II

+
U(·, · − t) − Id

t
f(·)︸ ︷︷ ︸

III

.
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By definition, expression I converges — for t ↘ 0 — to Gf for f ∈ D(G),
expression II converges to f ′ for f ∈ C1 and, finally, expression III converges
to Af for f ∈ D(A). Therefore equation (2.6) gives the implications

f ∈ C1 ∩D(A) ⇒ f ∈ D(G),
f ∈ C1 ∩D(G) ⇒ f ∈ D(A),

f ∈ D(G) ∩D(A) ⇒ f ∈ C1,

and shows equation (2.3). To justify the last implication we remark that
f ∈ D(A) implies

lim
t↘0

[
U(·, · − t)

f(· − t) − f(·)
t

− f(· − t) − f(·)
t

]

= lim
t↘0

[
U(·, · − t) − Id

t
f(· − t) − U(·, · − t) − Id

t
f(·)

]
= 0.

Thus, for f ∈ ∆ we obtain
d

dt
T (t)f = T (t)Gf = T (t)(Af − f ′) for all t ≥ 0.

Explicitly this means that
∂

∂t
[U(s, s− t)f(s− t)] = U(s, s− t)[A(s− t)f(s− t) − f ′(s− t)]

holds in the space C0. Therefore the differential equation (2.4) follows for all
t ≥ s. The property (2.5) simply reflects that Gf ∈ C0.

If we now assume that the orbit of f ∈ ∆ under (T (t))t≥0 remains in ∆,
we arrive at the correct differential equation.

Proposition 2.8. With the notation above the following assertions for a
function f ∈ C0 are equivalent.
(i) We have T (t)f ∈ ∆ = C1 ∩D(G) for all t ≥ 0.
(ii) For the function f ∈ C1 we have U(t, s)f(s) ∈ D(A(t)) for all t ≥ s
and the differential equation

∂

∂t
U(t, s)f(s) = A(t)U(t, s)f(s)(2.7)

holds for all t ≥ s. Moreover, we have

A(·)U(·, · − t)f(· − t) ∈ C0(2.8)

for all t ≥ 0.

Proof. For T (t)f ∈ C1 ∩D(G) we obtain T (t)f ∈ D(A) by Proposition
2.7 and

AT (t)f = GT (t)f + (T (t)f)′ =
∂

∂t
T (t)f + (T (t)f)′.(2.9)
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For the sake of simplicity, we argue in the following with differential quotients
instead of using difference quotients. For the two terms of (2.9) we obtain
(at least formally)

(2.10)

(
∂

∂t
T (t)f

)
(s) =

∂

∂t
U(s, s− t)f(s− t)

= − ∂

∂x
U(s, x)

∣∣∣∣
x=s−t

f(s− t) − U(s, s− t)f ′(s− t)

and

(2.11)

(T (t)f)′ =
∂

∂s
U(s, s− t)f(s− t)

=
∂

∂x
U(x, s− t)

∣∣∣∣
x=s

f(s− t) +
∂

∂x
U(s, x)

∣∣∣∣
x=s−t

f(s− t)

+ U(s, s− t)f ′(s− t).

Taking the sum of (2.10) and (2.11) we obtain that ∂
∂xU(x, s− t)

∣∣∣
x=s

f(s−t)
is well defined and

(2.12) (AT (t)f)(s) = A(s)U(s, s− t)f(s− t) =
∂

∂x
U(x, s− t)

∣∣∣∣
x=s

f(s− t)

holds in the space C0. Thus the differential equation (2.7) holds for all t ≥ s
and property (2.8) follows.

Conversely, if we suppose (2.7) and the property (2.8) we see by equa-
tion (2.12) that T (t)f ∈ D(A) for t ≥ 0. Thus, by Proposition 2.7 we
obtain f ∈ D(G), hence T (t)f ∈ D(G) for all t ≥ 0 and, finally, it results
T (t)f ∈ ∆ = C1 ∩D(G) for all t ≥ 0.

As the main result of this section we now relate properties of the do-
main D(G) to wellposedness of the nonautonomous Cauchy problem (NCP ).
Roughly speaking (NCP ) is wellposed if there are sufficiently many orbits
for (T (t))t≥0 staying in the space of differentiable functions C1.

Theorem 2.9. Let X be a Banach space and (A(t), D(A(t))t∈IR a family of
linear operators on X. The following assertions are equivalent.
(i) The nonautonomous Cauchy problem (NCP ) for the family (A(t))t∈IR
is wellposed (with exponentially bounded solutions).

