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We present several recent and novel results on the formulation and the analysis of the
equations governing the evolution of electromagnetic fields in chiral media in the time
domain. In particular, we present results concerning the well-posedness and the solv-
ability of the problem for linear, time-dependent, and nonlocal media, and results con-
cerning the validity of the local approximation of the nonlocal medium (optical response
approximation). The paper concludes with the study of a class of nonlinear chiral me-
dia exhibiting Kerr-like nonlinearities, for which the existence of bright and dark solitary
waves is shown.

1. Introduction

Chiral media are isotropic birefringent substances that respond to either electric or mag-
netic excitation with both electric and magnetic polarizations. Such media have been
known since the end of the nineteenth century (e.g., the study of chirality by Pasteur)
and find a wide range of applications from medicine to thin film technology. The under-
standing of the properties of such media, the differences from ordinary dielectrics, and
their possible applications requires detailed mathematical modelling. The mathematical
modelling of chiral media is done through the modification of the constitutive relations
for normal dielectrics. While for a normal dielectric material the electric displacement
D depends solely on the electric field E, and the magnetic field B depends solely on the
magnetic induction H , in a chiral medium, D and B depend on a combination of E and
H , [9, 11]. In most cases of interest these constitutive laws are nonlocal relations con-
taining E and H . This is a common model for time-dispersive chiral media. Also these
constitutive laws may be either linear or nonlinear relations of the fields corresponding
to the modelling of linear or nonlinear chiral media, respectively.

Most of the mathematical work on chiral media so far treats the time-harmonic case;
see [3] and the references therein. It is the aim of this paper to collect and review some
recent results as well as to present some novel ones on the mathematical study of linear
and nonlinear chiral media in the time domain. The structure of the paper is as follows.
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We first present some general well-posedness results for models of linear nonlocal chiral
media. Then, we introduce a well-known local approximation to nonlocal chiral media,
the Drude-Born-Fedorov (DBF) approximation, and study its validity. In the case where
the medium under consideration presents a periodic spatial structure, with rapidly vary-
ing physical parameters, we study the problem of homogenization, exhibiting that the
solution of the problem converges to the solution of a related problem for an effective
spatially homogeneous medium whose (constant) parameters are determined.

So far, attention has mainly focused on linear media, with or without time dispersion.
However, there is a rapidly growing interest on nonlinear chiral media. The study of such
systems is still in its initial stages and very little work has been done in this direction; see,
for example, [7, 14]. In the last section we present some recent results on the evolution
of electromagnetic fields in chiral media with cubic nonlinearity, in the weak-dispersion,
low-chirality limit, where a set of four coupled partial differential equations of the non-
linear Schrödinger (NLS) type for the evolution of the slowly varying envelopes of the
electromagnetic fields is derived and the existence in certain limits of vector solitons of
the dark-bright type is established.

2. Formulation of the problem for linear media

In this section, we establish the equations governing the evolution of electromagnetic
fields in chiral media.

We will start with the Maxwell postulates for a general medium; see, for example, [10].
For a chiral material we have the following constitutive relations that connect the various
fields

D = εE+ ε1�E+ ζ�H , B = µH +µ1�H + ξ�E, (2.1)

where by� we denote the convolution operator, that is, α�U = ∫ t0 α(x,τ)U(x, t− τ)dτ.
For a linear medium, the condition that the fields B andD are divergence-free is equiv-

alent to the condition that the fields E and H are divergence-free. Thus the equations for
the evolution of the fields in a chiral medium will take the form

curlE =− ∂

∂t

(
µH +µ1�H + ξ�E

)
+F,

curlH = ∂

∂t

(
εE+ ε1�E+ ζ�H

)
+G,

divH = divE = 0,

(2.2)

supplemented with the initial conditions

E(x,0)= 0, H(x,0)= 0. (2.3)

This initial value problem will be called hereafter Problem I. The above formulation is
valid in unbounded space. The problem may be treated also in domains Ω with suffi-
ciently smooth boundary ∂Ω using a boundary condition that corresponds to the physi-
cal situation at hand. We will treat here the boundary condition for a perfect conductor.
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In this case the Maxwell equations will have to be complemented with the boundary con-
ditions [10]

n×E = 0, n ·H = 0 on ∂Ω, (2.4)

where n is the unit outward normal vector to ∂Ω. We now treat the solvability of this
problem. First we write it in a more compact form. We define the matrices

