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We prove the existence, uniqueness, and continuous dependence of a generalized solution
of a nonlinear reaction-diffusion system with only integral terms in the boundaries. We
first solve a particular case of the problem by using the energy-integral method. Next, via
an iteration procedure, we derive the obtained results to study the solvability of the stated
problem.

1. Introduction

In the recent years, a new attention has been given to reaction-diffusion systems which
involve an integral over the spatial domain of a function of the desired solution on the
boundary conditions; see [2, 5, 7, 6, 9, 10, 17, 18, 19, 20, 22] and the references cited
therein. Most of the studied problems in the current literature are devoted to problems
which combine a classical boundary condition (Dirichlet, Neumann, etc.) with an inte-
gral condition for single linear equations. The purpose of this paper is to prove the exis-
tence and uniqueness of a solution for the following nonlinear reaction-diffusion system
with only integral conditions:

�1(u,v)= ∂u

∂t
− ∂

∂x

(
a1(x, t)

∂u

∂x

)
+ b1(x, t)v = f1(x, t,u,v),

�2(u,v)= ∂v

∂t
− ∂

∂x

(
a2(x, t)

∂v

∂x

)
+ b2(x, t)u= f2(x, t,u,v),

�1u= u(x,0)= u0(x),

�2v = v(x,0)= v0(x),∫
Ω
xku(x, t)dx =mk(t) (k = 0,1),

∫
Ω
xkv(x, t)dx = µk(t) (k = 0,1),

(1.1)

for (x, t) ∈ Q, where Q =Ω× I , Ω = (α,β), is an open bounded interval of R, I = (0,T)
with 0 < T < +∞, and f1, f2, u0, v0, mk, and µk (k = 0,1) are known functions.
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Analogous systems with Dirichlet conditions have been studied in [1, 12, 13, 14, 16].
The existence of solutions have been obtained under the following assumptions:

(A1) the positivity of the solution is preserved with time, which is ensured by

f1(x, t,0,v)≥ 0, f1(x, t,u,0)≥ 0, (1.2)

for a.e. (x, t)∈Q, for all u,v ≥ 0, and u0,v0 ≥ 0;
(A2) the total mass of the components u, v is controlled with time, which is ensured

by

f1 + f2 ≤ L1(u+ v+ 1) ∀u,v ≥ 0, a.e. (x, t)∈Q; (1.3)

(A3) the function f1 verifies

f1 ≤ L2(u+ v+ 1) ∀u,v ≥ 0, a.e. (x, t)∈Q, (1.4)

where L1 and L2 are positive constants.

However, in this paper, we will show the solvability of problem (1.1) without assuming
conditions (A1), (A1), and (A3), and we will consider only the Lipschitz condition which
will be explicitly given later.

The plan of the paper is as follows. In Section 2, we give some notations used through-
out the paper. Section 3 is devoted to the solvability of a particular case of problem (1.1).
In Section 3.1, we start by giving the statement of the problem. The concept of the solu-
tion we are considering is given in Section 3.2. Then we prove the uniqueness and contin-
uous dependence in Section 3.3. Section 3.4 is reserved to the proof of the existence of the
solution. In Section 4, we study problem (1.1). In Section 4.1, we reduce problem (1.1)
to an equivalent form which is easier to analyze. The weak formulation of the reduced
problem is given in Section 4.2. The existence of the solution is presented in Section 4.3.
The uniqueness is established in Section 4.4, while the continuous dependence upon the
data is treated in Section 4.5. Finally, we give a conclusion and more results on its gener-
alization.

2. Notation

Let L2(Ω) be the usual space of square integrable functions; its scalar product is denoted
by (·,·) and its associated norm by ‖ · ‖. We denote by C0(Ω) the space of continuous
functions with compact support in Ω.

Definition 2.1. Denote by Bm2 (Ω) the Hilbert space defined as a completion of C0(Ω) for
the scalar product

(z,w)Bm2 (Ω) :=
∫
Ω
�mx z ·�mx wdx, (2.1)
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where �mx z := ∫ xα ((x− ξ)m−1/(m− 1)!)z(ξ)dξ. By the norm of function z from Bm2 (Ω), the
nonnegative number

‖z‖Bm2 (Ω) :=
(∫

Ω

(�mx z)2
dx
)1/2

<∞ (2.2)

is understood.
Then, the inequality

‖z‖2
Bm2 (Ω) ≤

(β−α)2

2
‖z‖2

Bm−1
2 (Ω), m≥ 1, (2.3)

holds for every z ∈ Bm−1
2 (Ω), and the embedding

Bm−1
2 (Ω)↩Bm2 (Ω) (2.4)

is continuous. If m= 0, the space B0
2(Ω) coincides with L2(Ω).

Remark 2.2. Note that the space Bm2 (Ω) was first introduced by the author (see, e.g.,
[2, 3, 7, 8]). It is a very useful space for this class of problems.

Definition 2.3. Denote by L2
0(Ω) the space consisting of elements z(x) of the space L2(Ω)

verifying
∫
Ω x

kz(x)dx = 0 (k = 0,1).

Remark 2.4. Since L2
0(Ω) is the null space of the continuous linear mapping � : L2(Ω)→

R2, z 	→ �(z) = (
∫
Ω z(x)dx,

∫
Ω xz(x)dx), it is a closed linear subspace of L2(Ω); conse-

quently, L2
0(Ω) is a Hilbert space for (·,·).

Let X be a Hilbert space with a norm denoted by ‖ · ‖X .

