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1. Introduction

In the present paper we are concerned with positive solutions of the fol-
lowing problem:

(P )

{
− ∆u+ u = g(x, u), x ∈ RN ,

u ∈ H1(RN ), N ≥ 3,

where g : RN ×R → R is a continuous mapping. Recently, the existence of
positive solutions of the semilinear elliptic problem

(PQ)

{
− ∆u+ u = Q(x) | u |p−1 u, x ∈ RN ,

u ∈ H1(RN ), N ≥ 2,

has been studied by several authors, where 1 < p for N = 2, 1 < p <
(N + 2)/(N − 2) for N ≥ 3 and Q(x) is a positive bounded continuous
function. If Q(x) is a radial function, we can find infinity many solutions of
problem (PQ) by restricting our attention to the radial functions (cf. [2, 5]).
IfQ(x) is nonradial, we encounter a difficulty caused by the lack of a compact
embedding of Sobolev type. To overcome this kind of difficulty, P. L. Lions
developed the concentrate compactness method [8, 9], and established the
following result: Assume that lim|x|→∞Q(x) = Q(> 0) and Q(x) ≥ Q on
RN . Then the problem (PQ) has a positive solution. This result is based on
the observation that the ground state level cQ of the functional

IQ(u) =
1
2

∫
RN

(| ∇u |2 + | u |2)dx− 1
p+ 1

∫
RN

Q(x) | u |p+1 dx
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66 N. HIRANO

is lower than that of

I∞(u) =
1
2

∫
RN

(| ∇u |2 + | u |2)dx− 1
p+ 1

∫
RN

| u |p+1 dx,

then, under additional conditions on g, there exists a positive solution of
(P) (cf. Ding and Ni [5], Stuart [14]). In [3], Cao proved the existence of
a positive solution of (PQ) for the case cQ ≤ cQ under the hypothesis that
lim|x|→∞Q(x) = Q and Q(x) ≥ 2(1−p)/2Q on RN . The difficultly in treating
the case cQ = cQ is caused by the fact that we can not apply the concentrate
compactness method directly. The argument in [3] is based on Lagrange’s
method of indeterminate coefficients. That is, if we find a solution u of the
minimizing problem

inf

{
{IQ(u) : u ∈ Vλ},

Vλ =
{

{u ∈ H1(RN ), u > 0,
∫

RN

Q(x) | u |p+1 dx = 1
} }

,

then cu is a solution of (PQ) for some c > 0. Lagrange’s method does not
work if g is not the form Q(x)tp. Our purpose in this paper is to consider
the existence of a positive solution of (P ) for g satisfying lim|x|→∞ g(x, t) =
| t |p−1 t. Our method employed here is based on the singular homology
theory.

Throughout this paper, we assume that g ∈ C1(R) ∩ C2(R\{0}) and we
impose the following conditions on g:
(g1) There exists a positive number d < 1 such that

−dt+ (1 − d) | t |p−1 t ≤ g(x, t) ≤ dt+ (1 + d) | t |p−1 t

for all (x, t) ∈ RN × [0,∞);
(g2) there exists a positive number C such that

| gt(x, 0) |< 1 and 0 < t3gtt(x, t) < C(1+ | t |p+1)

for all (x, t) ∈ RN × (0,∞);
(g3)

lim
|x|→∞

g(x, t) =| t |p−1 t

uniformly on bounded intervals in [0,∞),
where 1 < p < (N + 2)/(N − 2) and gt(·, ·) stands for the derivative of g
with respect to the second variable.
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Remark 1. (1) Throughout the rest of this paper, we assume for the sim-
plicity of the proofs that g(x,−t) = −g(x, t) for (x, t) ∈ RN × [0,∞). Since
we are concerned with positive solutions, this assumption does not effect
our result. By this assumption, the functional I is even and if u is a
critical point of I, −u is also a critical point of I. (2) Functions of the
form g(x, t) = Σm

i=1qi(x)t
i + qp(x)tp satisfy (g1) and (g2) if m is a pos-

itive integer with m < p, qi(x) (1 ≤ i ≤ m) are sufficiently small and
| qp(x) − 1 |< 1 + d. (g3) is satisfied if lim|x|→∞ qi(x) = 0 for 1 ≤ i ≤ p− 1
and lim|x|→∞ qp(x) = 1.

Theorem. Suppose that (g2) and (g3) hold. Then there exists d0 > 0 such
that if (g1) holds with d < d0, then the problem (P ) has a positive solution.

2. Preliminaries

Throughout the rest of this paper, we assume that (g2) and (g3) hold.
We put H = H1(RN ). Then H is a Hilbert space with norm

‖ u ‖=
(∫

RN

(| ∇u |2 + | u |2)dx
)1/2

.

The norm of the dual space H−1(RN ) of H is also denoted by ‖ · ‖. Br

stands for the open ball centered at 0 with radius r. For subsets A,B of H
with A ⊂ B, we denote by intBA and ∂BA the relative interior of A in B
and the relative boundary of A in B, respectively. For subsets A,B of H,
we write A ∼= B when A and B have the same homotopy type. The norm
and inner product of L2(RN ) are denoted by | · |L2 and 〈·, ·〉, respectively.
For each x ∈ RN and u ∈ H, we set τxu = u(· + x). For each functional F
on H and a ∈ R, we set

Fa = {u ∈ H : F (u) ≤ a} and Ḟa = {u ∈ H : F (u) < a}.