(ii) There exists a unique evolution semigroup (T (t))t≥0 with generator
(G, D(G)) and an invariant core D ⊆ ∆ = C1 ∩D(G) such that

Gf + f ′ = A(·)f = A(·)f
for f ∈ D.

Proof. (i) ⇒ (ii). If (NCP ) is wellposed (with exponentially bounded
solutions) there exists by Proposition 2.5 a unique solving evolution family
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(U(t, s))t≥s, and therefore also a (unique) evolution semigroup (T (t))t≥0. We
only need to find an invariant core for (T (t))t≥0 with the claimed properties.
It is obtained using an idea from [7], Proposition 2.9. Thus, consider s ∈ IR,
y ∈ Ys and a function α ∈ C∞

c (IR) — the space of smooth functions with
compact support — with supp α ⊂ [s,∞). Then the function f ∈ C0 defined
by

f(t) :=
{
α(t)U(t, s)y if t > s
0 otherwise

is contained in D(G). Moreover, we have f ∈ ∆ and Gf = −f ′ +A(·)f . This
can be seen by calculating T (t)f as

T (t)f(r) =
{
α(r − t)U(r, s)y if r − t > s,
0 otherwise(2.13)

which implies

(Gf)(r) =
d

dt
T (t)f(r)

∣∣∣∣
t=0

= −α′(r)U(r, s)y.(2.14)

Since U(t, s) solves (NCP ) we have

(2.15)
d

dr
f(r) = α′(r)U(r, s)y + α(r)

∂

∂r
U(r, s)y

= α′(r)U(r, s)y + α(r)A(r)U(r, s)y.

Combining equation (2.14) and (2.15) we end up with

Gf = A(·)f − f ′ = A(·)f − f ′.

It remains to show that the space

(2.16)
D :=span{α(t)U(t, s)y : s ∈ IR, y ∈ Ys, α ∈ C∞

c (IR)

with supp α ⊂ [s,∞)}
is invariant under (T (t))t≥0 and dense in C0. From equation (2.13) we im-
mediately see the invariance. For the proof of the denseness we refer to [7],
Proposition 2.9.
Now uniqueness of an evolution semigroup with the above properties follows
by a standard argument. One only has to consider the derivative of the
function s �→ S(t− s)T (s)f for two such evolution semigroups and f ∈ D.
(ii) ⇒ (i). Conversely, suppose that there exists a unique evolution semi-

group and thus a unique evolution family (U(t, s))t≥s and an invariant core
D ⊆ ∆ ⊂ C0 with

Gf + f ′ = A(·)f = A(·)f
for f ∈ D. Then we obtain dense subspaces

Ys := {y ∈ X : ∃f ∈ D with f(s) = y} ⊆ X
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for all s ∈ IR and by Proposition 2.8 for y ∈ Ys the unique solution of (NCP )
is given by t �→ U(t, s)y.
By similar reasoning we obtain the following result.

Proposition 2.10 (Parabolic case). Consider for an evolution semigroup
(T (t))t≥0 on the space C0 the condition T (t)[C0] ⊂ D(A) for t > 0. Then we
have T (t)[D(G)] ⊂ ∆ for t > 0, and the differential equation

∂

∂t
U(t, s)x = A(t)U(t, s)x

holds for all t > s and for all x ∈ X.

3. Application to parabolic conditions

The generator (G, D(G)) of an evolution semigroup is formally given as a
sum G = [A(·) − d

dx ] of an operator valued multiplication operator A(·) and
the differential operator − d

dx . Thus, if we find conditions on the family of
operators (A(t))t∈IR which enable us to define the above formal sum yielding
a generator of a C0–semigroup on C0 we can obtain wellposedness results.

The known conditions implying wellposedness are generally divided into
assumptions of “parabolic” and of “hyperbolic” type. The main difference
between these two types is the assumption of A(t) being generators of ana-
lytic semigroups in the parabolic case, the assumption of stability for certain
products in the hyperbolic case. In both cases one has to add some continuity
assumption for the mapping t �→ A(t).

In order to illustrate our approach, we use the following parabolic condi-
tions (see [12]).