Definition 2.5. (i) Denote by L2(I ;X) the set of all measurable abstract functions u(·, t)
from I into X such that

‖u‖L2(I ;X) =
(∫

I

∥∥u(·, t)∥∥2
Xdt

)1/2

<∞. (2.5)

(ii) Let C(I ;X) be the set of all continuous functions u(·, t) : I → X with

‖u‖C(I ;X) =max
t∈I

∥∥u(·, t)∥∥X <∞. (2.6)

We assume that

(A4) 0 < c0 ≤ ai ≤ c1, |∂ai/∂t| ≤ c2, |∂ai/∂x| ≤ c3, |bi| ≤ c4 (i= 1,2) for all (x, t)∈Q;
(A5) the functions fi (i= 1,2) are bounded in B1

2(Ω) and fulfill the Lipschitz condition,
that is, there exists a positive constant L such that

∥∥ fi(·, t, p1,q1
)− fi

(·, t, p2,q2
)∥∥

B1
2 (Ω) ≤ L

(∥∥p1− p2
∥∥
B1

2 (Ω) +
∥∥q1− q2

∥∥
B1

2 (Ω)

)
; (2.7)

(A6) we have the following compatibility conditions:
∫
Ω
xku0(x)dx =mk(0),

∫
Ω
xkv0(x)dx = µk(0) (k = 0,1). (2.8)
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3. A particular case

3.1. Statement of the problem. In this section, we deal with a particular case of problem
(1.1) in which the system is reduced to a single linear equation related to the first compo-
nent. Precisely, we consider the problem of finding a function u= u(x, t) satisfying

�u= ∂u

∂t
− ∂

∂x

(
a(x, t)

∂u

∂x

)
+ b(x, t)u= f(x, t), (x, t)∈Q,

�u= u(x,0)= u0(x), x ∈Ω,∫
Ω
xku(x, t)dx =mk(t) (k = 0,1), t ∈ I ,

(3.1)

with

∫
Ω
xku0(x)dx =mk(0) (k = 0,1), (3.2)

where functions a and b verify the same assumptions on ai and bi, respectively, given in
(A4). Problem (3.1) arises from some practical phenomena such as the identification of
the entropy in the quasistatic flexure of a thermoelastic rod [7].

We start by reducing problem (3.1) with inhomogeneous integral conditions to an
equivalent problem with homogeneous conditions. In order to achieve this, we introduce
a new unknown function z defined by z(x, t)= u(x, t)−U(x, t), where

U(x, t)=
(
(β−α)3 + 12

(
β2−α2

)
(x−α)− 18(β+α)(x−α)2

)
(β−α)4

m0(t)

+
12
(
3(x−α)2− 2(β−α)(x−α)

)
(β−α)4

m1(t).

(3.3)

Therefore, problem (3.1) becomes

�z = ∂z

∂t
− ∂

∂x

(
a(x, t)

∂z

∂x

)
+ b(x, t)z = f (x, t), (x, t)∈Q, (3.4a)

�z = z(x,0)= z0(x), x ∈Ω, (3.4b)∫
Ω
xkz(x, t)dx = 0, k = 0,1, t ∈ I , (3.4c)

with

∫
Ω
xkz0(x)dx = 0, k = 0,1, (3.5)

where f (x, t)= f(x, t)−�U and z0(x)= u0(x)−U(x,0).
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3.2. A strongly generalized formulation. In this section, we make precise the concept of
the solution of problem (3.4) we are considering.

Following the energy-integral method [21], we reformulate problem (3.4) as the prob-
lem of solving the operator equation

Lz = { f ,z0
}

, (3.6)

where L is an unbounded operator which maps z(x, t) to the pair of elements �z and �z so
that L= {�,�}. The operator L, with domain D(L), acts from the space B into the space
F, where D(L) is the set of all elements z for which ∂z/∂t,∂z/∂x,∂2z/∂x2 ∈ L2(I ;L2(Ω))
and satisfying conditions (3.4c), B is a Banach space obtained by enclosing the set D(L)
with respect to the norm

‖z‖B =
(∥∥∥∥∂z∂t

∥∥∥∥
2

L2(I ;B1
2 (Ω))

+‖z‖2
C(I ;L2(Ω))

)1/2

, (3.7)

and F is the Hilbert space L2
(
I ;L2(Ω)

)× L2(Ω) consisting of all elements
{
f ,z0

}
for

which the norm

∥∥{ f ,z0
}∥∥2

F =
∥∥ f ∥∥2

L2(I ;L2(Ω)) +
∥∥z0
∥∥2

(3.8)

is finite. We denote by L the closure of L, and by D(L), the domain of L.

Definition 3.1. The solution of the operator equation

Lz = { f ,z0
}

(3.9)

is called a strongly generalized solution of problem (3.4) or of equation (3.6).

Remark 3.2. A strongly generalized solution in the sense of Definition 3.1 is also a weak
solution (see, e.g., [11]).

3.3. Uniqueness and continuous dependence on the solution. In this section, we estab-
lish an energy inequality for L. Then, uniqueness and continuous dependence are a direct
corollary of it.

Theorem 3.3. Under assumption (A1), there exists some positive constant C independent
of z such that

‖z‖B ≤ C‖Lz‖F . (3.10)

Proof. Considering the scalar product in B1
2(Ω) of (3.4a) and ∂z/∂t, and integrating the

result over (0,τ) with 0≤ τ ≤ T , we have

∫ τ
0

∥∥∥∥∂z(·, t)
∂t

∥∥∥∥
2

B1
2 (Ω)

dt−
∫ τ

0

(
∂

∂x

(
a
∂z(·, t)
∂x

)
,
∂z(·, t)
∂t

)
B1

2 (Ω)
dt

+
∫ τ

0

(
bz(·, t),

∂z(·, t)
∂t

)
B1

2 (Ω)
dt =

∫ τ
0

(
f (·, t),

∂z(·, t)
∂t

)
B1

2 (Ω)
dt.

(3.11)
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From integration by parts, we know that

−
∫ τ

0

(
∂

∂x

(
a
∂z(·, t)
∂x

)
,
∂z(·, t)
∂t

)
B1

2 (Ω)
dt

= 1
2

∫
Ω
a(x,τ)

(
z(x,τ)

)2
dx− 1

2

∫
Ω
a(x,0)

(
z0(x)

)2
dx

− 1
2

∫ τ
0

∫
Ω

∂a(x, t)
∂t

z2dxdt+
∫ τ

0

(
∂a

∂x
z(·, t),�x ∂z(·, t)

∂t

)
dt.

