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We deal with the general initial-boundary value problem for a second-order nonlinear
nonstationary evolution equation. The associated operator equation is studied by the
Fredholm and Nemitskii operator theory. Under local Holder conditions for the non-
linear member, we observe quantitative and qualitative properties of the set of solutions
of the given problem. These results can be applied to different mechanical and natural
science models.

1. Introduction

The generic properties of solutions of the second-order ordinary differential equations
were studied by Briill and Mawhin in [2], Mawhin in [7], and by Seda in [8]. Such ques-
tions were solved for nonlinear diffusional-type problems with the Dirichlet-, Neumann-,
and Newton-type conditions in [5, 6].

In this paper, we study the set structure of classic solutions, bifurcation points and
the surjectivity of an associated operator to a general second-order nonlinear evolution
problem by the Fredholm operator theory. The present results allow us to search the
generic properties of nonparabolic models which describe mechanical, physical, reaction-
diffusion, and ecology processes.

2. The formulation of the problem and basic notions

Throughout this paper, we assume that the set O C R” for n € N is a bounded do-
main with the sufficiently smooth boundary 0Q. The real number T is positive and
Q:=(0,T] xQ,T:=(0,T] x 0.

We use the notation D; for d/0t, D; for 9/0x;, D;j for 82/8xi8xj, where i,j = 1,...,n,
and Dou for u. The symbol cI M means the closure of a set M in R”.

We consider the nonlinear differential equation (possibly of a nonparabolic type)

Dyu— A(t,x,Dy)u+ f (t,x,u,D1u,...,Dyu) = g(£,x) (2.1)
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408  Solutions of nonlinear initial-boundary value problems

for (¢,x) € Q, where the coefficients a;j, a;, ao, for i, j = 1,...,n, of the second-order linear
operator

n
A(t,x,Dy) Z aij(t,x D,]u+Za, t,x)Dju+ ao(t,x)u (2.2)
j=1 i=1

are continuous functions from the space C(clQ,RR). The function f is from the space
C(dQ xR R) and g € C(clQ,R).

Together with (2.1), we consider the following general homogeneous boundary con-
dition:

B3(t,X,Dx)u|]“ = Zbi(t,X)Dﬂ/l‘f' bo(t,x)l”r = 0) (2'3)

i=1

where the coefficients b;, for i = 1,...,n, and by are continuous functions from C(clT,R).
Furthermore, we require for the solution of (2.1) to satisfy the homogeneous initial
condition

Uli—o=0 on clQ. (2.4)

Remark 2.1. In the case where b; = 0, fori = 1,...,n,and by = 1in (2.3), we get the Dirich-
let problem studied in [5].

If we consider the vector function v := (0,vy,...,7,) : cIT — R**! and the value v(¢,x)
which means the unit inner normal vector to cIT at the point (t,x) € cl" and we let b; = v
fori=1,...,n on clT, then problem (2.1), (2.3), (2.4) represents the Newton or Neuman
problem investigated in [6].

Our considerations are concerned with a broad class of nonparabolic operators.
In the following definitions, we will use the notations

|u(t,x) — u(s,x) |

(U)jo:=  sup )
e (£,x),(s,x)EclQ |t — S|l“
t#s
u t)-x —u t,
Wloi=  sup 1MEX ulty)]
(t,x),(t,y)eclQ [x — )/|
xty (2.5)

(Frevn:= | f(tsx,ugsthry...tin) = F (S, Y5V05VisernsVu) |5
i = | ltxu(t,2),Diu(tx),..., Dyu(t,2)],
— fls,y,v(s,¥),D1v(s,¥),...,Duv(s, )] |,
where x = (x1,...,%0), ¥ = (J1,...,ya) are from R", [x — y| = [, (x; — y;)?]V?, and

w,v €R.
We will need the following Holder spaces (see [4, page 147]).



V. Durikovi¢ and M. Durikovi¢ova 409

Definition 2.2. Let a € (0,1).