Assumption 3.1 (Parabolic case).
(P1) The domain D := D(A(t)) is dense in X and independent of t ∈ IR.
(P2) For each t ∈ IR the operator A(t) is the generator of an analytic semi-

group. For all t ∈ IR, the resolvent R(λ,A(t)) exists for all λ ∈ C with
�λ ≥ 0 and there is a constant M ≥ 1 such that

‖R(λ,A(t))‖ ≤ M

|λ| + 1
for �λ ≥ 0, t ∈ IR.

(P3) There exist constants L ≥ 0 and 0 < α ≤ 1 such that

‖(A(t) −A(s))A(0)−1‖ ≤ L|t− s|α for all t, s ∈ IR.(3.17)

It is possible to prove wellposedness of (NCP ) under these assumptions
(cf. [12], Theorem 5.6.1). In the following, we show how this wellposedness
result can be obtained by evolution semigroup techniques. A corresponding
approach to “hyperbolic” conditions can be found in [11], Section 4.2.

First, we will sketch the idea which is inspired by Acquistapace [1] (see
also Remark 3.8 below). We consider an evolution family (U(t, s))t≥s solving
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(NCP ) for a family (A(t))t∈IR and approximate this solution by the function
V (t, s) := e(t−s)A(s). Consider now the function [s, t] � r �→ U(t, r)e(r−s)A(s).
By differentiating it and integrating from s to t we obtain the integral equa-
tion for (U(t, s))t≥s

(3.18) U(t, s) = e(t−s)A(s) +
∫ t

s
U(t, r)(A(r) −A(s))e(r−s)A(s) dr.

We now consider equation (3.18) at t := x ∈ IR and s := x− τ and multi-
ply with the right translation operator T r(τ). For the evolution semigroup
(T (τ))τ≥0 corresponding to (U(t, s))t≥s, this yields the identity

T (τ) = U(·, · − τ)T r(τ)
= eτA(·−τ)T r(τ)

+
∫ τ

0
U(·, · − τ + r)(A(· − τ + r) −A(· − τ))erA(·−τ) drT r(τ)

= T r(τ)eτA(·) +
∫ τ

0
T (τ − r)(A(·) −A(· − r))T r(r)erA(·) dr.

This is an integral equation for the evolution semigroup (T (τ))τ≥0. Solving
this equation can be interpreted as solving a perturbation problem on the
space C0, where the unperturbed part is the product of the two C0–semigroups
(T r(τ))τ≥0 and (eτA(·))τ≥0.
Accordingly, we are led to perturbation theory for semigroups, and we first
state a lemma which might be of independent interest.

Lemma 3.2. Let (T (t))t≥0, (S(t))t≥0 be C0–semigroups on the Banach space
X and denote their generators by (A,D(A)) or (B,D(B)), respectively.
Let the domain D(A) be (S(t))–invariant and define for every t ≥ 0 an
operator

C(t) : D(A) → X

C(t)x := AS(t)x− S(t)Ax, x ∈ D(A).

Let the function t �→ C(t)T (t)x be continuous for all x ∈ D(A) and let there
exist some constants T > 0 and γ < 1 such that∫ T

0
‖C(τ)T (τ)x‖ dτ ≤ γ‖x‖(3.19)

for every x ∈ D(A). Then there exists a unique strongly continuous function
(U(t))t≥0 solving the integral equation

U(t)x = S(t)T (t)x+
∫ t

0
U(t− τ)C(τ)T (τ)x dτ(3.20)
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for all x ∈ D(A) and 0 ≤ t ≤ T . It is also given by a series expansion

U(t) =
∞∑

n=0
((V B

A )nST )(t)(3.21)

for 0 ≤ t ≤ T , where ((V B
A )ST )(t) is the continuous extension of

D(A) � x �→
∫ t

0
S(t− τ)T (t− τ)C(τ)T (τ)x dτ.

Let now the domain D(B) be (T (t))–invariant and let the function

[0, t] � τ �→ T (t− τ)C(τ)T (τ)x(3.22)

be a continuous function in the space D(B) for every x ∈ D := D(A)∩D(B).
Moreover, let T (t)X ⊂ D(A) for t > 0 and

lim
ε1,ε2↘0

∫ t−ε2

t−ε1

S(t− τ)AT (t− τ)C(τ)T (τ)x = 0,(3.23)

lim
ε1,ε2↘0

∫ t−ε2

t−ε1

AS(t− τ)T (t− τ)C(τ)T (τ)x = 0(3.24)

for x ∈ D and t > 0. Finally, let the space D be dense in X. Then the
family (U(t))0≤t≤T can be extended to a C0–semigroup denoted by (U(t))t≥0.
For its generator (G,D(G)) we have

D(B) ∩D(A) ⊂ D(G) and Gx = Ax+Bx

for x ∈ D. The space D is an invariant core.