(3.12)

So, it is easy to see that

2
∫ τ

0

∥∥∥∥∂z(·, t)
∂t

∥∥∥∥
2

B1
2 (Ω)

dt+
∫
Ω
a(x,τ)

(
z(x,τ)

)2
dx

= 2
∫ τ

0

(
f (·, t),

∂z(·, t)
∂t

)
B1

2 (Ω)
dt+

∫
Ω
a(x,0)

(
z0(x)

)2
dx

+
∫ τ

0

∫
Ω

∂a(x, t)
∂t

z2dxdt− 2
∫ τ

0

(
∂a

∂x
z(·, t),�x ∂z(·, t)

∂t

)
dt

− 2
∫ τ

0

(
bz(·, t),

∂z(·, t)
∂t

)
B1

2 (Ω)
dt.

(3.13)

Taking into account (A4) and applying the Cauchy inequality to the first and the last two
terms on the right-hand side of (3.13), we obtain

∫ τ
0

∥∥∥∥∂z(·, t)
∂t

∥∥∥∥
2

B1
2 (Ω)

dt+
∥∥z(·,τ)

∥∥2

≤ c5

(∫ τ
0

∥∥ f (·, t)∥∥2
dt+

∥∥z0
∥∥2
)

+ c6

∫ τ
0

∥∥z(·, t)∥∥2
dt,

(3.14)

where c5 =max((β−α)2,c1)/min(1/2,c0) and c6 =max(c2 +2c2
3 +(β−α)2c2

4)/min(1/2,c0).
Using a lemma of Gronwall’s type to eliminate the last integral on the right-hand side of
(3.14), it yields

∫ τ
0

∥∥∥∥∂z(·, t)
∂t

∥∥∥∥
2

B1
2 (Ω)

dt+
∥∥z(·,τ)

∥∥2 ≤ c5 exp
(
c6T

)(∫ T
0

∥∥ f (·, t)∥∥2
dt+

∥∥z0
∥∥2
)
. (3.15)

Since the right-hand side of (3.15) is independent of τ, we replace the left-hand side by
the upper bound with respect to τ from 0 to T . Thus inequality (3.10) holds, with C =
c1/2

5 exp(c6T/2). �

Proposition 3.4. The operator L : B→ F possesses a closure.

For the proof, we refer the reader to [6].
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Since the points of the graph of L are limits of sequences of points of the graph of L,
inequality (3.10) can be extended for operator L, that is,

‖z‖B ≤ C‖Lz‖F ∀u∈D(L), (3.16)

from which we have the following results.

Corollary 3.5. The strongly generalized solution of problem (2.4) if it exists is unique and
depends continuously on ( f ,u0)∈ F.

Proof. This can be obtained directly from estimate (3.16). �

Corollary 3.6. The range R(L) of L is closed in F and R(L)= R(L).

Proof. Similar to that in [6]. �

3.4. Existence of the solution. We now prove the existence of the solution of problem
(3.4) in the sense of Definition 3.1.

Theorem 3.7. Let assumption (A4) be satisfied. Then for any f ∈ L2(I ;L2(Ω)) and z0 ∈
L2(Ω), there exists a unique strongly generalized solution z = L

−1{ f ,z0} = L−1{ f ,z0} of
problem (3.4).

Proof. It follows from Corollary 3.6 that to prove the existence of the solution, it remains
to show that R(L) is everywhere dense in F. To this end, we first establish the density for
the special case when the operator L is reduced to L0 with domain D(L0)=D(L), where
L0z = (�0z,�z), �0 is the principal part of �, that is,

�0z = ∂z

∂t
− ∂

∂x

(
a(x, t)

∂z

∂x

)
. (3.17)

�

Proposition 3.8. Let the assumptions of Theorem 3.7 hold. If

(�0z,ω)L2(I ;L2(Ω)) = 0 (3.18)

for some ω ∈ L2(I ;L2(Ω)) and for all u ∈ D0(L0) = {z ∈ D(L0) : �z = 0}, then ω vanishes
almost everywhere in Q.

We assume for the moment that the proof of Proposition 3.8 has been established, and
return to the proof of Theorem 3.7.

Suppose that for some W = (ω,ω0)∈ F and all z ∈D(L0),

(
�0z,ω

)
L2(I ;L2(Ω)) +

(
�z,ω0

)= 0. (3.19)

We must prove that W ≡ 0. To this end, putting z ∈D0(L0) in the last equality, we obtain
(3.18). Hence, Proposition 3.8 implies that ω ≡ 0. Thus it follows that

(
�z,ω0

)= 0, z ∈D(L0
)
. (3.20)

Since the range R(�) is dense in L2(Ω), the last equality implies thatω0 ≡ 0. Hence,W ≡ 0.
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The general result may be derived by means of the continuity method with respect to
the parameter (see, for instance, [5, Proof of Theorem 3]).

To complete the proof of Theorem 3.7, it remains to prove Proposition 3.8.

Proof of Proposition 3.8. Identity (3.18) can be written in the form

(
∂z

∂t
,ω
)
L2(I ;L2(Ω))

=
(
∂

∂x

(
a(x, t)

∂z

∂x

)
,ω
)
L2(I ;L2(Ω))

. (3.21)

In equality (3.21), we put

z =
∫ t

0
ecτ y(x,τ)dτ, (3.22)

where c is a constant such that

cc0− c2− c2
3 ≥ 0, (3.23)

�t(ecτ y), ∂�t(ecτ y)/∂x, (∂/∂x)(a(x, t)(∂�t(ecτ y)/∂x)) are in L2(I ;L2(Ω)), and y satisfy
conditions (3.4c).