(1) By the symbol CtH“ V2 1+”‘(cl Q,R) we denote the vector space of continuous func-
tions u : c1Q — R which have continuous derivatives D;u for i = 1,...,n on clQ, and the
norm

n

lullrayairaqi= >, sup | Diu(t,x) | + (1)} (1hay20
i=0 (tx)eclQ

n n
+2 <Diu>i,¢x/2,Q +2 <Diu>9)c/,oc/2,Q

i=1 i=1

(2.6)

is finite.
(2) The symbol C((f;;x )/2’2+“(c1 Q,R) means the vector space of continuous functions u :
clQ — R for which there exist continuous derivatives D;u, D;ju, Dijuon clQ, i,j = 1,...,n,

and the norm

n
lull@rayzorwe = >, sup |Du(t,x)|+ sup |Diu(tx)]
i=0 (tx)EclQ (tx)eclQ

n
+ 2 sup | Djju(t,x)| +Z (Diu); Vet (Dtu>t¢x/2Q (2.7)
ij=1 (Lx)eclQ i=1

n

n
+ > (Dij”>i,zx/2,Q+ <Dfu>;}c/,tx,Q+ 2. <Dij”>i,a,Q
i,j=1 hj=1

is finite.
(3) The symbol Cf”‘)/2 3+D‘(cl Q,RR) means the vector space of continuous functions

u:cQ — R for which the derivatives Dy, D;u, D;Dju, Diju, Dijxu, i, j,k = 1,...,n, are
continuous on clQ, and the norm

n n

lull Grayasraa = >, sup |Du(t,x)|+ > sup |Dju(t,x)]
i=0 (tx)eclQ ij=1 (tx)eclQ
n n
+> sup |DDu(t,x)|+ > sup |Diju(t,x)]
i=0 (Lx)EclQ i,jk=1(60ECAQ
n
N s
+ (D) (ywymat 2. (Dijt) s (2.8)
ij=1
n
2 DD“>ta/2Q+ Z <D11k“>ta/zQ
i=1 i,j,k=1

M:

(DDu)mQ+ Z (Dukqu
i,j,k=1

is finite.
The above-defined norm spaces are Banach ones.
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Definition 2.3 (the smoothness condition (S§*%)). Let a € (0,1). The differential oper-
ators A(t,x,Dy) from (2.1) and Bs(t,x,Dy) from (2.3) satisfy the smoothness condition
(S3*%) if, respectively,

(i) the coefficients a;j, a;, ap from (2.1), for i,j = 1,...,n, belong to the space
CULT214%((1Q,R) and 0Q) € C3*,
(ii) the coefficients b; from (2.3), fori=1,...,n, belong to the space Ct(?“)/z’zm(ch,R).

Definition 2.4 (the complementary condition (C)). If at least one of the coefficients b;,
fori=1,...,n, of the differential operator Bs(t,x,Dy) in (2.3) is not zero, then Bs(t,x, Dy)
satisfies the complementary condition (C).

Now, we are prepared to formulate hypotheses for deriving fundamental lemmas.
Definition 2.5. (1) Fredholm conditions.
(A1) Consider the operator Az : X5 — Y3, where

Asu=Dyu—A(t,x,Dy)u, u€Xs, (2.9)

and the operators A(f,x,Dyx) and Bs(t,x,Dy) satisfy the smoothness condition
(S3*%) for & € (0,1) and the complementary condition (C). Here, we consider the vec-
tor spaces

D(As) := {ue CL "> (lQR); B (t,x,Dx)ulr = 0, ul,—o(x) = 0 for x € clQ},

H(As) := {v € CF*"(dQ,R); Bs(t,x,Dy) v(£,%)]1=0.xca0 = 0}

(2.10)
and Banach subspaces (of the given Holder spaces)
X3 = (D(A3), I - l3+a)2,3+0,Q)»
(2.11)
Ys = (H(A3), I - la+a2,1400)-
(A2) There is a second-order linear homeomorphism Cs : X5 — Y3 with
Csu=Dyu—C(t,x,Dx)u, u€Xs, (2.12)
where
n n
C(t,x,Dy)u = Z cij(t,x)Djju+ Z ¢i(t,x)Dju + co(t,x)u, (2.13)

ij=1 i=1
satisfying the smoothness condition (S}"*). The operator Cj is not necessarily a parabolic
one.