A=
[
εI3 0
0 µI3

]
, K =

[
ε1I3 ζI3
ξI3 µ1I3

]
, (2.5)

where I3 is the 3× 3 unit matrix and 0 is the zero matrix. We further introduce the six-
vector notation

�= (E,H), �= (D,B), �= (F,G), (2.6)

and the differential operator

L=
[

0 curl
−curl 0

]
, (2.7)

where again 0 is the zero 3× 3 matrix. The domain of this operator is taken to be

D(L)= {Φ |Φ= (φ,ψ)∈ X , curlφ ∈ (L2(Ω)
)3

, curlψ ∈ (L2(Ω)
)3

, n×φ= 0 on ∂Ω
}

,
(2.8)

where X is the linear space X := L2 := L2(Ω)3 ⊕ L2(Ω)3 which is a Hilbert space when
equipped with the inner product

〈�,�〉 =
∫
Ω
εu1 · v̄1dx+

∫
Ω
µu2 · v̄2dx =

〈
εu1,v1

〉
0 +
〈
µu2,v2

〉
0, (2.9)

where �,�∈ L2, with � = (u1,u2), �= (v1,v2), and the overbar denotes complex con-
jugation.

In this notation, Problem I assumes the form

d

dt
(A� +K ��)= L� + � (2.10)

which is to be solved for given � and for homogeneous initial conditions �(x,0)= 0.
We will use the Laplace transform û(s) = ∫∞0 u(t)e−stdt defined for a real function

u : R→R and for a complex variable s= σ + iη, provided the integral exists [5]. In the fol-
lowing we denote by �(R) the (linear) space of functions u∈ L1

loc(R) such that suppu⊂
[0,∞), and for which the set

Iu =
{
σ ∈R :

∫∞
0

∣∣u(t)
∣∣e−σtdt <∞} (2.11)

is not empty. We also define the space

�0 =
{
�∈ L1

loc

(
R,L2) :

∥∥�(·)∥∥∈�(R)
}
. (2.12)
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In the sequel we impose the following three assumptions on the data of the problem:

(A1) ε and µ are positive and bounded functions of x;
(A2) � has a well-defined Laplace transform (i.e., �∈�0);
(A3) the Laplace transform of K exists and converges to the zero matrix as σ →∞ in

any matrix norm.

We take the Laplace transform of (2.10), and using the properties of the Laplace trans-
form and multiplying by A−1 from the left, we obtain

(N − sI)�̂= sK̂0�̂− �̂0, (2.13)

where

N = A−1L, K̂0 = A−1K̂ , �̂0 = A−1�̂. (2.14)

This is an equivalent form of the original problem (2.10).
To study the solvability of problem (2.13) we must study the properties of the dif-

ferential operator N . The domain of this operator is D[N] = D[L] and it can be shown
that the operator N is unbounded, densely defined, and iN is selfadjoint. Furthermore,
if Re(s) �= 0, the operator N − sI is invertible and the norm of the inverse satisfies the
estimate

∥∥(N − sI)−1
∥∥≤ 1

|σ| . (2.15)

The proofs of these claims are similar to the ones provided for the case of unbounded
domains [6].

So, for s= σ ∈R+, (2.13) is equivalent to the equation

�̂= s(N − sI)−1K̂0�̂− (N − sI)−1�̂0. (2.16)

But (2.16) is in the form of a fixed point problem, T� =�, for the affine operator T :
L2 → L2 where

T�= s(N − sI)−1K̂0�− (N − sI)−1�̂0. (2.17)

Using this remark as our starting point we are now in a position to state the main result
of this section whose proof can be performed along the same lines as in [6]. In particular,
the divergence-free property of E and H follows by taking the projection of D and B on
the spaceH(div0,R3)⊕H(div0,R3). Recall thatH(div0,R3)= {V ∈ L2(R3), divV = 0}.
For the properties of H(div0,R3) and related spaces, see, for example, [4].

Theorem 2.1. Under the assumptions (A1), (A2), and(A3), Problem I has a unique solution
in D[N].

Problem I in a spatially periodic chiral medium (with rapidly varying physical pa-
rameters) has been studied from a rigorous homogenization theory point of view in [2]
(where in fact the more general case of bianisotropic media is treated). In that work, it has
been shown that the solution of the corresponding problem converges to the solution of
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Problem I for an effective spatially homogeneous medium whose (constant) coefficients
are determined.