Proof. First Step: Denote by X := C([0, T ],Ls(X)) the space of all
strongly continuous operator valued functions on the interval [0, T ].
Using the principle of uniform boundedness this space can be made into a
Banach space with the norm

‖F‖∞ := sup
0≤t≤T

‖F (t)‖L(X) for F ∈ X .

On the space X we now define an abstract Volterra operator, and then show
that its norm is less than 1. We observe that for F ∈ X the operator

D(A) � x �→
∫ t

0
F (t− s)C(τ)T (τ)x dτ

is bounded in X by (3.19). Thus it can be extended uniquely to a bounded
operator on X denoted by

[V B
A F ](t) :=

∫ t

0
F (t− s)C(τ)T (τ) dτ for F ∈ X .

Indeed, we have V B
A : X → X , since

‖[V B
A F ](t)‖L(X) ≤ γ‖F‖∞(3.25)
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for 0 ≤ t ≤ T , and since the mapping t �→ [V B
A F ](t)x is continuous for

x ∈ D(A). This can be shown by the estimate

‖[V B
A F ](t+ h)x− [V B

A F ](t)x‖

=

∥∥∥∥∥
∫ t+h

0
F (t+ h− s)C(s)T (s)x ds−

∫ t

0
F (t− s)C(s)T (s)x ds

∥∥∥∥∥
≤

∫ t

0
‖(F (t+ h− s) − F (t− s))C(s)T (s)x‖ ds

+
∫ t+h

t
‖F (t+ h− s)C(s)T (s)x‖ ds.

For every h > 0, the first term is bounded by the integrable function
s �→ 2‖F‖∞‖C(s)T (s)x‖ and vanishes a. e. for h ↘ 0, while the second term
is bounded by h‖F‖∞ sups∈[0,T ] ‖C(s)T (s)x‖. Thus for h ↘ 0 the whole
expression vanishes. For h ↗ 0 we argue analogously. Finally, it results
from (3.25) that

‖V B
A ‖L(X ) ≤ γ < 1.

Second step: By the last norm estimate, the operator (Id− V B
A ) ∈ L(X )

is invertible and

(Id− V B
A )−1 =

∞∑
n=0

(V B
A )n,(3.26)

where the right hand side converges with respect to the norm of X .
Consider now the function ST : t �→ S(t)T (t) in the space X and define a
strongly continuous function

t �→ U(t) := [(Id− V B
A )−1ST ](t).

We will show that under the above additional assumptions the function
(U(t))t∈[0,T ] can be extended to a C0–semigroup. First, we know that
(U(t))t∈[0,T ] is strongly continuous and satisfies the integral equation

U(t)x = S(t)T (t)x+
∫ t

0
U(t− τ)C(τ)T (τ)x dτ

for x ∈ D(A) and 0 ≤ t ≤ T . It is also given by a series expansion

U(t) =
∞∑

n=0
((V B

A )nST )(t) for 0 ≤ t ≤ T.

Third Step: To prove the semigroup property we will show that U(·) leaves
the space D invariant and solves the differential equation

d

dt
U(t)x = (A+B)U(t)x = U(t)(A+B)x(3.27)
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for all x ∈ D = D(A) ∩D(B).
In order to study the difference quotient 1

h(U(t+ h)−U(t)) we consider the
terms of the series expansion

((V B
A )nST )(t+ h) − ((V B

A )nST )(t).