We put

M =
{
u ∈ H\ {0} : ‖ u ‖2=

∫
RN

ug(x, u)dx
}
,

M∞ =
{
u ∈ H\ {0} : ‖ u ‖2=

∫
RN

up+1dx

}
.

From the assumption (g2), we find that for each u ∈ H\{0},

dI(tu)
dt

(0) = 0,
d2I(tu)
dt2

(0) =| ∇u |2L2 + | u |2L2 −〈gt(x, 0)u, u〉 > 0,

and

(2.1)
d3I(tu)
dt3

(t) = −〈gtt(x, tu)u2, u〉 < 0 for t > 0.
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Then, noting that (dI(tu)/dt)(λ) = 0 if λu ∈ M , we can see that there
exists a positive number λ0(u) such that Iu = {λu : λ > 0} intersectsM at
exactly one point λ0(u)u. Similarly, we can define a positive number λ∞(u)
by λ∞(u)u ∈ M∞. For simplicity, we write λ0u and λ∞u instead of λ0(u)u
and λ∞(u)u respectively, when it is clear in the context what it means. It
also follows from the definition of M∞ that for each u ∈ M∞,

(2.2)
I∞(u) =

p− 1
2(p+ 1)

∫
RN

(| ∇u |2 + | u |2) dx
=

p− 1
2(p+ 1)

∫
RN

| ∇u |p+1 dx.

It is known that there exists a positive radial solution u∞ of problem

(P∞)

{
− ∆u+ u =| u |p−1 u, x ∈ RN

u ∈ H1(RN ),

such that c = I∞(u∞) = min{I∞(u) : u ∈ M∞}. In [6], Kwong showed
that u∞ is the unique positive solution up to the translation. It then follows
as a direct consequence of the concentrate compactness lemma(cf. Lions [8])
that the second critical level of I∞ is 2c. That is,

Lemma 2.1. For each 0 < ε < c, inf{‖ ∇I∞(u) ‖ : u ∈ I2c−ε\İc+ε} > 0.

We put c1 = inf{I(u) : u ∈ M}. It then follows from the definition of
I and M that if u ∈ M satisfies c1 = I(u), then u is a solution of (P). It
also follows that u is positive. In fact, if u+ = max{u, 0} �≡ 0 and u− =
−min{u, 0} �≡ 0, then u± ∈ M and therefore I(u) = I(u+) + I(u−) ≥ 2c1.
This is a contradiction. Then to find a positive solution of problem (P), we
will find a critical point of M with critical level c1. We can see from (g3)
that lim|x|→∞ I(u∞(· + x)) = c. Therefore we have that c1 ≤ c. Moreover
we have

Proposition 2.2. Suppose that (g1) holds with d ≤ d̃0, where d̃0 is a posi-
tive number such that

δ = inf
{
1 − d

2
− (1 + d)2

(1 − d)(p+ 1)
: 0 ≤ d ≤ d̃0

}
> 0.

If c1 < c, then there exists a positive solution of problem (P ).

Proof. Let u ∈ H. Then by (g1), we have

I(u) =
1
2

∫
RN

(| ∇u |2 + | u |2) dx−
∫

RN

∫ u(x)

0
g(x, t)dtdx

≥
∫

RN

(
1
2

(| ∇u |2 +(1 − d) | u |2) − 1 + d

p+ 1
| u |p+1

)
dx.
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Suppose that u ∈ M . Then again by (g1), we have

‖ u ‖2=
∫

RN

ug(x, u)dx ≥
∫

RN

(−d | u |2 +(1 − d) | u |p+1) dx.
Combining the inequalities above, we have

(2.3)

I(u) ≥
∫

RN

(
1
2

− 1 + d

(1 − d)(p+ 1)
| ∇u |2

+
(
1 − d

2
− (1 + d)2

(1 − d)(p+ 1)

)
| u |2

)
dx

≥ δ

∫
RN

(| ∇u |2 + | u |2) dx.
Let {un} ⊂ M be a sequence such that limn→∞ I(un) = c1 and
limn→∞ ∇I(un) = 0. It then follows from (2.3) that {un} is bounded in H.
Then by a parallel argument as in the proof of theorem I.2 of Lions [9], we
can see that {un} converges to u ∈ H and ∇I(u) = 0 and this completes
the proof.

By Proposition 2.2, it is sufficient to consider the case that c1 = c. In
the sequel, we assume that c1 = c. We prove Theorem by contradiction,
that is, we assume in the following that the functional I does not have
nontrivial critical points. Our purpose in the rest of this section is to prove
the following Proposition.

Proposition 2.3. There exists a positive number d0 < d̃0 such that if (g1)
holds with d ≤ d0, then for each 0 < ε < c,

H∗(I∞
c+ε, I

∞
ε ) = H∗(Ic+ε, Iε)

where H∗(A,B) denotes the singular homology group for a pair (A,B) of
topological spaces (cf. Spanier [11]).

In the following we denote by M0,∞ and Mα (α > 0) the sets defined by

M0,∞ = {tλ0u+ (1− t)λ∞u : u ∈ H\{0}, t ∈ [0, 1], λ0u ∈ M,λ∞u ∈ M∞}
and

(2.4) Mα = {(1 + τ)u : u ∈ M0,∞, τ ∈ (−R(u), R(u))}
where

(2.5)
R(u) = sup

{
t > 0 : max

{
I(u)

I((1 + τ)u)
,
I∞((1 + τ)u)

I∞(u)

}
< 1 + α

for all τ ∈ [−t, t]
}
.