(2) Local Holder and compatibility conditions.
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Let f:= f(,x,ug,up,...,uy) : QX R™! = R, a € (0,1), and let p, g, p,, for r =
0,1,...,n be nonnegative constants. Here, D represents any compact subset of (clQ) x
R™!. For f, we need the following assumptions:

(B1) let f € C'(clQ x R™',R) and let the first derivatives d f/0x;, df/du; be locally
Holder continuous on clQ x R™*! such that

) Y,V n
<—f> <plt=s|>+qlx—yI*+ > prlur — v 1,

tx,u r=0

) (2.14)
<—af> <plt=sl?+qlx—yl*+ > pluy — v, |,
tx,u

r=0

fori=1,...,n,j=0,1,...,n, and any D;
(B2) let f € C3(clQ x R™!,R) and let the local growth conditions for the third deriva-
tives of f hold on any D:

t,x,v n
_y B
<Braxau]>txu<§)Ps|us ve |,

t,x,v

>f "
<878u18uk o = 2515

)

of >txv<si0ps\us—vs|ﬁs, (2.15)
).
)

>

0x;0x;0u;

tx,u

(st
0x;0u oy

txu

X,V

<8u]8uk8ur tou g‘ pslus = v,

where 3, >0 fors=0,1,...,nand i, = 1,...,n; j,k,r =0,1,...,1;
(B3) the equality of compatibility

Zbi(tax)Dif(t)x)O)---)O) +bO(tax)f(t)x)O)---)O)|t=0,anQ =0 (216)

holds.

(3) Almost coercive condition.

Let, for any bounded set M3 C Y3, there exist a number K > 0 such that for all solutions
u € X3 of problem (2.1), (2.3), (2.4) with the right-hand sides g € M3, the following
alternative holds:
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(C1) either
(a1) Nullgrayzi+ao < K, f:= f(t,x,u0) : 1Q X R — R, and the coefficients of the
operators A3 and Cs (see (2.1) and (A2)) satisfy the equations

aij = ¢ij, ai=¢, fori,j=1,...,n, ap #cy oncQ, (2.17)

or
() lullerayroraq < K, fi= f(t,x,ug,u1,...,uy) : lQ X R™! — R, and the coef-
ficients of the operators A3 and C; satisfy the relations

ajj=c; fori,j=1,..,n, a; #c¢; foratleastonei=1,...,n (2.18)

on clQ.

Remark 2.6. (1) Especially, condition (A2) is satisfied for the diffusion operator
Csu=Du— Au, uéclXs, (2.19)

or for any uniformly parabolic operator Cs with sufficiently smooth coefficients. How-
ever, the operator Cs is not necessarily uniform parabolic.

(2) The local Holder conditions in (B1) and (B2) admit sufficiently strong growths of
f in the last variables ug, us,. .., u,. For example, they include exponential and power-type
growths.

Definition 2.7. (1) A couple (u,g) € X3 X Y3 will be called the bifurcation point of the
mixed problem (2.1), (2.3), (2.4) if u is a solution of that mixed problem and there exists
a sequence {gr} C Y3 such that gx — g in Y3 as k — oo, and problem (2.1), (2.3), (2.4) for
g = gk has at least two different solutions uy, v for each k € N and uy — u, vy — v in X3
as k — oo,

(2) The set of all solutions u € X5 of (2.1), (2.3), (2.4) (or the set of all functions
g € Y3) such that (u,g) is a bifurcation point of problem (2.1), (2.3), (2.4) will be called
the domain of bifurcation (the bifurcation range) of that problem.

3. Fundamental lemmas

LemMa 3.1. Let conditions (A1) and (A2) hold (see Definition 2.5). Then,
(1) dimX3 = +o0;
(2) the operator Az : X3 — Y3 is a linear bounded Fredholm operator of the zero index.

Proof. (1) To prove the first part of this lemma, we use the decomposition theorem from
[9, page 139].

Let X be a linear space and let x* : X — R be a linear functional on X such that x* # 0.
Furthermore, let M = {x € X; x*(x) = 0} and let xo € X — M. Then, every element x € X
can be expressed by the formula

e[

x* (x0)

that is, there is a one-dimensional subspace L; of X such that X = L, @ M.

]xo+m, meM, (3.1)
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If we now let
My = {ue CIV (A QR) = H¥ Bs(t,x,Dy)ulr =0}, (3.2)

which is the linear subspace of H>™*, then there exists a linear subspace L; of H¥™®
with dimL; = 1 such that H3>*® = L; @ M,. Similarly, if we take M, := {u € My; ul;—o =
0 on clQ}, then there is a subspace L, of M; with dimL, = 1 such that M, = L, & M,.
Hence, we have H3™* = L; ® L, ® D(A3). Since dim H3™® = +o00, we get that dim X3 = +oo.