3. The optical response approximation

In the previous section, we treated the full nonlocal set of equations, modelling disper-
sive chiral media, as far as solvability is concerned. Though the mathematical treatment
of the full problem is feasible, in a number of important applications (e.g., in wave propa-
gation or scattering problems), the full nonlocal problem may be cumbersome to handle.
Thus, local approximations to the full problem have been proposed, that will keep the
general features of chiral media, without the mathematical complications introduced by
the nonlocality of the model.

In practice, a very common approximation scheme to the full constitutive relations for
the medium is used, where essentially the convolution integrals are truncated to a Taylor
series in the derivative of the fields. Using this expansion of the convolution integrals and
the Maxwell constitutive relations, we may obtain the so-called DBF constitutive relations
for chiral media

D = ε(I +βcurl)E, B = µ(I +βcurl)H , (3.1)

where β is the chirality measure, considered here as a parameter that will be chosen so
that a criterion for optimality is satisfied. This approximation is usually called the op-
tical response approximation. For such constitutive relations, the equations for the fields
become

curl Ẽ =− ∂

∂t

{
µ(I +βcurl)H̃

}
,

curlH̃ = ∂

∂t

{
ε(I +βcurl)Ẽ

}
,

div Ẽ = 0, div H̃ = 0,

(3.2)

supplemented with the initial conditions

Ẽ(x,0)= E0(x), H̃(x,0)=H0(x), (3.3)

and the boundary conditions corresponding to the perfect conductor problem. This prob-
lem will be called hereafter Problem II. Its solvability is established in the following
theorem.

Theorem 3.1. Under the assumptions A1 and A2, Problem II has a unique solution inD[N]
for sufficiently small β.

In this case the Laplace transformed operator equation is of the form ΘL�= P� + �,
where Θ and P are suitably defined matrix operators depending on s and β. It can be
shown that Θ is invertible; the rest of the proof is similar to that of Theorem 2.1.



476 Electromagnetic fields in chiral media

The solution to Problem II is a commonly used approximation to the full solution of
Problem I.

A very popular method of treating electromagnetic problems in the frequency domain
is through the use of Beltrami fields. This method has been used for the explicit construc-
tion of the solution of Problem II in [1].

Another interesting approach to Problem II is through the use of Moses eigenfunctions
[13]. These form a complete orthonormal basis for L2 consisting of eigenfunctions of the
curl operator.

Specifically, Moses [13] introduced three-dimensional complex vectors K(x, p;λ) with
x, p ∈R3 which satisfy

curlK(x, p;λ)= λ|p|K(x, p;λ), λ= 0,±1; (3.4)

that is, K(x, p;λ) are eigenvectors of the curl operator and λ|p| are the associated eigen-
values. These fields (that will be called Beltrami-Moses fields) satisfy some interesting
orthogonality and completeness relations.

We may now define the fields

Q±(x, t)= {E± iηH}(x, t), η =
√
µ

ε
, (3.5)

which implies that

E(x, t)= 1
2

{
Q+ +Q−

}
(x, t), H(x, t)= 1

2iη

{
Q+−Q−

}
(x, t). (3.6)

Using these fields, we may proceed formally to rewrite Problem II in the following
form:

curlQ± = ±i√µε ∂
∂t

{
(I +βcurl)Q±(x, t)

}
,

divQ±(x, t)= 0.
(3.7)

The associated initial values are

Q±(x,0)= E0(x)± iηH0(x). (3.8)

Using these Beltrami-Moses fields as kernels for an integral transform, we may define a
generalized Fourier transform for vector functionsψ(x, t), the Beltrami-Moses transform,
as follows:

ψ̂(p, t;λ)=
∫
K(x, p;λ)ψ(x, t)dx. (3.9)
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The inverse transform is given by the formula

ψ(x, t)=
∑
λ

∫
K(x, p;λ)ψ̂(p, t;λ)dp. (3.10)

Expanding the fields Q± in terms of the Moses eigenfunctions and using the property
that both of these fields have to be divergence-free, we may reduce Problem II to a set of
first-order ordinary differential equations for the field amplitudes corresponding to λ =
±1. The electromagnetic fields may be obtained by inversion of the integral transform.
This approach is related to the spectral approach to Problem II.