From the definition, M∞,M ⊂ M0,∞ and Mα is an open neighborhood of
M0,∞.
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Lemma 2.4. There exist positive numbers d1 and α0 such that if (g1) holds
with d ≤ d1, then for each positive number α < α0,

I∞
(7/6)c ⊂ I(4/3)c ∪ (Mα)c,(1)

I(4/3)c ⊂ I∞
(5/3)c ∪ (Mα)c,(2)

I∞
(5/3)c ⊂ I(11/6)c ∪ (Mα)c.(3)

Proof. The assertions (1), (2) and (3) can be proved by parallel arguments.
We give only the proof of (2). Let d1 > 0 such that

4
5
< ρ = min

{ (
(1 − d)2

2(1 + d)
− 1 + d

p+ 1

)
2(p+ 1)
p− 1

,(
1 − d

1 + d

)2/(p−1) (
2(p+ 1)
p− 1

) (
1 − d

2
− (1 + d)

p+ 1

) }
, for 0 ≤ d ≤ d0.

We assume that (g1) holds with d ≤ d1. Fix u ∈ H\{0}. Then we have
from the definitions of M and M∞ that

(2.6) ‖ λ0u ‖2=
∫

RN

λ0ug(x, λ0u)dx and ‖ λ∞u ‖2=
∫

RN

| λ∞u |p+1 dx.

By (g1) and (2.6), we have

1 − d

1 + d

∫
RN

| λ0u |p+1 dx ≤ 1
1 + d

∫
RN

(λ0ug(x, λ0u) + d | λ0u |2)dx

≤ 1
1 + d

∫
RN

(| ∇λ0u |2 dx+ (1 + d) | λ0u |2)dx

≤
∫

RN

(| ∇λ0u |2 dx+ | λ0u |2)dx

≤ 1
1 − d

∫
RN

(| ∇λ0u |2 dx+ (1 − d) | λ0u |2)dx

≤ 1
1 − d

∫
RN

(λ0ug(x, λ0u) − d | λ0u |2)dx

≤ 1 + d

1 − d

∫
RN

| λ0u |p+1 dx.

That is, we have

(2.7)

1 − d

1 + d

∫
RN

| λ0u |p+1 dx ≤
∫

RN

(| ∇λ0u |2 dx+ | λ0u |2)dx

≤ 1 + d

1 − d

∫
RN

| λ0u |p+1 dx.
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We find from the second equality of (2.6) and (2.7) that

(2.8)
1 − d

1 + d
λp−1

0 ≤ λp−1
∞ ≤ 1 + d

1 − d
λp−1

0 .

To prove the assertion, we will show that for 0 < α < α0,

I(4/3)c ∩Mα ⊂ I∞
(5/3)c.

Now let u ∈ M0,∞. From the definition ofM0,∞, we have that λ0 ≤ 1 ≤ λ∞
or λ∞ ≤ 1 ≤ λ0 holds. We first consider the case that λ∞ ≤ 1 ≤ λ0 . Since
λ∞ ≤ 1 , we have that

‖ u ‖2=
∫

RN

(| ∇u |2 + | u |2)dx ≤
∫

RN

| u |p+1 dx.

Then we find that

(2.9) I∞(u) ≤ p− 1
2(p+ 1)

∫
RN

| u |p+1 dx.

On the other hand, recalling that the second equality of (2.6) holds, we
obtain from (g1), (2.9) and (2.8) that

(2.10)

I(u) ≥ 1 − d

2

∫
RN

(| ∇u |2 + | u |2)dx− 1 + d

p+ 1

∫
RN

| u |p+1 dx

=
(
1 − d

2
λp−1

∞ − 1 + d

p+ 1

) ∫
RN

| u |p+1 dx

≥
(
(1 − d)2

2(1 + d)
− 1 + d

p+ 1

)
2(p+ 1)
p− 1

I∞(u)

≥ ρI∞(u).

We choose a positive number α1 < 1 such that 4/5 < ρ/(1 + α1)2. Now
suppose that (1 + τ)u ∈ Mα1 , τ ∈ R. Then, by (2.10) , we have

I((1 + τ)u) ≥ (1/(1 + α1))I(u) ≥ (ρ/(1 + α1))I∞(u)

≥ (ρ/(1 + α1)2)I∞((1 + τ)u).

Assume that (1 + τ)u ∈ I(4/3)c. Then it follows from the inequalities above
that

I∞((1 + τ)u) ≤ (4/3)c(1 + α1)2/ρ ≤ (5/3)c.

We next assume that λ0 ≤ 1 ≤ λ∞. Then by (2.2),

(2.11) I∞(u) ≤ I∞(λ∞u) =
p− 1

2(p+ 1)
λ2

∞

∫
RN

(| ∇u |2 + | u |2)dx.
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On the other hand, we have by (2.8) that

λ∞ ≤
(
1 + d

1 − d

)1/(p−1)

.

Then, noting that λ−(p−1)
∞ ≤ 1, we have from (g1) and (2.11) that

(2.12)

I(u) ≥ 1 − d

2

∫
RN

(| ∇u |2 + | u |2)dx− 1 + d

p+ 1

∫
RN

| u |p+1 dx

≥
(
1 − d

2
− 1 + d

p+ 1
λ−(p−1)

∞

) ∫
RN

(| ∇u |2 + | u |2)dx

= λ−2
∞

2(p+ 1)
p− 1

(
1 − d

2
− λ−(p−1)

∞
(1 + d)
p+ 1

)
I∞(u)

≥
(
1 − d

1 + d

)2/(p−1) 2(p+ 1)
p− 1

(
1 − d

2
− (1 + d)

p+ 1

)
I∞(u)

≥ ρI∞(u).