By induction we will show that we can split these terms as

((V B
A )nST )(t+ h) − ((V B

A )nST )(t) = ∆1,n
h (t) + ∆2,n

h (t) + ∆3,n
h (t),

such that
1
h
∆1,n

h (t)x → B((V B
A )nST )(t)x

and
1
h
(∆2,n

h (t) + ∆3,n+1
h (t))x → A((V B

A )nST )(t)x

for h ↘ 0 and x ∈ D(A) ∩ D(B). Together with the series expansion we
then obtain

d

dt
U(t)x = (A+B)U(t)x

for all x ∈ D(A) ∩D(B).
We have for n = 0 and n = 1

S(t+ h)T (t+ h)x− S(t)T (t)x
= [S(t+ h) − S(t)]T (t)x︸ ︷︷ ︸

=:∆1,0
h

(t)x

+S(t+ h)[T (t+ h) − T (t)]x︸ ︷︷ ︸
=:∆2,0

h
(t)x

+ 0︸︷︷︸
=:∆3,0

h
(t)x

and

((V B
A )ST )(t+ h)x− ((V B

A )ST )(t)x

=
∫ t+h

0
ST (t+ h− τ)C(τ)T (τ)x dτ −

∫ t

0
ST (t− τ)C(τ)T (τ)x dτ

=
∫ t

0
[S(t+ h− τ) − S(t− τ)]T (t− τ)C(τ)T (τ)x dτ︸ ︷︷ ︸

=:∆1,1
h

(t)x

+
∫ t

0
S(t+ h− τ)[T (t+ h− τ) − T (t− τ)]C(τ)T (τ)x dτ︸ ︷︷ ︸

=:∆2,1
h

(t)x

+
∫ t+h

t
S(t+ h− τ)T (t+ h− τ)C(τ)T (τ)x dτ︸ ︷︷ ︸

=:∆3,1
h

(t)x

.

From this splitting we obtain

lim
h↘0

1
h
∆1,0

h (t)x = lim
h↘0

1
h
[S(t+ h) − S(t)]T (t)x = BS(t)T (t)x,
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and

lim
h↘0

1
h
(∆2,0

h (t) + ∆3,1
h (t))x

= lim
h↘0

(
1
h
S(t+ h)[T (t+ h) − T (t)]x

+
∫ t+h

t
S(t+ h− τ)T (t+ h− τ)C(τ)T (τ)x dτ

)

= AS(t)T (t)x.

Moreover,

lim
h↘0

1
h
∆1,1

h (t)x = lim
h↘0

1
h

∫ t+h

0
B

∫ t+h−τ

t−τ
S(σ) dσT (t− τ)C(τ)T (τ)x dτ

= B(V B
A ST )(t)x

by the continuity of T (t− ·)C(·)T (·)x in D(B).
For the induction (n → n+1) let the claim be fulfilled for n−1 and n. Now,
we calculate

((V B
A )n+1ST )(t+ h)x− ((V B

A )n+1ST )(t)x

=
∫ t+h

0
((V B

A )nST )(t+ h− τ)C(τ)T (τ)x dτ

−
∫ t

0
((V B

A )nST )(t− τ)C(τ)T (τ)x dτ

=
∫ t

0
[∆1,n

h (t− τ) + ∆2,n
h (t− τ) + ∆3,n

h (t− τ)]C(τ)T (τ)x dτ

+
∫ t+h

t
[(V B

A )nST ](t+ h− τ)C(τ)T (τ)x dτ

=
∫ t

0
∆1,n

h (t− τ)C(τ)T (τ)x dτ︸ ︷︷ ︸
=:∆1,n+1

h
(t)x

+
∫ t

0
∆2,n

h (t− τ)C(τ)T (τ)x dτ︸ ︷︷ ︸
=:∆2,n+1

h
(t)x

+
∫ t

0
∆3,n

h (t− τ)C(τ)T (τ)x dτ

+
∫ t+h

t
[(V B

A )nST ](t+ h− τ)C(τ)T (τ)x dτ,
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where the sum of the two last integrals equals ∆3,n+1
h (t)x. By induction we

obtain

lim
h↘0

1
h
∆1,n+1

h (t)x = lim
h↘0

1
h

∫ t

0
∆1,n

h (t− τ)C(τ)T (τ)x dτ

=
∫ t

0
B((V B

A )nST )(t− τ)C(τ)T (τ)x dτ = B((V B
A )n+1ST )(t)x

and

lim
h↘0

1
h

(
∆2,n

h (t)x+ ∆3,n+1
h (t)x

)
= lim

h↘0

1
h

∫ t

0
(∆2,n−1

h (t− τ) + ∆3,n
h (t− τ))C(τ)T (τ)x dτ

+ lim
h↘0

1
h

∫ t+h

t
((V B

A )n−1ST )(t+ h− τ)C(τ)T (τ)x dτ

= A

∫ t

0
((V B

A )n−1ST )(t− τ)C(τ)T (τ)x dτ + 0

= A((V B
A )nST )(t)x,

since (V B
A )n−1ST )(0) = 0 for n ≥ 2.