4. The error of the optical response approximation

Recall that (E,H) and (Ẽ,H̃) are, respectively, the solutions of Problems I and II. We
introduce a third problem, the solution of which will furnish the error of the optical
response approximation. So, let

wE = E− Ẽ, wH =H − H̃. (4.1)

After some elementary manipulations, we find that the error of the optical response ap-
proximation satisfies the equations

curlwE =− ∂

∂t

{
µwH +µ1�wH + ξ�wE +µ1� H̃ + ξ� Ẽ−µβcurlH̃

}
,

curlwH = ∂

∂t

{
εwE + ε1�wE + ζ�wH + ε1� Ẽ+ ζ� H̃ − εβcurl Ẽ

}
,

curl Ẽ =− ∂

∂t

{
µ(I +βcurl)H̃

}
,

curlH̃ = ∂

∂t

{
ε(I +βcurl)Ẽ

}
,

divwE = divwH = div Ẽ = div H̃ = 0,

(4.2)

supplemented with the initial conditions

wE(x,0)= 0, wH(x,0)= 0, Ẽ(x,0)= E0(x), H̃(x,0)=H0(x). (4.3)

This problem will be hereafter called Problem III. The solution of Problem III will furnish
the error of the optical response approximation for a given solution (Ẽ,H̃). Observe that
the equations for the approximate fields are decoupled from the equations for the error.

A priori estimates are obtained on the solution of Problem III. This is done by reducing
the error equations to the form of a Volterra equation of the second kind. By expanding
the solution in Moses eigenfunctions, we may rewrite the original system for the error in
the compact form

A1w = d

dt

{
A2w+A3�w+ S

}
, (4.4)
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where

w =
(
wE,λ

wH ,λ

)
, A1 =

(
λ|p| 0

0 λ|p|
)

,

A2 =
(

0 −µ
ε 0

)
, A3 =

( −ξ −µ1(τ)
ε1(τ) ζ

)
,

S=
(
S1,λ

S2,λ

)
=
(−µ1� H̄λ− ξ� Ēλ + λβµ|p|H̄λ

ε1� Ēλ + ζ� H̄λ− λβε|p|Ēλ

)
.

(4.5)

Now integrate once over time to rewrite the equation for the error in the following form:

w = φ�w+ g, (4.6)

where

φ= A−1
2

(
A1−A3

)
, g =−A−1

2 S. (4.7)

For the specific system we study here, we have that

φ =



−ε1(τ)

ε
λ|p|− ζ
ε

−λ|p|+ ξ
µ

−µ1(τ)
µ


 , g =



ε1

ε
� Ēλ +

ζ

ε
� H̄λ− λβ|p|Ēλ

µ1

µ
� H̄λ +

ξ

µ
� Ēλ− λβ|p|H̄λ


 . (4.8)

This matrix Volterra equation will be used to obtain a priori estimates for the error of the
optical response approximation in terms of the Moses transformed fields. The following
two results were proved in [6].

Theorem 4.1. Let

Ψ(t) :=
(

1− 2sup
i, j

∥∥φij∥∥L1(0,t)

)−1

> 0. (4.9)

Then, the solution of (4.6) satisfies the following a priori error bound

sup
i

∥∥wi

∥∥
Lp(0,t) ≤Ψ(t)sup

i

∥∥gi∥∥Lp(0,t). (4.10)

It is interesting to notice that an alternative method of obtaining a priori bounds can
be developed using the Gronwall inequality. Indeed, in this manner we can readily obtain
the following result.

Theorem 4.2. Suppose that ε > 0, µ > 0, ξ > 0, and ζ > 0, and that |p| ≤min(ξ,ζ). As-
suming that the functions φij are bounded, the following estimate holds:

sup
t

∣∣w1(t) +w2(t)
∣∣≤ sup

t

∣∣g1(t) + g2(t)
∣∣. (4.11)
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The above estimate provides us with a way to minimize the error of the optical
response approximation. One way to do this is by minimizing the upper bound
supi‖gi‖Lr (0,t). This amounts to choosing the value of β so as to minimize the integrals

∥∥g1
∥∥
Lr (0,t) =

{∫ t
0

∣∣∣∣ε1

ε
� Ēλ +

ζ

ε
� H̄λ− λβ|p|Ēλ

∣∣∣∣
r

dt′
}1/r

,

∥∥g2
∥∥
Lr (0,t) =

{∫ t
0

∣∣∣∣µ1

µ
� H̄λ +

ξ

µ
� Ēλ− λβ|p|H̄λ

∣∣∣∣
r

dt′
}1/r

.