Then we have that there exists α2 > 0 such that for all u ∈ Mα2 with
I(u) ≤ (4/3)c, I∞(u) ≤ (5/3)c. Thus we obtain that the assertion holds
with α0 = min{α1, α2}.

Throughout the rest of this section we fix the positive number α < α0.

Lemma 2.5. There exists a continuous mapping γ1 : [0, 1] × (I(11/6)c ∪
M c

α) → I(11/6)c ∪M c
α such hat

γ1(0, x) = x for all x ∈ I(11/6)c ∪M c
α,(i)

γ1(t, x) = x for all (t, x) ∈ [0, 1] × (I(4/3)c ∪M c
α),(ii)

I(γ1(t, x)) ≤ I(γ1(0, x)) for all (t, x) ∈ [0, 1] × (I(11/6)c ∪M c
α),(iii)

γ1(1, I(11/6)c ∪M c
α) ⊂ I(4/3)c ∪M c

α.(iv)

Proof. We set

Mo = {λu : u ∈ M,λ > 1} and Mi = {λu : u ∈ M,λ < 1}.
Let U be an open set such that

(Mα)c ⊂ U and U ∩Mα/2 = φ.

Then since M ⊂ Mα/2, we can see that

〈∇I(v), v〉 > 0 on Mi ∩ U and 〈∇I(v), v〉 < 0 on Mo ∩ U.
Then by arguing standard way (cf. Lemma 1.6 of Rabinowitz [10]), we can
construct a pseudo-gradient vector field Ṽ associated with ∇I such that

(a) ‖ Ṽ (u) ‖≤ 2 ‖ ∇I(u) ‖, for u ∈ H;
(b) 〈∇I(u), Ṽ (u)〉 ≥‖ ∇I(u) ‖2, for u ∈ H;
(c) 〈Ṽ (v), v〉 > 0 on Mi ∩ U ;
(d) 〈Ṽ (v), v〉 < 0 on Mo ∩ U.
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We put

h1(v) =‖ v −M c
α ‖ /(‖ v − U c ‖ + ‖ v −M c

α ‖) for v ∈ H,

h2(v) =‖ v − U c ‖ /(‖ v − U c ‖ + ‖ v −M c
α ‖) for v ∈ H

and

(2.13) V (v) = h1(v)Ṽ (v) + h2(v) sgn(〈Ṽ (v), v〉)v for v ∈ H.

Then V is Lipschitz continuous on I(11/6)c ∪ (Mα)c. Consider the ordinary
differential equation

(2.14)
dη

dt
= −V (η), η(0, v) = v for v ∈ I(11/6)c ∪ (Mα)c.

The solution η : R+ × H → H defines a semiflow on H. It follows from
the definition of V that η(t, v) ∈ (Mα)c for (t, v) ∈ [0,∞) × (Mα)c. In fact,
if v ∈ (Mα)c, then for each t > 0, η(t, v) = λtv, where λt ∈ R such that
λtv ∈ (Mα)c. We also have from (a)-(c) and (2.13) that 〈V (v),∇I(v)〉 > 0
on U ∪ I(11/6)c and then

I(η(t, v)) < I(η(s, v)) for t > s and v ∈ U ∪ I(11/6)c.

Thus we find that η(t, v) ∈ I(11/6)c ∪ (Mα)c for (t, v) ∈ [0,∞) × I(11/6)c ∪
(Mα)c. It follows from Lemma 2.1 that

inf{‖ ∇I(u) ‖ : u ∈ I(11/6)c\I(4/3)c} > 0.

Then we have

inf{‖ V (u) ‖ : u ∈ (U ∪ I(11/6)c)\I(4/3)c} > 0.

Therefore, there exists T > 0 such that

(2.15)
η(t, v) ∈ int(I(4/3)c ∪ (Mα)c) for all t > T

and all v ∈ I(11/6)c ∪ (Mα)c.

Here we put

γ(t, v) = η(tv · t, v) for (t, v) ∈ [0, 1] × I(11/6)c ∪ (Mα)c,

where

tv = inf{t ≥ 0 : η(t, v) ∈ I(4/3)c ∪ (Mα)c} for v ∈ I(11/6)c ∪ (Mα)c.

Then, by (2.15), we have γ1 : [0, 1] × I(11/6)c ∪ (Mα)c → I(11/6)c ∪ (Mα)c

satisfying the desired properties.

By a parallel argument as in the proof of Lemma 2.5, we have
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Lemma 2.6. There exists a continuous mapping γ2 : [0, 1]×I∞
(5/3)c ∪M c

α →
I∞
(5/3)c ∪M c

α such that

(v) γ2(0, x) = x for all x ∈ I∞
(5/3)c ∪M c

α;
(vi) γ2(t, x) = x for all (t, x) ∈ [0, 1] × (I∞

(7/6)c ∪M c
α);

(vii) I∞(γ2(t, x)) ≤ I∞(γ2(0, x)) for all (t, x) ∈ [0, 1]×(I∞
(5/3)c∪M c

α);
(viii) γ2(1, I∞

(5/3)c ∪M c
α) ⊂ I∞

(7/6)c ∪M c
α.

Lemma 2.7. For each 0 < ε < c, I∞
ε and Iε have the same homotopy type.