(2) (a) In the first step, we prove the boundedness of the linear operator As. To this
end, we observe the norm [|Asull(14a)2,1+4,q for u € D(As3). From the assumption (Sé”‘)

we get for k =0,1,...,n,

sup | DrAsu(t,x)| < Killullgray23+m0s  Ki > 0. (3.3)
(t,x)eclQ

Applying again the smoothness assumption (S;*%), the mean value theorem for the
functions u and D;u, and the boundedness of Q, we obtain for the second member of the
above-mentioned norm the following estimation:

| Asu(t,x) — Asu(s,x)|

(Asu), (1eypq = SUP It — 5| (Fr2
(t,X),(tsics)Gle (3.4)
< K llull3+ap2,3+0,0, K2 >0.
For the third member of the norm (2.6), we estimate for k = 1,...,# as follows:
s | DrAsu(t,x) — DrAsu(s,x) |
<DkA3u>t,a/2,Q = sup |t_s|oc/2
(t,x),(ts;zcs)ele (3.5)

< Ksllull 3ray23+00> K3 >0.

An estimation of the last member in (2.6) for Asu is given by the following inequality
fork=1,...,n:

DiAsu(t,x) — DrAsu(t, y)
(DkA3u>;}c’,a/2,Q _ sup | 3 - 3 )y |
(£),(t,y)EclQ lx =yl (3.6)
x#y :
< Kyllull Gray23+aqs  Ka>0.
From the estimations (3.3), (3.4), (3.5), and (3.6), we can conclude that
||143M||Y3 = ||A3u||(1+a)/2)1+mQ < K(n: Ta(xa Q)aij)aiaao) ||u||X3' (3'7)

(b) To prove that As is a Fredholm operator with the zero index, we express it in the
form

Asu = Csu+[C(t,x,Dy) — A(t,x,Dy) Ju =: Csu+ Tsu, (3.8)
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where C; : X3 — Y3 is a linear homeomorphism and C is the linear operator from (A2).
By the decomposition Nikolskii theorem [10, page 233], it is sufficient to show that T :
X5 — Y3 is a linear completely continuous operator.

The complete continuity of T3 can be proved by the Ascoli-Arzeld theorem (see [11,
page 141]).

From (S3*%), the uniform boundedness of the operator

n

Tsu = Z [cij(t,x) — aij(t,x) | Diju + i [ci(t,x) — ai(t,x)]|Diu
ij=1 i=1 (3.9)

+ [co(t,x) — ao(t,x)|u

follows by the same way as the boundedness of the operator A; in the previous part (1).
Thus, for all u € M C X3, where M is a set bounded by the constant K; > 0, we obtain the
estimate

||T3”||y3 < K(n,aT,Q,a;j,cij, ais ¢i ao, co) llullx, < KKi. (3.10)

Using the smoothness condition of the operators A and C, we get the inequalities
n
| Tsu(t,x) = Tsuls, y) | < > | e — ai](6%) = [eij = aij] (s, ) | | Dyju(t,x) |
ij=1

+ > eij(s,y) —aij(s,p) | | Diju(t,x) — Diju(s, y) |
ij=1

+> | [ei—ail(t,x) = [ci— ail(s,y) | | Diu(t,x) |
i=1

+> Jai(s,y) —ai(s,y) | | Diu(t,x) — Diu(s, y) |

i=1
+ | [eo = ao] (t,%) = [co — a0l (s, y) | | u(t,x) |
+ co(s,y) —ao(s, y) | |u(t,x) —u(s, y) |

< 4K Kn?[|t = s+ |x — y|*]
+ 2K Kn[ (16— 5192+ [x — p1%) + (1t = s 2 4 |x — y]) ]

+2K K[ (1t =512+ |x = y|*) + (It —s| +|x— y])],
(3.11)

where Kj, K are positive constants. Hence, the equicontinuity of TsM C Y3 follows. This
finishes the proof of Lemma 3.1. O

Lemma 3.1 implies the following alternative.
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CoOROLLARY 3.2. Let L mean the set of all second-order linear differential operators
(14+a)/2,1+a
A3 =D;— A(t,x,Dy) : X5 — Cy, (clQ,R) (3.12)

satisfying conditions (C) and (Sy™*). Then, for each A; € L, the mixed homogeneous problem
Asu=0o0nQ, (2.3), and (2.4) has a nontrivial solution or any A3 € L is a linear bounded
Fredholm operator of the zero-index mapping X3 onto Ys.

The following lemma establishes the complete continuity of the Nemitskii operator
from the nonlinear part of (2.1).

LemMa 3.3. Let assumptions (B1) and (B3) be satisfied. Then the Nemitskii operator N :
X3 — Ys defined by
(N3u)(t,x) = f[t,x,u(t,x),Diu(t,x),...,Dyu(t,x)] (3.13)

foru e X5 and (t,x) € clQ is completely continuous.