Substituting (3.22) into (3.21), we have

(
ect y,ω

)
L2(I ;L2(Ω)) =

(
∂

∂x

(
a
∂�t
(
ecτ y

)
∂x

)
,ω
)
L2(I ;L2(Ω))

. (3.24)

The left-hand side of equality (3.24) shows that the mapping

L2(I ;L2(Ω))� z −→ ∂

∂x

(
a(x, t)

∂�t
(
ecτ y

)
∂x

)
(3.25)

is continuous if the function ω on the right-hand side of (3.24) verifies a(∂ω/∂x),
�∗t (a(∂ω/∂x)), (∂/∂x)(�∗t (a(∂ω/∂x)))∈ L2(I ;L2(Ω)) such that

ω|x=α = ω|x=β = ∂ω

∂x

∣∣∣∣
x=α

= ∂ω

∂x

∣∣∣∣
x=β

= 0. (3.26)

Set

ω =−2�2
x y. (3.27)

It is easy to see that ω defined in (3.27) verifies conditions (3.26). We now substitute
(3.27) into (3.24), and we get

−2
(
ect y,�2

x y
)
L2(I ;L2(Ω)) =−2

(
∂

∂x

(
a
∂�t
(
ecτ y

)
∂x

)
,�2

x y
)
L2(I ;L2(Ω))

. (3.28)
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Integrating by parts each term of (3.28) by taking into account conditions (3.4c), we have

− 2
(
ect y,�2

x y
)
L2(I ;L2(Ω)) = 2

∫
Q
ect
(�x y)2

dxdt, (3.29)

− 2
(
∂

∂x

(
a
∂�t
(
ecτ y

)
∂x

)
,�2

x y
)
L2(I ;L2(Ω))

=−
∫
Ω
e−cTa(x,T)

(�T(ect y))2
dx

−
∫
Q
e−ct

(
ca− ∂a

∂t

)(�t(ecτ y))2
dxdt− 2

∫
Q

∂a

∂x
�t
(
ecτ y

)�x y dxdt

≤−
∫
Ω
e−cTa(x,T)

(�T(ect y))2
dx+

∫
Q
ect
(�x y)2

dxdt

−
∫
Q
e−ct

(
ca− ∂a

∂t
−
(
∂a

∂x

)2)(�t(ecτ y))2
dxdt.

(3.30)

Substituting (3.29) and (3.30) into (3.28) yields

∫
Q
ect
(�x y)2

dxdt ≤−
∫
Ω
e−cTa(x,T)

(�T(ect y))2
dx

−
∫
Q
e−ct

(
ca− ∂a

∂t
−
(
∂a

∂x

)2)(�t(ecτ y))2
dxdt.

(3.31)

We now utilize assumption (A4) and discard the first integral on the right-hand side of
(3.31); we get

∫
Q
ect
(�x y)2

dxdt ≤−(cc0− c2− c2
3

)∫
Q
e−ct

(�t(ecτ y))2
dxdt. (3.32)

By virtue of condition (3.23), we conclude that

∫
Q
ect
(�x y)2

dxdt ≤ 0, (3.33)

and thus �x y ≡ 0. Hence, ω ≡ 0, and this completes the proof of Theorem 3.7. �

4. The general case

4.1. An equivalent problem. We consider a particular case of problem (1.1) in which
we set f2 =− f1, a1(x, t) = a2(x, t), b1(x, t)= b2(x, t), and w = u+ v. Thus, we obtain the
following problem:

∂w

∂t
− ∂

∂x

(
a1(x, t)

∂w

∂x

)
+ b1(x, t)w = 0, (x, t)∈Q,

w(x,0)=w0(x), x ∈Ω,∫
Ω
xkw(x, t)dx =Mk(t), (k = 0,1), t ∈ I ,

(4.1)
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where Mk(t) =mk(t) + µk(t). From the previous section, we deduce that problem (4.1)
possesses a unique solution that continuously depends on the data. Then, the function
u= u(x, t) of problem (1.1) satisfies

�1u= ∂u

∂t
− ∂

∂x

(
a1
∂u

∂x

)
− b1u= f3(x, t,u), (x, t)∈Q,

�1u= u(x,0)= u0(x), x ∈Ω,∫
Ω
xku(x, t)dx =mk(t), (k = 0,1), t ∈ I ,

(4.2)

where f3(x, t,u) = f1(x, t,u,w − u)− b1(x, t)w. Therefore, solving (1.1) is equivalent to
solving (4.2) and to set

v =w−u. (4.3)

We introduce a new function σ=σ(x, t) verifying σ(x, t)=u(x, t)−U(x, t), where U(x, t)
is defined by (3.3). Consequently, the function σ(x, t) will be defined as the solution of

�1σ = ∂σ

∂t
− ∂

∂x

(
a1
∂σ

∂x

)
− b1σ = f4(x, t,σ), (x, t)∈Q,

�1σ = σ(x,0)= σ0(x), x ∈Ω,∫
Ω
xkσ(x, t)dx = 0, (k = 0,1), t ∈ I ,

(4.4)

where f4(x, t,σ)= f3(x, t,σ +U) + �1U , σ0(x)= u0(x)−U(x,0). We introduce the auxil-
iary problem

�1η = ∂η

∂t
− ∂

∂x

(
a1(x, t)

∂η

∂x

)
− b1(x, t)η = 0,

�1η = η(x,0)= σ0(x),∫
Ω
xkη(x, t)dx = 0 (k = 0,1)

(4.5)

which we know from the previous section that it admits a unique solution depending
upon the initial condition. Set θ(x, t)= σ(x, t)−η(x, t). Then θ(x, t) satisfies

�1θ = ∂θ

∂t
− ∂

∂x

(
a
∂θ

∂x

)
− b1θ = f (x, t,θ), (x, t)∈Q, (4.6a)

�1θ = θ(x,0)= 0, x ∈Ω, (4.6b)∫
Ω
xkθ(x, t)dx = 0, (k = 0,1), t ∈ I , (4.6c)

where f (x, t,θ)= f4(x, t,θ +η). Thus to prove the solvability of problem (1.1), it remains
to establish the proof for problem (4.6).

As a function of kind fi (i= 1,2), the function f verifies the following assumption:

(A5′) the function f is bounded in B1
2(Ω) and satisfies the Lipschitz condition, that is,

there exists a positive constant L such that ‖ f (·, t, p)− f (·, t,q)‖B1
2 (Ω) ≤ L‖p−

q‖B1
2 (Ω).
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4.2. A weakly generalized formulation. Considering the scalar product in B1
2(Ω) of

(4.6a) and �(·, t)∈ L2
0(Ω), it yields

(
∂θ(·, t)
∂t

,�(·, t)
)
B1

2 (Ω)
−
(
∂

∂x

(
a1
∂θ(·, t)
∂x

)
,�(·, t)

)
B1

2 (Ω)
− (b1θ(·, t),�(·, t))B1

2 (Ω)

= ( f (·, t,θ(·, t)),�(·, t))B1
2 (Ω) ∀t ∈ I.