Proof. Let 0 < ε < c. Then we have by (2.1) that there exist continuous
mappings t1 : H\{0} → R+ and t2 : H\{0} → R+ such that for each
u ∈ H\{0}, t1(u) < t2(u) and

{I(tu) : t ≥ 0} ∩ Iε = {tu : t ∈ [0, t1(u)] ∪ [t2(u),∞)}

Similarly, there exist continuous mappings t∞1 : H\{0} → R+ and t∞2 :
H\{0} → R+ such that for each u ∈ H\{0}, t∞1 (u) < t∞2 (u) and

{I∞(tu) : t ≥ 0} ∩ I∞
ε = {tu : t ∈ [0, t∞1 (u)] ∪ [t∞2 (u),∞)}.

Then we find that I∞
ε and Iε have the same homotopy type.

We can now prove Proposition 2.3.

Proof of Proposition 2.3. Let 0 < ε < c. Then I∞
c+ε and Ic+ε have

the same homotopy types as I∞
(7/6)c and I(7/6)c, respectively. We also have

that I∞
ε and Iε have the same homotopy types with as I∞

(1/3)c and I(1/3)c,
respectively. Then to prove the assertion, it is sufficient to show that

H∗(I∞
(7/6)c, I

∞
(1/3)c) ∼= H∗(I(7/6)c, I(1/3)c).

We first define a mapping γ̃ : [0, 1] × (I(11/6)c ∪ (Mα)c) → I(11/6)c ∪ (Mα)c

by

γ̃(t, u) =
{
γ1(2t, u), for t ∈ [0, 1/2],
γ2(2(t− 1/2), γ1(1, u)), for t ∈ (1/2, 1].

Then from (iii), we have that

(2.16) γ̃(t, u) ∈ I(11/6)c ∪ (Mα)c

for (t, u) ∈ [0, 1/2] × (I(11/6)c ∪ (Mα)c). On the other hand, we have, by
combining (iv) and (vii) with (3) of Lemma 2.4, that (2.16) holds for (t, u) ∈
[1/2, 1]×(I(11/6)c ∪(Mα)c). Thus we have that γ̃ is well defined and a strong
deformation retraction from I(11/6)c ∪ (Mα)c onto I∞

(7/6)c ∪ (Mα)c. We next
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define a mapping γ3 : [0, 1] × (I∞
(7/6)c ∪M c

α) → I∞
(7/6)c. For each u ∈ (Mα)c

with I∞(u) > (7/6)c , we set

τ+
u = min{τ > 1 : I∞(τu) ≤ (7/6)c},
τ−
u = max{τ < 1 : I∞(τu) ≤ (7/6)c},
M∞

o = {λu : u ∈ M∞, λ > 1}
and

M∞
i = {λu : u ∈ M∞, λ < 1}.

Then we put

γ3(t, x) =


tτ+

u u+ (1 − t)u if u ∈ M∞
o \(I∞

(7/6)c ∪Mα),
tτ−

u u+ (1 − t)u if u ∈ M∞
i \(I∞

(7/6)c ∪Mα),
u if u ∈ I∞

(7/6)c.

It then easy to see that γ3 is a strong deformation retraction from I∞
(7/6)c ∪

(Mα)c to I∞
(7/6)c. Therefore we obtain that I∞

(7/6)c is a strong deformation
retract of I(11/6)c ∪ (Mα)c. It then follows that

(2.17) H∗(I∞
(7/6)c, I

∞
(1/3)ε) = H∗(I(11/6)c ∪ (Mα)c, I∞

(1/3)ε).

Then by Lemma 2.7,

(2.18) H∗(I(11/6)c ∪ (Mα)c, I∞
(1/3)ε) = H∗(I(11/6)c ∪ (Mα)c, I(1/3)ε).

On the other hand, we can see by a parallel argument as above that I(7/6)c
is a strong deformation retract of I(11/6)c ∪ (Mα)c. Then from (2.17) and
(2.18), we have H∗(I∞

(7/6)c, I
∞
(1/3)c) ∼= H∗(I(7/6)c, I(1/3)c), which completes

the proof.

3. Proof of the Theorem

We start with the following proposition.

Proposition 3.1. For each positive number ε < c,

Hq(I∞
c+ε, I

∞
ε ) =

{
2 if q = 0,
0 if q �= 0.

Proposition 3.1 was proved in [6]. For completeness, we give the proof
of it in the appendix. We next consider a triple (U,K, ε) ⊂ H × H × R+

satisfying the following conditions:
(1) U ∩ (−U) = φ;
(2) {τxu∞ : | x |≥ r} ⊂ intK for some r > 0;
(3) cl(Ic+ε ∩K) ⊂ intIc+ε(Ic+ε ∩ U);
(4) Iε is a strong deformation retract of Ic+ε\(K ∪ (−K));
(5) HN−1(Ic+ε ∩ U) = 1, H1(Ic+ε ∩ U) = 0;
(6) HN−1((Ic+ε ∩ U)\K) = 2 or H0((Ic+ε ∩ U)\K) = 1 holds.



76 N. HIRANO

Proposition 3.2. There exists a triple (U,K, ε) ⊂ H × H × R+ which
satisfies (1) − (6).

The proof of Proposition 3.2 is given in Section 4.

Lemma 3.3. Suppose that there exist a triple (U,K, ε) ⊂ H × H × R+

satisfying (1) − (6). Suppose, in addition, that HN−1((Ic+ε ∩ U)\K) ≥ 2.
Then HN (Ic+ε, Iε) ≥ 2.

Proof. We put K̃ = K ∪ (−K). Since Iε is a strong deformation retract of
Ic+ε\K̃, we find that

Hq(Ic+ε\K̃, Iε) ∼= Hq(Iε, Iε) ∼= 0.