Proof. Let M3 C X3 be abounded set. By the Ascoli-Arzeld theorem, it is sufficient to show
that the set N3(Ms3) is uniformly bounded and equicontinuous. We will use assumption
(B3) to prove the inclusion N3(M3) C V3.

Take u € Ms. According to assumption (B1), we obtain the local boundedness of the
function f and of its derivatives df/dx; on (c1Q) X R**! for i = 1,...,n. From this and
from the equation

D;(Nsu)(t,x) {D -] i 8_f 1D; Dlu}[-, -~ u,Di,...,Dyu](t,x), (3.14)

we have the estimation

sup | D;(Nsu)(t,x)| < K, (3.15)
(tx)ecQ

fori=0,1,...,n with a positive sufficiently large constant K; not depending on u € Ms.
Using the differentiability of f and the mean value theorem in the variable ¢ for the
difference of the derivatives of u, we can write

(N3u); (1 a0 < Ki. (3.16)
Similarly, by (2.14), we have

(DiNsu)y o <Ki,  (DiNsu)) o <Ki, (3.17)

X,0,Q
fori=1,...,n and u € M3. The previous estimations yield the inequality

|IN3ully, <K, (3.18)

for all u € M;s.
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With respect to (B1), for any u € M5 and (,x),(s, y) € clQ such that |t —s|? + |x —
y1? < 62 with a sufficiently small & > 0, we have

|Nsu(t,x) — Nsu(s,y)| <€, €>0, (3.19)

which is the equicontinuity of N3(Ms3). This finishes the proof of Lemma 3.3. O

LeEMMaA 3.4. Let assumptions (Al), (A2), (B1), (B3), and (CI1) hold. Then the operator
F; = A3+ N3 : X5 — Y3 is coercive.

Proof. We need to prove that if the set M3 C Y3 is bounded in Y3, then the set of argu-
ments F5 ' (M3) C X; is bounded in X;.
In both cases (a;) and (a,), we get for all u € F5 ! (M3),
||N3”||(1+a)/2,1+a,o =K, (3.20)
where K; > 0 is a sufficiently large constant. Hence,
[Asully, <K (3.21)
for any u € F;'(Ms3).
Hypothesis (A2) ensures the existence and uniqueness of the solution u € X3 of the
linear equation
Cu=y, (3.22)
and forany y € Y3,

lullx, < Killylly,. (3.23)

If we write

n
Cu=Asu+ Z [a,-j(t,x) — cij(t,x)]Diju

) b (3.24)
+> [ai(t,x) — ci(t,x) | Du+ [ao(£,x) — co(t,x) ] u,
i=1
then in both cases and for each u € F; ' (M3), we obtain
lylly, < ||Csully, < Ki, (3.25)
whence, by inequality (3.23), we can conclude that the operator Fj; is coercive. O

LemMA 3.5. Let the Nemitskii operator N3 : X3 — Y3 from (3.13) satisfy conditions (B2)
and (B3). Then the operator N is continuously Fréchet-differentiable, that is, N3 € C' (X3,
Y3) and it is completely continuous.
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Proof. From (B2), we obtain (B1) which implies by Lemma 3.3 the complete continuity

of Ns. To obtain the first part of the assertion of this lemma, we need to prove that the
Fréchet derivative N3 : X3 — L(X3, Y3) defined by the equation

Ni(u)h i a—f (t,2,u(t,x), Dyu(t,x),...,Dyu(t,x) | Djh(t,x) (3.26)

for u,h € X5 is continuous on X3. Thus, we must prove, for every v € X3, that

Ve>0 38(6,v) >0, VueXs, lu—vilx,<8: sup [[[N5(u) - N5(v)]h[ly, <e.
heXs, llhllx; <1

(3.27)

Using the norms (2.6), (2.8) and the estimation ||« — v||x, < §, we have for the first term
of (3.27) by the mean value theorem,

n

sup | Di[N3(u) — N3 (v)]h(t,x)|

i=0 (tx)eclQ
n azf t,x,v(t,x)
< sup < > |Dih(t,x) |

i,jzou,x)ecle[ 0%i0uj / tpoutty)

n 82f v (1,x)
D; - |D;h| (¢, 3.28

§<au]auk>txu(tx)| lku| | ! |( x) ( )
n
;O Bu]ak (t,x,v(t,x),. '|leu Div| |Djh|(t,x)

t,x,v(t,x)
< of > |D,-jh(t,x)|} <Kd, K>0.

au] tx,u(t,x)

For the second term of (3.27), we estimate as follows:

<[N3(u) N3(v ]h>t(1+a/2Q

t 7,%,V(7,X)
-5 | [ (8
]

j=0clQ t#s 7,5,U(7,X)

$,%,(8,X)
+<_f>
0 $,%,U(8,x)

(t,x)|

(3.29)
D Djh(z,x)dr

N

]

<K§, K>0.