To justify the last claim we consider first the limit

lim
h↘0

1
h

∫ t−ε

0
(∆2,n−1

h (t− τ) + ∆3,n
h (t− τ))C(τ)T (τ)x dτ

= A

∫ t−ε

0
((V B

A )n−1ST )(t− τ)C(τ)T (τ)x dτ

for x ∈ D and small ε > 0 and use then the assumptions (3.23) and (3.24).
The second half of the differential equation (3.27) is proved by an analogous
induction after the following rearrangement. By an integration by parts we
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obtain for the integral term∫ t

0
S(t− τ)T (t− τ)C(τ)T (τ)x dτ

=
∫ t

0
S(t− τ)T (t− τ)AS(τ)T (τ)x dτ − [S(t− s)T (t− s)S(s)T (s)x]t0

+
∫ t

0
S(t− τ)T (t− τ)BS(τ)T (τ)x dτ

−
∫ t

0
S(t− τ)T (t− τ)AS(τ)T (τ)x dτ

−
∫ t

0
S(t− τ)BT (t− τ)S(τ)T (τ)x dτ

=
∫ t

0
S(τ)T (τ)BS(t− τ)T (t− τ)x dτ

−
∫ t

0
S(τ)BT (τ)S(t− τ)T (t− τ)x dτ

=
∫ t

0
S(τ)(T (τ)B −BT (τ))S(t− τ)T (t− τ)x dτ

for all x ∈ D(A) ∩ D(B) and we can argue by an analogous induction as
above.
The semigroup property of (U(t))t≥0 now follows from (3.27) by differenti-
ating the function s �→ U(t− s)U(s)x for all x ∈ D(A) ∩D(B).

Problem 3.3. Prove the semigroup property of (U(t))t≥0 directly (cf. [17],
Lemma 1.4) by using the series expansion (3.21). Remove the assumption
of (T (t))–invariance of D(B) and the other regularity assumptions.

With the aid of the preceding lemma we can now prove wellposedness in
the parabolic case. Some technical steps are anticipated in the following two
lemmas (cf. [12], Lemma 5.6.2, Section 5.III, and Lemma 5.6.4). For the
sake of simplicity, we denote by c a generic constant.

Lemma 3.4. Let (A(t), D)t∈IR be a family of linear, densely defined oper-
ators on some Banach space X fulfilling the conditions in Assumption 3.1.
Then the following estimates hold:

‖(A(t1) −A(t2))eτA(s)‖ ≤ c

τ
|t1 − t2|α for t1, t2, s ∈ IR, τ > 0.(3.28)

‖A(t1)eτA(t2)‖ ≤ c

τ
for t1, t2 ∈ IR, τ > 0.(3.29)

‖A(s)[eτA(t1) − eτA(t2)]‖ ≤ c

τ
|t1 − t2|α for t1, t2, s ∈ IR, τ > 0.(3.30)

‖A(t1)eτA(t1) −A(t2)eτA(t2)‖ ≤ c

τ
|t1 − t2|α for t1, t2 ∈ IR, τ > 0.(3.31)
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If the function t �→ A(t)y is continuously differentiable for all y ∈ D, we
obtain that the function s �→ eτA(s)x is continuously differentiable in τ > 0
for all x ∈ X as well.

Lemma 3.5. Let (A(t), D)t∈IR be a family of linear, densely defined oper-
ators on some Banach space X fulfilling the conditions in Assumption 3.1.
Denote by

R1(t, s) := [A(t) −A(s)]e(t−s)A(s).

Then for every 0 < β ≤ α, there is a constant cβ such that

‖R1(t, s) −R1(τ, s)‖ ≤ cβ(t− τ)β(τ − s)α−β−1(3.32)

for s < τ < t ∈ IR.

Theorem 3.6. Let (A(t), D)t∈IR be a family of linear, densely defined oper-
ators on some Banach space X fulfilling the conditions in Assumption 3.1.
Then there exists a unique evolution semigroup (T (t))t≥0 on the space C0
with generator (G, D(G)) such that C1 ∩ C0(IR, D) ⊂ D(G) and

Gf + f ′ = A(·)f
for all f ∈ C1 ∩ C0(IR, D). Moreover, we have T (t) : C0 → C0(IR, D) for
t > 0.

Together with the characterization of wellposedness in Theorem 2.9 we
obtain the following corollary.