(4.12)

A series of other results were obtained for each p using the expansion of Problem
III in Moses eigenfunctions. This approach allows us to find exact forms for the Laplace
transform of the error for specified wavenumbers. Numerical techniques can thus be used
for the inversion of the Laplace transform and the retrieval of the time dependence of the
error term.

An estimate of the error in the spatial variables rather than in terms of the wavenum-
bers can be obtained in the following way. Adopting the notation of Section 2, the equa-
tion for the error may be written in the form

Lw = ∂

∂t
(Aw+K �w+Φ), (4.13)

where Φ is a source term which is related to the solutions of the optical response equa-
tion H̃ and Ẽ. Multiplying by w, integrating over space, and using the properties of the
operator L, we obtain

1
2
d

dt

(‖w‖2)+
〈
d

dt
(K �w),w

�
+ 〈Φ,w〉. (4.14)

Under the assumption that the convolution kernel is such that

K1Aw ≤ d

dt
(K �w)≤ K2Aw, (4.15)

we obtain

d

dt
‖w‖2 +K1‖w‖2 ≤ |Φ|‖w‖, (4.16)

from which by use of the Gronwall inequality we may obtain a priori bounds for the error.
Similar bounds may be obtained by slight modification of the conditions on the kernels.

5. Homogenization for spatially periodic chiral media

We will now consider Problem I in a spatially periodic chiral medium, that is, we will
consider the parameters of the medium ε, ε1, µ, µ1, ζ , and ξ to be periodic functions of
x with a period ε. The period ε will be considered to be a small number, a fact that will
correspond to a fast spatially varying medium.
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This leads us to considering the problem of homogenization for such media, that is,
the approximation of a spatially periodic medium with a homogeneous medium (i.e., a
medium with constant parameters) having the same properties as the original medium in
the limit as ε→ 0. The homogenization problem for periodic structures is a long standing
problem in the mathematical and engineering community that has led to the introduc-
tion of interesting mathematical techniques and also to interesting engineering applica-
tions.

Though the problem of homogenization for the Maxwell equations has been studied
extensively in the past, there has been little progress on this subject as far as bianisotropic
or chiral media are concerned. While some papers treat versions of the problem from
the engineering point of view, the problem has been left untouched from the rigorous
mathematical point of view. This aspect of the problem has been studied in [2] for the
more general case of bianisotropic media.

Consider the spatially periodic version of Problem I, which consists of Maxwell’s equa-
tions

∂tD
ε = curlHε +F(x, t),

∂tB
ε =−curlEε +G(x, t), x ∈Ω, t > 0,

Eε(x,0)= 0, Hε(x,0)= 0, x ∈Ω,

(5.1)

subject to the constitutive laws

Dε = εεEε + ζε∗Hε + εε1∗Eε,
Bε = µεHε + ξε∗Eε +µε1∗Hε.

(5.2)

The functions εε(x) and µε(x) as well as the functions εε1(x, t), µε1(x, t), ξε(x, t), and ζε(x, t)
are periodic in x of period εY . We assume that there exists c > 0 such that the block matrix

(
ε+ ε̂1 ζ̂

ξ̂ µ+ µ̂1

)
=: A(x, p) (5.3)

satisfies

〈
A(x, p)U ,U

〉≥ c‖U‖2, x ∈Ω, p ∈C+, U ∈R
6. (5.4)

We fix a domain V ⊂Ω and consider the operator

Lε =
(
−div

((
ε+ ε̂1

)
grad

) −div
((
ζ̂
)

grad
)

−div
((
ξ̂
)

grad
) −div

((
µ+ µ̂1

)
grad

)
)

:H1
0 (V)−→H−1(V) (5.5)

and the corresponding homogenization limit

Lh =:

(−div
(
ε̃h grad

) −div
(
ζ̃ h grad

)
−div

(
ξ̃h grad

) −div
(
µ̃h grad

)
)
. (5.6)
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Note that while the coefficients of Lh are spatially constant, they do depend on p ∈ C+.
We assume that for fixed x ∈Ω, the functions ε̃h, ξ̃h, ζ̃ h, and µ̃h are the Laplace transforms
of functions εh, ξh, ζh, and µh on (0,∞). We then have the following theorem.