(4.7)

Integrating by parts the second term on the left-hand side of (4.7),

−
(
∂

∂x

(
a1
∂θ(·, t)
∂x

)
,�(·, t)

)
B1

2 (Ω)

=−
(
�x ∂
∂ξ

(
a1
∂θ(·, t)
∂ξ

)
,�x�(·, t)

)

=−�x ∂
∂ξ

(
a1
∂θ

∂ξ

)
·�2

x�
∣∣∣∣
β

α
+
(
∂

∂x

(
a1
∂θ(·, t)
∂x

)
,�2

x�(·, t)
)

= a1
∂θ

∂x
·�2

x�
∣∣∣∣
β

α
−
(
a1
∂θ(·, t)
∂x

,�x�(·, t)
)

=−a1θ ·�x�
∣∣β
α +
(
a1θ(·, t),�(·, t))+

(
∂a1

∂x
θ(·, t),�x�(·, t)

)
,

(4.8)

from which we obtain

(
∂θ(·, t)
∂t

,�(·, t)
)
B1

2 (Ω)
+
(
a1θ(·, t),�(·, t))

+
(
∂a1

∂x
θ(·, t),�x�(·, t)

)
− (b1θ(·, t),�(·, t))B1

2 (Ω)

= ( f (·, t,θ(·, t)),�(·, t))B1
2 (Ω) ∀t ∈ I.

(4.9)

Let A(θ,�) be the last three terms on the left-hand side of (4.9).

Definition 4.1. By a weak solution of problem (4.6), there exists a function θ : I → L2(Ω)
verifying the following properties:

(i) θ ∈ L2(I ,L2
0(Ω))∩C(I ,B1

2(Ω));
(ii) ∂θ/∂t ∈ L2(I ;B1

2(Ω));
(iii) θ(·,0)= 0 in B1

2(Ω);
(iv) the integral identity

(
∂θ(·, t)
∂t

,�(·, t)
)
B1

2 (Ω)
+A(θ,�)= ( f ,�)B1

2 (Ω) (4.10)

holds for all � ∈ L2
0(Ω) and for all t ∈ I .
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We will employ the following iteration procedure:
Let θ0 = 0 and let the sequence {θn}n∈N be defined as follows: if θn−1 is known, then

solve

∂θn
∂t
− ∂

∂x

(
a1(x, t)

∂θn
∂x

)
− b1(x, t)θn = f (x, t,θn−1),

θn(x,0)= 0,∫
Ω
xkθn(x, t)dx = 0 (k = 0,1)

(4.11)

for n= 1,2, . . . .
Section 2 implies that for fixed n, each of problems (4.11) possesses a unique solution.

Set zn = θn+1− θn. Therefore, we obtain from (4.11)

∂zn
∂t
− ∂

∂x

(
a1(x, t)

∂zn
∂x

)
− b1(x, t)zn =Φn−1(x, t),

zn(x,0)= 0,∫
Ω
xkzn(x, t)dx = 0 (k = 0,1),

(4.12)

with

Φn−1(x, t)= f
(
x, t,θn

)− f
(
x, t,θn−1

)
. (4.13)

4.3. A priori estimates. In this section, we establish estimates for the function zn and for
its derivative with respect to time.

Considering the weak formulation of problem (4.12),

(
∂zn
∂t

(·, t),�(·, t)
)
B1

2 (Ω)
+
(
a1zn(·, t),�(·, t))

+
(
∂a1

∂x
zn(·, t),�x�(·, t)

)
− (b1zn(·, t),�(·, t))B1

2 (Ω)

= (Φn−1(·, t),�(·, t))B1
2 (Ω) ∀t ∈ I.

(4.14)

Substituting in (4.14) � = zn (∈ L2
0(Ω)) and integrating over (0,τ), we have

∥∥zn(·,τ)
∥∥2
B1

2 (Ω) + 2
∫ τ

0

(
a1zn(·, t),zn(·, t))dt

= 2
∫ τ

0

(
Φn−1(·, t),zn(·, t))B1

2 (Ω)dt− 2
∫ τ

0

(
∂a1

∂x
zn(·, t),�xzn(·, t)

)
dt

+ 2
∫ τ

0

(
b1zn(·, t),zn(·, t))B1

2 (Ω)dt.

(4.15)
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By virtue of assumption (A5′) and the Cauchy inequality, equality (4.15) becomes

c0

∫ τ
0

∥∥zn(·, t)∥∥2
dt+

∥∥zn(·,τ)
∥∥2
B1

2 (Ω)

≤
∫ τ

0

∥∥Φn−1(·, t)∥∥2
B1

2 (Ω)dt+ c5

∫ τ
0

∥∥zn(·, t)∥∥2
B1

2 (Ω)dt,
(4.16)

where c5 = 1 + c2
3/c0 + 2c4.