Corollary 3.7 (Parabolic case). In the situation of Theorem 3.6, there ex-
ists a unique exponentially bounded evolution family (U(t, s))t≥s of bounded
operators on X solving (NCP ). Thus, the nonautonomous Cauchy problem
(NCP ) is wellposed and for every us ∈ D there is a unique strict solution
t �→ U(t, s)us. Moreover, for every us ∈ X the function t �→ U(t, s)us is a
classical solution of (NCP ) for s < t.

Proof of Theorem 3.6. First Step: We consider the C0–semigroup
(etA(·))t≥0 and the translation group (T r(t))t∈IR on the space C0. The gen-
erator of (etA(·))t≥0 is (A(·),D), where the domain D is given by

D := {f ∈ C0 : f(s) ∈ D for all s ∈ IR and s �→ A(s)f(s) ∈ C0}.
Since we assume constant domains, Assumption 3.1 (P1), we see that T r(t)D
⊂ D.
Moreover, for all f ∈ D we obtain from the Hölder condition, Assumption
3.1 (P3), and equation (3.29) that∫ t

0
‖[A(·) −A(· − τ)]T r(τ)eτA(·)f‖ dτ ≤

∫ t

0
cτα−1 dτ‖f‖ =

ctα

α
‖f‖.
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Choosing T > 0 small enough, we obtain∫ T

0
‖[A(·) −A(· − τ)]T r(τ)eτA(·)f‖ dτ ≤ γ‖f‖

with γ < 1 and thus all conditions of the first part in Lemma 3.2 are satisfied.
In fact, the Hölder condition even implies that the operator

(3.33) (V F )(t) :=
∫ t

0
F (t− τ)[A(·) −A(· − τ)]T r(τ)eτA(·) dτ

defined on the Banach space X := C([0, T ],Ls(C0)) of all strongly continuous
operator valued functions on the interval [0, T ] has zero spectral radius. By
induction we prove that

‖[(V )nF ](t)‖ ≤ CnΓ(α)n

Γ(nα)
tnα−1‖F‖∞

for n ∈ IN, t ≥ 0, where Γ denotes the Gamma–function. The case n = 1
has been proven in the first step. For the induction (n → n+1) we calculate
for x ∈ D with ‖x‖ = 1

‖([V ]n+1F )(t)x‖ = ‖
∫ t

0
([V ]nF )(t− r)[A(·) −A(· − r)]erA(·)x dr‖

(3.28)
≤

∫ t

0
Crα−1‖(V nF )(t− r)‖‖x‖ dr

ind≤
∫ t

0
Cn+1 Γ(α)n

Γ(nα)
(t− r)nα−1rα−1‖F‖∞ dr

=
Cn+1Γ(α)n+1

Γ((n+ 1)α)
tnα−1‖F‖∞.

Here, we used the identity∫ t

0
(t− r)β−1rγ−1 dr =

Γ(β)Γ(γ)
Γ(β + γ)

tβ+γ−1, for β, γ > 0.

Second Step: By Lemma 3.2 we obtain a strongly continuous function
(T (t))t≥0 solving the integral equation

(3.34)

T (t) = T r(t)etA(·)

+
∫ t

0
T (t− τ)[A(·) −A(· − τ)]T r(τ)eτA(·) dτ

= T r(t)etA(·)

+
∫ t

0
T (τ)[A(·) −A(· + t− τ)]T r(t− τ)e(t−τ)A(·) dτ.
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It is also given by the series expansion

T (t) =
∞∑

n=0
V nT r(t)etA(·).(3.35)

In the next step we show that it is an evolution semigroup and that for the
generator of (T (t))t≥0, denoted by (G, D(G)), we obtain D ∩ C1 ⊆ D(G) and

Gf = −f ′ +A(·)f for f ∈ D ∩ C1.(3.36)

Third Step: We assume now (A(t))t∈IR to be strongly continuously dif-
ferentiable on D. Then, invariance of the domain C1 under the semigroup
(etA(·))t≥0 and property (3.22) follow from the second part of Lemma 3.4 and
the assumed differentiability of t �→ A(t)y for y ∈ D. From the analyticity
of (etA(·))t≥0 we infer etA(·)f ∈ D for all f ∈ C0 and t > 0. Finally, the prop-
erties (3.23) and (3.24) follow from the considerations below. By the second
part of Lemma 3.2 we infer that the dense subspace D∩C1 is invariant under
T (t), thus a core for the generator. The representation (3.36) is then given
on an invariant core of G and by Lemma 1.3 we see that (T (t))t≥0 is in fact
an evolution semigroup and, at the same moment, that (NCP ) is wellposed.