Here, we have used the mean value theorem for 9 f/0710u;, 0* f/0u;oux, and o f/du; for
j,k=0,1,...,n
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The third term of (3.27) gives by (2.15),

Z N3(V)] }>i,oc/2,Q

n

n
Z > sup |t—s|7?

1j=0dQ t#s

t aZf 7,%,v(7,x)
X{ L DT<ax,-au,->T,x,u(,,x)dT (0]
azf $,%,(8,X)
; <8x,8u,>sxusx sD Djh(r,x)dr

2

t azf Txvrx)
<au]8uk>

Txu(rx)

,-ku| |D]h | (t,x)

+

t a2f
. DT[W(T,X,V,...)dT]

X | Dixu(t,x) — Digv(t,x) | | Djh(t,x) |

azf $,2,V(8,%)
; < > | Dyae(t,x) — Digu(s,x) | | Dih(t,0) |

au]auk $,2,1(5,X)
’f
W(S,X,V,...) '

X | Dixu(t,x) — Digv(t,x) — [Digu(s,x) — Dyv(s,x)] | | Djh(t,x) |

+< o f >5xvsx)|Diku(s,x)|

aM] auk $,5,1(5,X)

t
j D.Djh(r,x)dr

P f

+ du;0m (s,x,v,...)‘ | Digu(s,x) — Dygv(s,x) |

t
J D.Djh(r,x)dr
(5
au] 'r,x,u(‘r,x)

<aaj; >( | Dyjh(t,x) —D,,-h(s,x)|]}

$,%,U(8,x)

K(Z%M), K >0.

s=0

+

ij

(3.30)
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Making the corresponding changes, the last term of (3.27), by condition (B2), gives the
required estimation:

n

> (DA[N3 (1) = Ns(») |1} . o (3.31)

i=1
This finishes the proof of Lemma 3.5. O

4. Generic properties for continuous operators

On a mutual equivalence between the solution of the given initial-boundary value prob-
lem and an operator equation, we have the following lemma.

LEMMA 4.1. Let As: X5 — Y3 be the linear operator from Lemma 3.1, let N3 : X5 — Y3 be
the Nemitskii operator from Lemma 3.3, and let F3 = A3+ N3 : X5 — Y3. Then,

(1) the function u € X3 is a solution of the initial-boundary value problem (2.1), (2.3),
(2.4) for g € Ys if and only if Fsu = g;

(2) the couple (u,g) € X3 X Y3 is the bifurcation point of the initial-boundary value prob-
lem (2.1), (2.3), (2.4) if and only if F3(u) = g and u € Z, where £ means the set of all
points of X5 at which F5 is not locally invertible.

Proof. (1) The first equivalence directly follows from the definition of the operator Fs and
of the mixed problem (2.1), (2.3), (2.4).

(2) If (u,g) is a bifurcation point of the mixed problem (2.1), (2.3), (2.4) and u, v,
and g, for k = 1,2,... have the same meaning as in Definition 2.7, then with respect to (1)
we have F3(u) = g, F3(ux) = gk = F3(v). Thus, Fs is not locally injective at u. Hence, Fj is
not locally invertible at u, that is, u € 2. Conversely, if F5 is not locally invertible at u and
F3(u) = g, then F; is not locally injective at . Indirectly, from Definition 2.7, we see that
the couple (u,g) is a bifurcation point of (2.1), (2.3), (2.4). O

LEMMA 4.2. Let

(i) the operator A(t,x,Dy) # 0 from (2.1) and the operator Bs(t,x, Dy) from (2.3) satisfy
the smoothness condition (S}™*);
(i) the nonlinear part f of (2.1) belong to C(clQ x R™1,R);

(iii) the operator Az + N3 : X3 — Y3 be nonconstant.

Then, for any compact set of the right-hand sides g € Y3 from (2.1), the set of all solutions
of problem (2.1), (2.3), (2.4) is compact (possibly empty).