According to a lemma of Gronwall’s type, we get

c0

∫ τ
0

∥∥zn(·, t)∥∥2
dt+

∥∥zn(·,τ)
∥∥2
B1

2 (Ω) ≤ exp
(
c5T

)∫ T
0

∥∥Φn−1(·, t)∥∥2
B1

2 (Ω)dt. (4.17)

The Lipschitz condition given in (A5′) leads to

∫ τ
0

∥∥zn(·, t)∥∥2
dt+

∥∥zn(·,τ)
∥∥2
B1

2 (Ω) ≤ L2 exp
(
c5T

)∫ T
0

∥∥zn−1(·, t)∥∥2
B1

2 (Ω)dt. (4.18)

Omitting the second term on the left-hand side of (4.18) and majorizing the right-hand
side, it yields

∥∥zn∥∥2
L2(I ,L2

0(Ω)) ≤
1

2c0
L2(β−α)2 exp

(
c5T

)∥∥zn−1
∥∥2
L2(I ,L2

0(Ω)), (4.19)

from which we get

∥∥zn∥∥L2(I ,L2
0(Ω)) ≤ Lc6

∥∥zn−1
∥∥
L2(I ,L2

0(Ω)), (4.20)

where

c6 = 1√
2c0

L(β−α)exp
(
c5
T

2

)
. (4.21)

On the other hand, testing identity (4.14) with � = ∂zn/∂t, we get, after some rear-
rangements,

2
∥∥∥∥∂zn(·, t)

∂t

∥∥∥∥
2

B1
2 (Ω)

+
∂

∂t

(
a1zn(·, t),zn(·, t))

= 2
(
Φn−1(·, t),

∂zn(·, t)
∂t

)
B1

2 (Ω)
+
(
∂a1

∂t
zn(·, t),zn(·, t)

)

− 2
(
∂a1

∂x
zn(·, t),�x ∂zn(·, t)

∂t

)
+ 2
(
b1(·, t)zn(·, t),

∂zn(·, t)
∂t

)
B1

2 (Ω)
.

(4.22)
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Integrating (4.22) over (0,τ) and performing a similar computation to that of the above,
it follows that

∫ τ
0

∥∥∥∥∂zn(·, t)
∂t

∥∥∥∥
2

B1
2 (Ω)

dt+
∥∥zn(·,τ)

∥∥2 ≤ c7
∥∥Φn−1

∥∥2

L2
(
I ;B1

2 (Ω)
) + c8

∫ τ
0

∥∥zn(·, t)∥∥2
dt, (4.23)

where c7 = 3/min(1,c0), c8 = (1/min(1,c0))(c2 + 3c2
3 + (3(β−α)2c2

4/2)).
According to a lemma of Gronwall’s type, assumption (A5′), and inequality (2.3) for

m= 1, we obtain

∫ τ
0

∥∥∥∥∂zn(·, t)
∂t

∥∥∥∥
2

B1
2 (Ω)

dt+
∥∥zn(·,τ)

∥∥2 ≤ c7L
2 exp

(
c8T

)∥∥zn−1
∥∥2
L2(I ;B1

2(Ω)). (4.24)

Employing an elementary inequality for the norm of zn−1 obtained from the norm of
∂zn−1/∂t and omitting the second term on the left-hand side of (4.24), we get

∫ τ
0

∥∥∥∥∂zn(·, t)
∂t

∥∥∥∥
2

B1
2 (Ω)

dt ≤ 1
2
c7T

2L2 exp
(
c8T

)∥∥∥∥∂zn−1

∂t

∥∥∥∥
2

L2(I ;B1
2(Ω))

, (4.25)

from which we have

∥∥∥∥∂zn∂t
∥∥∥∥

2

L2(I ;B1
2(Ω))

≤ Lc9

∥∥∥∥∂zn−1

∂t

∥∥∥∥
2

L2(I ;B1
2(Ω))

, (4.26)

where

c9 =
√
c7

2
T exp

(
c8
T

2

)
. (4.27)

Thus, we have established the following result.

Theorem 4.2. Let assumptions (A4), (A5′), and (A6) be satisfied. Then the following esti-
mate holds:

∥∥∥∥
(
zn,

∂zn
∂t

)∥∥∥∥
L2(I ,L2

0(Ω)×B1
2 (Ω))

≤ Lc10

∥∥∥∥
(
zn−1,

∂zn−1

∂t

)∥∥∥∥
L2(I ,L2

0(Ω)×B1
2 (Ω))

(4.28)

for n = 1,2, . . . , where c10 = max(c6,c9), and c6 and c9 are defined by (4.21) and (4.27),
respectively.

4.4. Existence of the solution

Theorem 4.3. There exist assumptions as in Theorem 4.2. Moreover, it is assumed that

L < c−1
10 . (4.29)
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Then, there exists a function θ ∈ L2(I ,L2
0(Ω)) ∩ C(I ,B1

2(Ω)) such that ∂θ/∂t ∈ L2(I ;
B1

2(Ω)), and it satisfies

(
θn,

∂θn
∂t

)
−→
n→∞

(
θ,
∂θ

∂t

)
in L2(I ,L2

0(Ω)×B1
2(Ω)

)
. (4.30)

Proof. Observe that in inequality (4.20), if L < 1/c6, then the series
∑

n zn and thus the
sequence {Sn}n defined by

Sn =
n−1∑
k=0

zk =
n−1∑
k=0

(
θk+1(x, t)− θk(x, t)

)
(4.31)

converges in L2(I ,L2
0(Ω)). It is easy to see that θn = θ0 + Sn = Sn, n = 1,2, . . . . Therefore,

the sequence {θn}n converges in L2(I ,L2
0(Ω)), that is,

θn −→
n→∞ θ in L2(I ,L2

0(Ω)
)
. (4.32)

Since L2
0(Ω)↩B1

2(Ω) (see (2.4) for m= 1 and Remark 2.4), we have also

θn −→
n→∞ θ in L2(I ,B1

2(Ω)
)
. (4.33)

On the other hand, in inequality (4.26), if L < 1/c9, the series
∑

n(∂zn/∂t) and thus the
sequence {∑n−1

k=0((∂θk+1(x, t)/∂t)− ∂θk(x, t)/∂t)}n converges in L2(I ,B1
2(Ω)), from which

we deduce that

∂θn
∂t

−→
n→∞ ψ in L2(I ;B1

2(Ω)
)
. (4.34)

We have to prove that ψ equals ∂θ/∂t in L2(I ;B1
2(Ω)). To this end, we consider the identity

θn(·, t)=
∫ t

0

∂θn
∂τ

dτ ∀t ∈ I. (4.35)

If we pass to the limit in (4.35) when n tends to infinity by taking into account (4.33) and
(4.34), it yields

θ(·, t)=
∫ t

0
ψdτ ∀t ∈ I , in B1

2(Ω), (4.36)

from where we conclude (see, e.g., [15, Lemma 1.3.2 and Lemma 1.3.6]) that θ ∈ C(I ;
B1

2(Ω)), differentiable for a.e. t ∈ I , and ∂θ/∂t = ψ in L2(I ;B1
2(Ω)), that is

∂θn
∂t

−→
n→∞

∂θ

∂t
in L2(I ;B1

2(Ω)
)
. (4.37)
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Consequently, for L < c−1
10 , the limit relation (4.30) is fulfilled. This achieves the proof of

Theorem 4.3. �

Theorem 4.4. Let assumptions of Theorem 4.3 be fulfilled. Then the limit function θ =
θ(x, t) is the weak solution of problem (4.6) in the sense of Definition 4.1.