Then we have from the exactness of the singular homology groups of the
triple (Ic+ε, Ic+ε\K̃, Iε) that

0 → Hq(Ic+ε, Iε) → Hq(Ic+ε, Ic+ε\K̃) → 0.

That is,
Hq(Ic+ε, Iε) ∼= Hq(Ic+ε, Ic+ε\K̃).

From (1) and (3), we find

Hq(Ic+ε, Ic+ε\K̃) ∼= Hq(W,W\K) ⊕Hq(−W, (−W )\(−K)),

where W = Ic+ε ∩ U . Then since HN−1(W\K) ≥ 2, we have from (5) and
the exactness of the sequence

(3.1)
→ Hq(W,W\K) → Hq−1(W\K)

→ Hq−1(W ) → Hq−1(W,W\K) →,

with q = N, that HN (Ic+ε, Iε) ∼= HN (W,W\K)⊕HN (W,W\K) ≥ 2.

Lemma 3.4. Suppose that (U,K, ε) ⊂ H × H × R+ satisfies (1) − (6).
Suppose in addition that H0(Ic+ε ∩ U) = H0((Ic+ε ∩ U)\K) = 1. Then
H1(Ic+ε, Iε) = 0 or H0(Ic+ε, Iε) = 2 holds.

Proof. From the argument in the proof of Proposition 3.2, we have

H1(Ic+ε, Iε) ∼= H1(Ic+ε ∩ U, (Ic+ε ∩ U)\K) ⊕H1(Ic+ε ∩ U, (Ic+ε ∩ U)\K).

Then since H1(Ic+ε ∩U) = 0 and H0(Ic+ε ∩U) = H0((Ic+ε ∩U)\K) = 1, the
assertion follows from the exactness of the sequence (3.1) with q = 1.

We can now prove the Theorem.

Proof of the Theorem. Let (U,K, ε) satisfy (1)− (6).We have by Propo-
sition 2.3 and Proposition 3.1 that H1(Ic+ε, Iε) = 2 and Hq(Ic+ε, Iε) =
0 for q �= 1. Now suppose that (Ic+ε ∩ U)\K is disconnected. Then
since H0((Ic+ε ∩ U)\K) ≥ 2, we find by (6) that HN−1(Ic+ε, Iε) = 2.
This is a contradiction. On the other hand, if U\K is connected, then
H0((Ic+ε ∪ U)\K) = 1. Then by Lemma 3.4, we have H1(Ic+ε, Iε) = 0 or
H0(Ic+ε, Iε) = 2. This is a contradiction. Thus we obtain that there exists
a positive solution of (P).
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4. Proof of Proposition 3.2

We shall construct a triple (U,K, ε) satisfying (1) - (6). First we state
the following lemma.

Lemma 4.1. If 0 < ε < c < d < 2c and {un} ⊂ Id\Iε is a sequence such
that ∇I(un) → 0, then un → τxnu∞ where {xn} ⊂ RN with limn→∞ | xn |=
∞.

Since we are assuming that I has no critical point in İ2c\Ic, the assertion
of Lemma 4.1 is a direct consequence of the arguments in [8, 9]. Thus, we
omit the proof (cf. also [3]).

We fix a positive number ρ < 1. Recalling that the mappings t →
I∞((±t + 1)u∞) are decreasing as t varies from 0 to ±1, we have I∞

c ∩
{tu∞ : t ∈ [−ρ+1, ρ+1]} = {u∞}. Then we can choose positive numbers
r0 and δ such that

(4.1) {tv : t ∈ [−ρ+ 1,−ρ/2 + 1] ∪ [ρ/2 + 1, ρ+ 1], v ∈ S0} ⊂ I∞
c−δ

where S0 = (u∞ +Br0) ∩M∞. We note that S0 is a contractible neighbor-
hood of u∞ in M∞. We may choose r0 so small that

(4.2) S0 ⊂ I∞
(4/3)c.

Next, we fix a contractible neighborhood S̃0 of u∞ in M∞ such that S̃0 ⊂
intM∞S0. We put

D0 = {τxv : v ∈ S0, x ∈ RN with | x |≥ R0},
D̃0 = {τxv : v ∈ S̃0, x ∈ RN with | x |≥ 2R0},

where R0 is a positive number. Then D̃0 ⊂ D0 ⊂ M∞. Now we define
subsets U,K of H by

(4.3)
U = {tv : t ∈ [−ρ+ 1, ρ+ 1], v ∈ D0},
K = {tv : t ∈ [−ρ/2 + 1, ρ/2 + 1], v ∈ D̃0}.

Since {τxu∞ : x ∈ RN} ∩ {τx(−u∞) : x ∈ RN} = φ, by choosing r0 and
ρ sufficiently small, we have that U ∩ (−U) = φ. That is, (1) holds. Since
(4.1) holds and lim|x|→∞ I(τxu∞) = c, we can choose R0 so large that

(4.4) {tv : t ∈ [−ρ+ 1,−ρ/2 + 1] ∪ [ρ/2 + 1, ρ+ 1], v ∈ D0} ⊂ Ic.