Proof. Following the proof of Lemma 3.1, we see that dim X3 = +co and the linear opera-
tor A; : X3 — Y3 is continuous and accordingly closed. From hypothesis (ii) the Nemitskii
operator N3 : X3 — Y3 given in (4.9) is closed too. By [8, Proposition 2.1], the operator
F3 = A3+ N3 : X5 — Y3 is proper, and with respect to Lemma 4.1 we get our assertion.

a

THEOREM 4.3. Under assumptions (A1), (A2) and (B1), (B3), the following statements hold
for problem (2.1), (2.3), (2.4):
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(a) the operator F3 = A3 + N3 : X3 — Y3 is continuous;

(b) for any compact set of the right-hand sides g € Y3 from (2.1), the corresponding set of
all solutions is a countable union of compact sets;

(¢) for uy € X3, there exist neighborhoods U(uy) of uy and U(F3(uy)) of F3(up) € Y3
such that for each g € U(F3(uy)), there is a unique solution of (2.1), (2.3), (2.4) if
and only if the operator F5 is locally injective at u.

Moreover, if (C1) is assumed, then

(d) for each compact set of Y3, the corresponding set of all solutions is compact (possibly
empty).

Proof. Assertion (a) is evident by Lemmas 3.1 and 3.3.
Using the Nikolskii theorem for Az, we can write

F3=C3+(T3+N3), (4.1)

where C; : X3 — Y3 is a linear homeomorphism and is proper (see [8, Proposition 2.1])
and T3 + N3 : X3 — Y3 is a completely continuous mapping.
Now take the compact sets K C Y3 and F;!'(K). Then there exists a sequence of the
closed and bounded sets M,, C F;'(K) C X5 for n = 1,2,... such that U;_, M,, = F; }(K).
According to [8, Proposition 2.2], the restrictions Fs|y, for n = 1,2,... are proper

mappings and [F3 | Mn] 1(K ) = M, is a compact set. Hence, the operator F; is o-proper,
which gives the result (b).

Assertion (d) is a direct consequence of [8, Proposition 2.2].

Suppose now that F; is injective in a neighborhood U(u) of 4y € X5. From the de-
composition (4.1) the mapping

Cy'F3 =1+ C; (T3 +N;s), (4.2)

where [ : X — Y is the identity, is completely continuous and injective in U(uy). On the
basis of the Schauder domain invariance theorem (see [3, page 66]), the set
C;5'F5(U(up)) is open in X3 and the restriction C3 ' F3| () is a homeomorphism of U (u)
onto Cs'F5(U(up)). Therefore, F; is locally invertible. From Lemma 4.1 we obtain (c).
The most important properties of the mapping Fs, whereby As is a linear bounded
Fredholm operator of zero index, N3 is completely continuous, and F3 is coercive, give
the following theorem. U

THEOREM 4.4. If hypotheses (A1), (A2), (B1), (B3), and (C1) are satisfied, then for the
initial-boundary value problem (2.1), (2.3), (2.4), the following statements hold.

(e) For each g € Y3, the set S, of all solutions is compact (possibly empty).

(f) The set R(Fs) = {g € Y3 : there exists at least one solution of the given problem} is
closed and connected in Ys.

(g) The domain of bifurcation Dsy, is closed in X3 and the bifurcation range Rsy, is closed
in Ys. F5(X3 — Dsy,) is open in Ys.

(h) If Y3 — Rsy, + @, then each component of Y3 — Rsy, is a nonempty open set (i.e., a
domain).
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The number nsq of solutions is finite, constant (it may be zero) on each component of the set
Y3 — Ry, that is, for every g belonging to the same component of Y3 — Rsy,.

(i) If R3p = 0, then the given problem has a unique solution u € X3 for each g € Y3 and
this solution continuously depends on g as a mapping from Y3 onto Xs.

(J) If Rsp # D, then the boundary of the Fs-image of the set of all points from X5 in which
the operator Fs is locally invertible is a subset of the F3-image of the set of all points
from X5 in which Fs is not locally invertible, that is,

0F; (X5 — D3p) C F5(Dsp) = Rap. (4.3)

Proof. Statement (e) follows immediately from Theorem 4.3(d).

(f) Let the sequence {g,},en C R(F3) C Y3 converge to g € Y3 as n — oo. By Theorem
4.3(d), there is a compact set of all solutions {u,},e; C X3 (I is an index set) of the equa-
tions F3(u) = g, for all n = 1,2,.... Then there exists a sequence {uy, }xen C {1, },er con-
verging to u € X3 for which Fs3(u,, ) = g, — g. Since the operator F; is proper, whence it
is closed, we have F3(u) = g. Hence, g € R(F3) and R(F3) is a closed set.