Theorem 5.1. Assume that the Maxwell system (5.1) and (5.2) is uniquely solvable for all
ε > 0 and that ‖Eε‖2,‖Hε‖2 ≤ c for all ε, t > 0. Then the solution (Eε,Hε) of the above system
satisfies

Eε −→ E∗, Hε −→H∗, ∗-weakly in L∞
(
(0,∞),L2(Ω)

)
, (5.7)

where (E∗,H∗) is the unique solution of the Maxwell system

∂tD
∗ = curlH∗ +F,

∂tB
∗ = −curlE∗ +G, x ∈Ω, t > 0,

E∗(x,0)= 0, H∗(x,0)= 0,

(5.8)

subject to the constitutive laws

D∗ = εh∗E∗ + ζh∗H∗,

B∗ = ξh∗E∗ +µh∗H∗.
(5.9)

We do not provide the proof of the theorem here (for a complete proof see [2]) but
simply note that in order to prove the above result, we have to work with the Laplace
transform of the original problem which assumes the form of an elliptic partial differ-
ential equation with spatially periodic coefficients. The homogenization problem for the
latter may be addressed using generalizations of standard homogenization techniques
based on the use of the div-curl lemma, thus leading to a spatially homogenized equa-
tion in Laplace space. Then, inverting the Laplace transform, we arrive at the announced
result. For details see [2].

Remark 5.2. (1) The above theorem gives the homogenized coefficients as inverse Laplace
transforms of certain functions. In concrete cases one can use numerical schemes to ob-
tain precise approximations of εh, ξh, ζh, and µh. The Laplace transforms of the homoge-
nized coefficients may be obtained by a proper averaging of the parameters of the medium
weighted by the solution of an appropriately formulated “cell problem.” For the definition
of the cell problem see [2].

(2) It is clear that the functions F and G can also depend on ε > 0, provided that one
makes suitable assumptions on their behaviour as ε→ 0.

For completeness here, we present the expressions for the homogenized coefficients
for the medium, in Laplace space.

We letH1
per(Y) denote the closed subspace ofH1(Y) that consists of periodic functions

and define the operator Lper :H1
per(Y)→ (H1

per(Y))∗ by

Lper =
(−div

(
εI3 grad

) −div
(
ζI3 grad

)
−div

(
ξI3 grad

) −div
(
µI3 grad

)
)
. (5.10)
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This operator may be proved to be invertible modulo constants. In particular, we can

define (modulo constants) the functions u
j
1, u

j
2, v

j
1, and v

j
2, j = 1,2,3, by the relations

Lper


uj1
u
j
2


=



∂εi j
∂yi

∂ξi j
∂yi


 , Lper


v j1
v
j
2


=



∂ζi j
∂yi

∂µi j
∂yi


 . (5.11)

We define the homogenized constant coefficient matrices εh, ξh, ζh, and µh by

εhi j =
〈
εi j + εik∂yku

j
1 + ζik∂yku

j
2

〉
,

ξhi j =
〈
ξi j + ξik∂yku

j
1 +µik∂yku

j
2

〉
,

ζhi j =
〈
ζi j + ζik∂yk v

j
2 + εik∂yk v

j
1

〉
,

µhi j =
〈
µi j +µik∂yk v

j
2 + ξik∂yk v

j
1

〉
,

(5.12)

where 〈g〉 := |Y |−1
∫
Y g. It is not obvious but it is easy to prove that the block matrix

Ah =
(
εh ζh

ξh µh

)
(5.13)

is symmetric and positive definite. We note here that one can also deduce relations (5.12)
formally by postulating a double-scale expansion for Eε and Hε.

6. Nonlinear chiral media

The results presented so far were results valid for chiral media constitutive relations with
linear (local or nonlocal) laws involving the electromagnetic fields. Nevertheless there is
a rapidly growing interest in nonlinear chiral media. The study of such systems is still in
its initial stages and very little work has been done in this direction (see, e.g., [7, 14]). In
this section we will examine the effects of nonlinearity on the constitutive relations for
chiral media. In particular, we will present some recent results related to the evolution
of electromagnetic fields in chiral media with cubic nonlinearity in the weak-dispersion,
low-chirality limit. This limit is quite interesting and has been studied in the linear case
(for general mathematical results for time-harmonic fields see, e.g., [3] and the references
therein). For cubically nonlinear, weakly dispersive media with low-chirality parameter,
we derive a set of four coupled partial differential equations of the NLS type for the evo-
lution of the slowly varying envelopes of the electromagnetic fields. With the use of re-
ductive perturbation theory, we reduce the system to a set of integrable partial differential
equations, the Mel’nikov system, and thus show the existence in certain limits of vector
solitons of the dark-bright type.