We also have by (4.2) that R0 can be chosen so large that U ⊂ I(6/5)c. It
follows from the defintion of U and K that

(4.5) {τxu∞ : | x |≥ 3R0} ⊂ intK ⊂ K ⊂ intU.
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That is, (2) holds with r = 3R0. From the definition, it is obvious that (3)
holds. As a direct consequence of (3) of Lemma 4.1 and (4.5) , we have

(4.6) inf{‖ ∇I(v) ‖ : v ∈ Id\(Iε ∪K ∪ (−K))} > 0

for all 0 < ε < c < d < 2c. Then by deformation lemma(cf. [3]), there exists
ε0 > 0 such that for each 0 < ε < ε0, Iε is a strong deformation retract of
Ic+ε\(K ∪ (−K)). That is, (4) holds for all 0 < ε < ε0.

We will see that there exists 0 < ε < ε0 such that (U,K, ε) satisifes (5)
and (6). Here we note that

(4.7) c2 = inf{I(λ0(v)v) : v ∈ D0\D̃0} > c1

In fact, if c2 = c1, there exists a sequence {un} ⊂ M such that un =
λ0(vn)vn, vn ∈ D0\D̃0 for each n ≥ 1 and that limn→∞ I(un) = c. This
implies that ∇I(un) → 0 and then by Lemma 4.1, un → τxnu∞, where
{xn} ⊂ RN with lim | xn |= ∞. This implies that vn → τxnu∞ and this
contradicts to the definition of {vn}. Here we choose a positive number ε
such that ε < c2 − c. Here we define subsets of M and H. Noting that

lim
|x|→∞

I(τxu∞) = c

We can choose contractible neighborhoods S1, S2 of u∞ inM∞ and positive
numbers R1, R2 such that S2 ⊂ intM∞S1 ⊂ S0, R1 < R2 and

Ui = {tτxv : t ∈ [−ρ+ 1, ρ+ 1], | x |≥ Ri, v ∈ Si} ⊂ Ic+ε.

We also set

U1,+ = {tv : t ∈ [−ρ+ 1,−ρ/2 + 1], v ∈ D0},
U1,− = {tv : t ∈ [ρ/2 + 1, ρ+ 1], v ∈ D0}

and
U2,+ = {tv : t ∈ [−ρ+ 1,−ρ/4 + 1], v ∈ D0},
U2,− = {tv : t ∈ [ρ/4 + 1, ρ+ 1], v ∈ D0}.

Then from the definitions above and (4.2) , we have that

Ũ2 = U2 ∪ U2,+ ∪ U2,− ⊂ Ũ1 = U1 ∪ U1,+ ∪ U1,− ⊂ Ic+ε,

and

(4.8) Ũ1 ∼= Ũ2 ∼= {τxu∞ : | x |≥ R1} ∼= SN−1.

Then we have that (5) holds, as a direct consequence of the following lemma
4.5.
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Lemma 4.2. Ũ1 is a deformation reatract of Ic+ε ∩ U .

Proof. To prove the assertion it is sufficient to show the existence of a semi-
flow η : [0,∞)× (Ic+ε ∩U) → Ic+ε ∩U such that for each v ∈ Ic+ε ∩U , there
exists tv ≥ 0 satsifying η(t, v) ∈ intIc+ε∩U Ũ1 for all t ≥ tv. In fact, if there
exists such a semiflow, we can construct a strong deformation retraction as
in the proof of Lemma 2.5. By (4.7) and the definition of I,

I(v) > c+ ε for v ∈ ∂M∞D0,

and we have

D2 = {v ∈ D0 : I(v) ≤ c+ ε} ⊂ intM∞D0,

Here we fix an open neighborhood D1 of D2 in M∞ such that

D2 ⊂ intM∞D1 ⊂ cl(D1) ⊂ intM∞D0

and set
Wi = {tv : t ∈ [−ρ+ 1, ρ+ 1], v ∈ Di}, i = 1,2.

Then
U1 ⊂ W2 ⊂ W1 ⊂ Ic+ε ∩ U.

We note that

(4.9) I(λ0(v)v) > c+ ε for v ∈ D0\D2.

Let V1 be a Lipschitz continuous vector field associate with ∇I and V2 be a
vector field defined on (Ic+ε ∩ U)\W2 by

V2(u) =
{
u if λ0(u) > 1
−u if λ0(u) < 1.

Since λ0(u) �= 1 on (Ic+ε ∩U)\W2 by (4.9), we can see that V2 is well defined
and continuous on (U ∩ Ic1+ε)\W2. We now set

V (u) =‖ U2,− ∪ U2,+ − u ‖ (‖ W c
1 − u ‖ V1(u)+ ‖ W2 − u ‖ V2(u))

Then V is a Lipschitz continuous vector field on Ic+ε ∩ U and the solution
η of (2.14) defines a semiflow. We shall see that

(4.10) η(t, v) ∈ Ic+ε ∩ U for all (t, v) ∈ [0,∞) × (Ic+ε ∩ U).

We first note that from the definition of V , 〈∇I(v), V (v)〉 > 0 on Ic+ε ∩ U .
Then it follows that η(t, v) ≤ η(s, v) for all t > s ≥ 0 and v ∈ Ic+ε∩U . Since
W1\(U1,− ∪ U1,+) ⊂ int(Ic+ε ∩ U), to show (4.10), it is sufficient to show
that (4.10) holds for all v ∈ W c

1 ∩ (Ic+ε ∩ U). If v ∈ W c
1 ∩ (Ic+ε ∩ U), then
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from the definition of V , we can see that η(t, v) ∈ W c
1 ∩ (Ic+ε ∩U) for t ≥ 0

and then (4.10) holds. Moreover we have that for each v ∈ W c
1 ∩ (Ic+ε ∩U),

η(t, v) ∈ U1,− ∪ U1,+ for t sufficiently large. On the other hand, it follows
from the definition of V that

(4.11) inf{‖ V (u) ‖ : u ∈ (Ic+ε ∩ U)\Ũ2} > 0.