Proof. By virtue of Theorem 4.3, we have θ ∈ L2(I ,L2
0(Ω))∩ C(I ,B1

2(Ω)) and ∂θ/∂t ∈
L2(I ;B1

2(Ω)). Furthermore, in light of (4.36), we deduce that θ(·,0) = 0 holds in B1
2(Ω),

and so the initial condition (4.6b) is verified. It remains to prove that θ satisfies the in-
tegral identity in Definition 4.1(iv). To this end, we consider the weak formulation of
problem (4.11), and set θn = (θn − θ) + θ and f (x, t,θn−1) = ( f (x, t,θn−1)− f (x, t,θ)) +
f (x, t,θ). Therefore, we get

(
∂θn(·, t)

∂t
− ∂θ(·, t)

∂t
,�(·, t)

)
B1

2 (Ω)
+
(
∂θ(·, t)
∂t

,�(·, t)
)
B1

2 (Ω)
+A

(
θn− θ,�

)
+A

(
θ,�

)

= ( f (·, t,θn−1(·, t))− f
(·, t,θ(·, t)),�)B1

2 (Ω) +
(
f (·, t,θ),�(·, t))B1

2 (Ω),

∀t ∈ I , ∀� ∈ L2
0(Ω).

(4.38)

Thanks to the Schwarz inequality and inequality (2.3) for m= 1, the first and third terms
on the left-hand side of (4.38) and the first term on the right-hand side can be majorized
as follows:

(
∂θn(·, t)

∂t
− ∂θ(·, t)

∂t
,�(·, t)

)
B1

2 (Ω)

≤
∥∥∥∥∂θn(·, t)

∂t
− ∂θ(·, t)

∂t

∥∥∥∥
B1

2 (Ω)

∥∥�(·, t)∥∥B1
2 (Ω)

≤ |β−α|√
2

∥∥∥∥∂θn(·, t)
∂t

− ∂θ(·, t)
∂t

∥∥∥∥
B1

2 (Ω)

∥∥�(·, t)∥∥ ∀t ∈ I ,

(4.39)

A
(
θn− θ,�

)= (a1
(
θn(·, t)− θ(·, t)),�(·, t))

+
(
∂a1

∂x

(
θn(·, t)− θ(·, t)),�x�(·, t)

)

− (b1
(
θn(·, t)− θ(·, t)),�(·, t))B1

2 (Ω)

≤
(
c1 +

|β−α|√
2

c3 +
(β−α)2

2
c4

)∥∥θn(·, t)− θ(·, t)∥∥∥∥�(·, t)∥∥ ∀t ∈ I ,
(4.40)

(
f
(·, t,θn−1(·, t))− f

(·, t,θ(·, t)),�(·, t))B1
2 (Ω)

≤ |β−α|√
2

∥∥ f (·, t,θn−1(·, t))− f
(·, t,θ(·, t))∥∥B1

2 (Ω)

∥∥�(·, t)∥∥

≤ (β−α)2

2
L
∥∥θn−1(·, t)− θ(·, t)∥∥∥∥�(·, t)∥∥ ∀t ∈ I.

(4.41)
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If we pass to the limit in (4.38) when n→∞ by taking into account (4.39), (4.40), and
(4.41), we obtain the integral identity

(
∂θ(·, t)
∂t

,�(·, t)
)
B1

2 (Ω)
+A(θ,�)= ( f (·, t,θ),�(·, t))B1

2 (Ω) ∀t ∈ I , (4.42)

and the proof is complete. �

4.5. Uniqueness of the solution. Assume that problem (4.6) admits two weak solutions
θ1 and θ2 in L2(I ;L2

0(Ω)). Set z = θ1− θ2. Then z satisfies

∂z

∂t
− ∂

∂x

(
a1(x, t)

∂z

∂x

)
− b1(x, t)z =Φ(x, t),

z(x,0)= 0,∫
Ω
xkz(x, t)dx = 0 (k = 0,1),

(4.43)

with

Φ(x, t)= f
(
x, t,θ1

)− f
(
x, t,θ2

)
. (4.44)

Proceeding as in the establishment of estimate (4.20), we obtain

‖z‖L2(I ;L2
0(Ω)) ≤ Lc6‖z‖L2(I ;L2

0(Ω)), (4.45)

where c6 is the same constant defined in (4.20). Since Lc6 < 1 (see (4.29)), then

‖z‖L2(I ;L2
0(Ω)) =

∥∥θ1− θ2
∥∥
L2(I ;L2

0(Ω)) = 0, (4.46)

from which we have the following theorem.

Theorem 4.5. Assume that assumptions of Theorem 4.2 are fulfilled. Then the solution of
problem (4.6) is unique.

4.6. Continuous dependence of the solution

Theorem 4.6. If σ(x, t) and σ∗(x, t) are two solutions of problem (4.4) corresponding to
(σ0, f4) and (σ∗0 , f ∗4 ), respectively, and if there exist a continuous nonnegative function K(t)
and a positive constant L such that the estimate

∥∥ f4(·, t,σ)− f ∗4
(·, t,σ∗)∥∥B1

2 (Ω) ≤ K(t) +L
∥∥σ − σ∗∥∥B1

2 (Ω) (4.47)

holds for all σ , σ∗ ∈ B1
2(Ω) and all t ∈ I , then

∥∥σ(·,τ)− σ∗(·,τ)
∥∥2
B1

2 (Ω) ≤
(∥∥σ0− σ∗0

∥∥2
B1

2 (Ω) +
∫ τ

0
K2(t)dt

)
ec11T , (4.48)

where c11 = exp((1 + 2L+ 2c2
4 + c2

3/2c0)T).
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Proof. Let s(x, t)= σ(x, t)− σ∗(x, t). Then s(x, t) satisfies

�1s= ∂s

∂t
− ∂

∂x

(
a1
∂s

∂x

)
− b1s= f4(x, t,σ)− f ∗4

(
x, t,σ∗

)
,

�1s= s(x,0)= σ0(x)− σ∗0 (x)= s0(x),∫
Ω
xks(x, t)dx = 0, k = 0,1, t ∈ I.