6.1. The field equations in the general case. The starting point for the modelling of a
nonlinear chiral medium is the Maxwell postulates, in the absence of sources. We assume
furthermore that the medium is of infinite extent. To obtain a description of the fields,
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the above equations will have to be complemented by the constitutive relations for the
medium, that give the connection of D and B on the fields E and H . For a weakly nonlin-
ear, weakly dispersive chiral medium with a cubic nonlinearity, we may assume that the
constitutive relations in the time domain are of the form

D = εE+ ε1�E+ ζ�H + δε2 f1
(|E|2)E,

B = µH +µ1�H + ξ�E+ δµ2 f2
(|H|2)H ,

(6.1)

where by� we denote the convolution ( f �G)(x, t)= ∫∞−∞ f (t− t′)G(x, t′)h(t− t′)dt′. In
the above relation, ε and µ are the permittivity and permeability of the medium, respec-
tively, and ξ and ζ are the chirality parameters of the medium. Causality in the linear part
is ensured by the appearance of the Heaviside function h whereas the nonlinear part is
local (and therefore causal). The assumption of locality for the nonlinear part is consis-
tent with the weak dispersion—the weak nonlinearity case we consider. The parameter
δ is a small parameter which is associated with the weak nonlinearity. The fact that we
have low-chirality and weak nonlinearity is shown in the above constitutive relations by
the fact that the nonlinearity in D depends only on E while the nonlinearity in B depends
only on H . We further assume that the chirality effects are weaker than the nonlinearity
so as to be able to neglect cross terms in the fields H and E. In this work we use constitu-
tive relations with nonlinearities expressed directly in the fields E and H , and not in the
Beltrami fields in which they may be decomposed (see, e.g., [14]).

The well-posedness of the above problem in the general case is an intriguing mathe-
matical problem which is currently under consideration. Here we will study the problem
for a special class of fields, that is, fields which in the frequency domain are of the form

E(z,ω)= u1(z,ω)e+ + v1(z,ω)e−,

H(z,ω)= u2(z,ω)e+ + v2(z,ω)e−,
(6.2)

where e± = (1/
√

2)(x̂± iŷ). This ansatz contains the most general dependence of the fields
in e+ and e− (which is a complete basis in the x, y plane). On the other hand it does not
contain the longitudinal component and/or transverse dependence of the fields, never-
theless it is still consistent with the divergence-free property of the fields D and B which
is valid in this case.

Substituting this ansatz in the Maxwell postulates, we arrive at the following set of
nonlinear equations (in the frequency domain):

−i ∂u1

∂z
=−iω(µu2 + µ̂1u2 + ζ̂u1 + δµ2 f2

(∣∣u2
∣∣2

+
∣∣v2

∣∣2)
u2
)
,

−i ∂u2

∂z
= iω(εu1 + ε̂1u1 + ξ̂u2 + δε2 f1

(∣∣u1
∣∣2

+
∣∣v1

∣∣2)
u1
)
,

i
∂v1

∂z
=−iω(µv2 + µ̂1v2 + ζ̂v1 + δµ2 f2

(∣∣u2
∣∣2

+
∣∣v2

∣∣2)
v2
)
,

i
∂v2

∂z
= iω(εv1 + ε̂1v1 + ξ̂v2 + δε2 f1

(∣∣u1
∣∣2

+
∣∣v1

∣∣2)
v1
)
,

(6.3)
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where by φ̂(ω) we denote the Fourier transform of φ(t) (the ω dependence is dropped for
convenience). We note that in the above set of equations in the absence of nonlinearity
(δ = 0), the first two equations decouple from the other two, that is, the field components
in the e+ and e− directions evolve independently. The components, in the absence of
boundary conditions, are coupled only through the nonlinearity.

6.2. Derivation of the amplitude equations. Assuming solutions of the form

uj(z,ω)=Uj exp
(
ik+z

)
, vj(z,ω)=Vj exp

(
ik−z

)
, j = 1,2, (6.4)

which in the time domain correspond to wave solutions, we see that in the weakly non-
linear case they will have to satisfy the dispersion relations

k2
± ± iω

(
ζ̂ − ξ̂)k± +ω2{ξ̂ ζ̂ − (ε+ ε̂1 + δε2 f1

)(
µ+ µ̂1 + δµ2 f2

)}= 0,

fi = fi
(∣∣Ui

∣∣2
+
∣∣Vi

∣∣2)
, i= 1,2.