Then we can see that for any v ∈ Ic+ε ∩ U , there exists tv ≥ 0 such that
η(t, v) ∈ Ũ1 for all t ≥ tv. This completes the proof.

We lastly show that (6) holds. (6) is a consequence of the following
Lemma.

Lemma 4.3. If (Ic+ε ∩U)\K is disconnected, then HN−1((Ic+ε ∩U)\K) =
2.

Proof. Let V± be the components of (Ic+ε ∩U)\K containing U1,±, respec-
tively. We will see that (Ic+ε ∩ U)\K consists of exactly two components
V± and that V± ∼= SN−1. Let v ∈ D0. Then from the definition of M and
U , we have that

(4.12)
{tv : t ∈ [−ρ+ 1,ρ+ 1]} ∩ (Ic+ε\K)

= {tv : t ∈ [−ρ+ 1, t1(v)] ∪ [t2(v), ρ+ 1]},

where −ρ/2+1 ≤ t1(v) ≤ t2(v) ≤ ρ/2+1. This implies that if t1(v) = t2(v)
for some v ∈ D0, then (Ic+ε ∩ U)\K is connected. Therefore t1(v) < t2(v)
for all v ∈ D0. Then, again by (4.12), (Ic+ε ∩ U)\K ∼= U1,+ ∪ U1,−. Then
since U1,± ∼= SN−1, the assertion follows.

5. Appendix

We put C = ∪{τxu∞ : x ∈ RN} and

Tu∞(C) = {lim
t→0

(u∞(· + tx) − u∞(·))/t : x ∈ RN}.

It is obvious that dimTu∞(C) = N . We denote by H̃ the subspace such that
H̃ ⊕ Tu∞(C). Then H = τxH̃ ⊕ τxTu∞(C) for each x ∈ RN . For each r > 0,
we set B0

r = Br ∩ H̃. Since C is a smooth N-manifold, we have that there
exists a positive number r0 <‖ u∞ ‖ /4 such that for x, y ∈ RN with x �= y,

(5.1) τx(u∞ +B0
r0
) ∩ τy(u∞ +B0

r0
) = φ

We choose a closed contractible neighborhood S0 of u∞ in M∞ ∩ (u∞ +
B0

r0
) and 0 < ρ < 1 such that

(5.2) sup{I∞((±ρ/2 + 1)v) : v ∈ S0} < c.
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Since I(v) > c for all v ∈ S0\{u∞}, we have that

(5.3) inf{I∞(v) : v ∈ ∂M∞∩(u∞+B0
r0

)S0} > c.

Here we recall that mappings t → I∞((±t+ 1)v) are decreasing as t varies
from 0 to ±ρ. Then from (5.2), we have

(5.4)
I∞
c ∩ {tv : t ∈ [−ρ+ 1, ρ+ 1]}

={tv : t ∈ [−ρ+ 1, λ−(v)]} ∪ {tv : t ∈ [λ+(v), ρ+ 1]}

where {
λ−(v) < 1 < λ+(v) for v ∈ S0\{u∞}
λ−(v) = λ+(v) = 1 for v = u∞.

That is, for each v ∈ S0\{u∞}, the set I∞
c ∩ {tv : t ∈ [−ρ + 1, ρ + 1]}

consists of two intervals, and each interval has one end point in one of the
sets

V± = {(±ρ+ 1)v : v ∈ S0}.
Then noting that λ−(·) and λ+(·) are continuous and V± are contractible,
we have from observations above that

(5.5) I∞
c ∩ (V \{u∞}) ∼= V− ∪ V+ ∼= {0, 1} and I∞

c ∩ V ∼= [0, 1]

Now let 0 < ε < c. First we note that

I∞(u) = τx · I∞(u) = I∞(τxu) for all x ∈ RN and u ∈ H.

Then we have that I∞
c ∩(∪{τxV : x ∈ RN}) and I∞

ε ∩(∪{τxV : x ∈ RN})
have the same homotopy type with that of I∞

c ∩V and I∞
ε ∩V , respectively.

On the other hand, by the same argument for the second deformation lemma
in Chang [4], we have that I∞

c is a strong deformation rectraction of I∞
c+ε.

Then we find
Hq(I∞

c+ε, I
∞
c−ε) ∼= Hq(I∞

c , I∞
c−ε).

We also have by the deformation property that

Hq(I∞
c \C, I∞

c−ε) ∼= Hq(I∞
c−ε, I

∞
c−ε) ∼= 0.

From the exactness of the singular homology groups, we have

Hq(I∞
c \C, Ic−ε) → Hq(I∞

c , I∞
c−ε)

→ Hq(I∞
c , I∞

c \C) → Hq−1(I∞
c \C, I∞

c−ε) → · · ·

and we find
0 → Hq(I∞

c , I∞
c−ε) → Hq(I∞

c , I∞
c \C) → 0.
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That is,
Hq(I∞

c , I∞
c−ε) ∼= Hq(I∞

c , I∞
c \C).

Then from the excision property of homology groups and (5.5), we have

H∗(I∞
c+ε, I

∞
ε ) ∼= H∗(I∞

c , I∞
c \C)

∼= H∗(I∞
c ∩ (∪xτxV ), I∞

c ∩ ((∪xτxV )\C))
∼= H∗(I∞

c ∩ V, I∞
c ∩ (V \{u∞}))

∼= H∗([0, 1], {0, 1}).

This completes the proof.
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