We will even prove that T (t) : C0 → D for t > 0, which implies the
existence of unique classical solutions of (NCP ) for all initial values xs ∈ X
(see Proposition 2.10). This can be seen using the series representation (3.35)
of (T (t))t≥0. We will show that this series also converges for t > 0 in the
L(C0,D)–norm, where we define a Banach space norm ‖ · ‖D on D by

‖f‖D := sup
s∈IR

‖A(s)f(s)‖

for f ∈ D. Consider the terms of the expansion. For the 0-th term we obtain
by (3.29) in Lemma 3.4 that

‖T r(t)etA(·)‖L(C0,D) ≤ c

t



EVOLUTION SEMIGROUPS 93

for t > 0. To estimate the first term of the expansion we use (3.28), (3.29),
(3.30), and (3.31) which yields

∥∥∥∥A(s+ t)
∫ t

0
e(t−τ)A(s+τ)[A(s+ τ) −A(s)]e(τ)A(s) dτ

∥∥∥∥
≤

∫ t

0
‖[A(s+ t) −A(s+ τ)]e(t−τ)A(s+τ)R1(s+ τ, s) ‖dτ

+
∥∥∥∥
∫ t

0
A(s+ τ)e(t−τ)A(s+τ)R1(s+ τ, s) dτ

∥∥∥∥
≤

∫ t

0
(t− τ)α−1τα−1dτ

+
∫ t

0
‖[A(s+ t)e(t−τ)A(s+t) −A(s+ τ)e(t−τ)A(s+τ)]R1(s+ τ, s)‖ dτ

+
∫ t

0
‖A(s+ t)e(t−τ)A(s+t)[R1(s+ t, s) −R1(s+ τ, s)]‖dτ

+
∥∥∥∥
∫ t

0
A(s+ t)e(t−τ)A(s+t)dτR1(s+ t, s)

∥∥∥∥
≤

∫ t

0
(t− τ)α−1τα−1dτ +

∫ t

0
cT (t− τ)α−1τα−1 dτ

+
∫ t

0
cT (t− τ)β−1τα−β−1dτ + cT t

α−1

for all s ∈ IR and T ≥ t > 0. Thus, we obtain the estimate

∥∥∥∥A(s+ t)
∫ t

0
e(t−τ)A(s+τ)[A(s+ τ) −A(s)]e(τ)A(s) dτ

∥∥∥∥ ≤ cT t
α−1,

which implies

(3.37)
∥∥∥∥
∫ t

0
T r(t− τ)e(t−τ)A(·)[A(·) −A(· − τ)]T r(τ)eτA(·)

∥∥∥∥L(C0,D)
≤ cT

t
tα.

By an induction, similar to the one above, we obtain the desired convergence
in L(C0,D).

Last step: The general case in which (A(t))t∈IR is not necessarily strongly
continuously differentiable follows by an approximation argument as in [12],
Section 5.III.



94 GREGOR NICKEL

Remark 3.8. Acquistapace [1] discusses several starting points for proving
wellposedness in the parabolic case. Reasonable approximations for the solv-
ing evolution family (U(t, s))t≥s could be

V1(t, s) := e(t−s)A(s)

V2(t, s) := e(t−s)A(t)

V3(t, s) := e(t−s)A(T )

V4(t, s) := e
∫ t

s
A(τ) dτ .

The first was chosen in our approach. The second leads, by an analogous
formal calculation differentiating τ �→ U(t, τ)e(τ−s)A(τ), to the integral equa-
tion

U(t, s) = e(t−s)A(t) +
∫ t

s
U(t, τ)[(τ − s)Ȧ(τ)]e(τ−s)A(τ) dτ.

Rewritten in terms of the evolution semigroup we obtain

(3.38) T (t) = etA(·)T r(t) +
∫ t

0
T (t− τ)[τȦ(·)]eτA(·)T r(τ) dτ.

Regarding the formal identity

τȦ(x)eτA(x) =
d

dx
eτA(x) − eτA(x) d

dx
,

we end up with a similar perturbation problem to that considered in Lemma
3.2.

Final Remark 3.9. Our method is based on the idea to use Hille–Yosida
type generation theorems to obtain wellposedness for nonautonomous Cauchy
problems. In addition to being a unifying approach it also yields to new
wellposedness results (e.g., see [14]).
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