(6.5)

In the absence of nonlinearity (δ = 0), these two dispersion relations reduce to the dis-
persion relations for the right-handed and the left-handed polarized waves that are well
known to propagate in linear chiral media.

We will now assume that the nonlinear medium supports wave solutions of the form
(6.4), where the Fourier transforms ofUj andVj are considered to be slowly varying func-
tions of space and time. In other words, Uj and Vj are considered to be the envelopes of
the wave fields. Using reductive perturbation theory, we may derive modulation equa-
tions for the evolution of the envelopes of the fields. One way of doing that is through
the dispersion relation of the weakly nonlinear waves in the following way: we expand
the dispersion relations in a Taylor expansion around the point (k0,ω0) which is a so-
lution of the linear dispersion relation. For the problem at hand, it is enough to keep
terms up to the second order. As a result we obtain a polynomial expression in k and
ω, and Ii = |Ui|2 + |Vi|2, i = 1,2, the coefficients of the polynomial, are derivatives of ω
calculated at the points k = k0 and Ii = 0 (linear case).

In order to obtain modulation equations for the envelopes of the fields, we have to re-
turn back to physical space and time. This is done through the substitution (ω± −ω0,±)→
i(∂/∂t), (k− k0)→−i(∂/∂z), and assuming that these operators act on the envelope of the
waves and on the relevant temporal and spatial scales. The modulation equations may be
derived in an alternative manner by the use of reductive perturbation theory.

Following the procedure described above, we obtain a set of four evolution equations
for the envelopes of the wave fields, in the time domain, of the form

i
∂Uj

∂t
= i ∂ω+

∂k

∂Uj

∂z
+

1
2
∂2ω+

∂k2

∂2Uj

∂z2
+
(
∂ω+

∂I1
I1 +

∂ω+

∂I2
I2

)
Uj ,

i
∂Vj

∂t
= i ∂ω−

∂k

∂Vj

∂z
+

1
2
∂2ω−
∂k2

∂2Vj

∂z2
+
(
∂ω−
∂I1

I1 +
∂ω−
∂I2

I2

)
Vj ,

(6.6)

where j = 1,2. These NLS equations are coupled through the nonlinear terms I1 and I2.
The spatial and temporal coordinates appearing in these equations are scaled variables,
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relevant to the slow variations of the envelopes of the fields. For more details on the
derivation of the modulation equations see [7].

6.3. Reduction of the modulation equations to the Mel’nikov system. The coupled NLS
equations which arose as modulation equations for the evolution of the fields in chiral
media are not integrable by the use of the inverse scattering transform. However, it is
possible, through the use of reductive perturbation theory, to reduce the system in the
proper spatial and time scales to an integrable system that approximates the behaviour of
the original system. This procedure is a general way of understanding the properties of
solutions of nonintegrable systems that has been proven fruitful in a number of similar
situations (see [7] and the references therein).

To obtain the reduction to an integrable system, we restrict ourselves to solutions of
the type

U2 = ρ1U1, V2 = ρ2V1, (6.7)

for which the original system of NLS equations reduces to a system of two equations.
We will now look for solutions of the above system satisfying the boundary conditions

∣∣U1
∣∣−→ |u|, as z −→∞,∣∣V1
∣∣−→ 0, as z −→∞,

(6.8)

that is, we will look for solutions of the dark soliton type in the right-handed component
u, and solutions of the bright soliton type in the left-handed component v. It is clear that
the above boundary conditions may be reversed.

With the use of reductive perturbation theory (for details see [7]), a lengthy proce-
dure leads to a system of the Mel’nikov type [12], which is fully integrable by the inverse
scattering transform for special cases of the parameters. The Mel’nikov system has soli-
ton solutions in the form of a dark soliton in the right-handed component and a bright
soliton in the left-handed component, that is, a localized nonlinear wave propagating in
a dispersive medium, on top of a continuous wave background, keeping its shape undis-
torted. The bright soliton represents a bulge on top of the continuous wave background,
whereas the dark soliton represents a dip. For more details on the definition and the
properties of dark and bright solitons see, for example, [8].
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