(4.49)

Considering the weak formulation of problem (4.49), letting v = s, and integrating by
parts, we obtain, by integrating the result over (0,τ),

∥∥s(·,τ)
∥∥2
B1

2 (Ω) + 2
∫ τ

0

(
a1s(·, t),s(·, t))dt

= 2
∫ τ

0

(
f4(·, t,σ)− f ∗4

(·, t,σ∗),s(·, t))B1
2 (Ω)dt+

∥∥s0∥∥2
B1

2 (Ω)

− 2
∫ τ

0

(
∂a1

∂x
s(·, t),�xs(·, t)

)
dt+ 2

∫ τ
0

(
b1s(·, t),s(·, t))B1

2 (Ω)dt.

(4.50)

Invoking assumption (A4) and (4.47) and applying the Cauchy inequality and Gronwall’s
lemma, we obtain inequality (4.48). �

5. Conclusion

In this paper, we have treated a nonlinear parabolic system with only integral terms in
the boundaries. We have firstly solved a similar linear problem corresponding to a single
parabolic equation. Then, on the basis of the obtained results, we have constructed via an
iterative process a sequence of solutions and we have proved that this sequence converges
to the weak solution of the problem under study.

Our results still hold for nonlinear 2m-parabolic systems with only integral conditions

�1(u,v)= ∂u

∂t
+ (−1)m

∂2m−1

∂x2m−1

(
a1
∂u

∂x

)
+ b1v = f1(x, t,u,v),

�2(u,v)= ∂v

∂t
+ (−1)m

∂2m−1

∂x2m−1

(
a2
∂v

∂x

)
+ b2u= f2(x, t,u,v),

�1u= u(x,0)= u0(x),

�2v = v(x,0)= v0(x),
∫
Ω
xku(x, t)dx =mk(t) (k = 0,2m− 1),

∫
Ω
xkv(x, t)dx = µk(t) (k = 0,2m− 1);

(5.1)
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by using the same method, it suffices to replace in the proofs of corresponding theorems
the space B1

2(Ω) by Bm2 (Ω).
Our results can also be extended to a mixed problem for a pluriparabolic system

with integral boundary conditions (or more generally for a pluriparabolic system with
nonlocal initial conditions and integral boundary conditions, resp.):

�1(u,v)=
n∑
i=1

∂u

∂ti
+ (−1)m

∂2m−1

∂x2m−1

(
a1
∂u

∂x

)
+ b1v = f1(x, t,u,v),

�2(u,v)=
n∑
i=1

∂v

∂ti
+ (−1)m

∂2m−1

∂x2m−1

(
a2
∂v

∂x

)
+ b2u= f2(x, t,u,v),

for x ∈Ω, t = (t1, . . . , tn
)∈

n∏
i=1

(
0,Ti

)
,

(5.2)

(
�1(u,v)=

n∑
i=1

∂u

∂ti
+ (−1)m sign

n∏
i=1

(
1−∣∣λi∣∣2

) ∂2m−1

∂x2m−1

(
a1
∂u

∂x

)
+ b1v

= f1(x, t,u,v),

�2(u,v)=
n∑
i=1

∂v

∂ti
+ (−1)m sign

n∏
i=1

(
1−∣∣λi∣∣2

) ∂2m−1

∂x2m−1

(
a2
∂v

∂x

)
+ b2u

= f2(x, t,u,v), for x ∈Ω, t = (t1, . . . , tn
)∈

n∏
i=1

(
0,Ti

)
, resp.

)
,

(5.3)

�iu= u
(
x, t1, . . . , ti−1,0, ti+1, . . . , tn

)= u0i
(
x, t1, . . . , ti−1, ti+1, . . . , tn

)
,

�iv = v
(
x, t1, . . . , ti−1,0, ti+1, . . . , tn

)= v0i
(
x, t1, . . . , ti−1, ti+1, . . . , tn

)
,

(
x, t1, . . . , ti−1, ti+1, . . . , tn

)∈Ω×
n∏
j=1
j �=i

(
0,Tj

)
,

(5.4)

(
�iu= u

(
x, t1, . . . , ti−1,0, ti+1, . . . , tn

)− λiu(x, t1, . . . , ti−1,Ti, ti+1, . . . , tn
)

= u0i
(
x, t1, . . . , ti−1, ti+1, . . . , tn

)
,

�iv = v
(
x, t1, . . . , ti−1,0, ti+1, . . . , tn

)− λiv(x, t1, . . . , ti−1,Ti, ti+1, . . . , tn
)

= v0i
(
x, t1, . . . , ti−1, ti+1, . . . , tn

)
,

(
x, t1, . . . , ti−1, ti+1, . . . , tn

)∈Ω×
n∏
j=1
j �=i

(
0,Tj

)
, resp.

)
,

(5.5)

∫
Ω
xku

(
x, t1, . . . , tn

)
dx =mk

(
t1, . . . , tn

)
,

∫
Ω
xkv
(
x, t1, . . . , tn

)
dx = µk

(
t1, . . . , tn

)
,

(
t1, . . . , tn

)∈
n∏
i=1

(
0,Ti

)
,
(
k = 0,2m− 1

)
.

(5.6)
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By using the same reasoning given above, it is enough to put the test function
∑n

i=1(∂z/∂ti)
instead of ∂z/∂t and to use a generalization of Gronwall’s lemma appropriate to this type
problems; see, for instance, [4].
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