The connectedness of R(F3) = F3(X3) follows from the fact that R(F;) is a continuous
image of the connected set X3.

(g) According to Lemma 4.1(2), D3 = 23 and Rs, = F3(D3p). Since X3 — X3 is an open
set, D3p, and its continuous image Rs, are closed sets in X3 and Y3, respectively.

Since X3 — D3y, is a set of all points in which the mapping F; is locally invertible, then
it ensures that to each uy € X3 — D3y, there is a neighborhood U (F5(uy)) C F5(X3 — D3yp),
which means that the set F3(X5 — Ds;) is open.

(h) The set Y3 — R3p = Y3 — F5(D3p) # 0 is open in Y3, then each of its components is
nonempty and open.

The second part of (h) follows from Ambrosetti theorem [1, page 216].

(i) Since R3p = &, the mapping F; is locally invertible in X3. From [8, Proposition 2.2],
we get that F5 is a proper mapping. Then the global inverse mapping theorem [12, page
174] proves this statement.

(j) By (f) and (g), we have (25 = D3p)

F3(X3) = F3(23) UF3(X3 — 23) = F5(23) U F3(X3 - X3) = F(X3). (4.4)

Furthermore, 0F5(X3 — 23) = F(X5 — Z3) — F(X5 — Z3), and thus the previous equality
implies assertion (j). O

THEOREM 4.5. Under assumption (Al), (A2), (B1), (B3), and (C1), each of the following
conditions is sufficient for the solvability of problem (2.1), (2.3), (2.4) for each g € Y3:

(k) for each g € R3y, there is a solution u of (2.1), (2.3), (2.4) such that u € X5 — Dsp;
(1) the set Ys — R3y is connected and there is a g € R(F3) — Rsp.

Proof. First of all, we see that conditions (k) and (1) are mutually equivalent to the fol-
lowing conditions:
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(k") F5(D3p) C F3(X5 — Dsp),
(I') Y3 — Ry, is a connected set and

F3(X5 —Dsp) — R3p + O, (4.5)

respectively (D3, = X3).

Then it is sufficient to show that conditions (k") and (1), respectively, are sufficient for
the surjectivity of the operator Fs : X3 — Y.
(k) From the first equality of (4.4), we obtain F3(X3) = F5(X3 — Dsp,). Hence, R(F3) is
an open as well as a closed subset of the connected space Y3. Thus, R(F;) = Y3.
(I') By Theorem 4.4(h), card F5 ' ({q}) = const =: k > 0 for every q € Y3 — Ry.
If k = 0, then F5(X3) = R3, and F3(X3 — D3p) C Rap. This is a contradiction to (4.5).
Then k >0 and R(F;) = V3. O

The other surjectivity theorem is true.

THEOREM 4.6. Let hypotheses (A1), (A2), (B1), (B3), and (CI) hold and

(1) there exists a constant K > 0 such that all solutions u € X5 of the initial-boundary
value problem for the equation

Csu+ulAsu—Csu+Nsul =0, pe(0,1), (4.6)

with data (2.3), (2.4), fulfil one of conditions (a;) and (ay) of the almost coercive
condition (C1), then

(m) problem (2.1), (2.3), (2.4) has at least one solution for each g € Y3;

(n) the number nsg of solutions of (2.1), (2.3), (2.4) is finite, constant, and different from
zero on each component of the set Y3 — Ry, (for all g belonging to the same component
Of Y3 - R3b).

Proof. (m) It is sufficient to prove the surjectivity of the mapping F5 : X5 — Y3. By Lemma
3.1, we can write

F3=A3+N3=C3+(T3 +N3), (47)

where C; : X5 — Y3 is a linear homeomorphism from X3 onto Y3 and T5+ N3 : X5 — Y3 is
a completely continuous operator. Then the operator

C;1F3=I+C;1(T3+N3):X3—>X3 (4.8)

is completely continuous and condensing (see [12, page 496]). The set £3 = D3 is the set
of all points u € X3 where C; ' F3, as well as F;, is not locally invertible.

Denote S; C X3 a bounded set. Then C5(S;) =: S is bounded in Y3, and by Lemma 3.4,
F;1(S) = F51(C5(81)) = (C5!' o F5)71(S)) is a bounded set in X5. Thus, the operator C5 ! o
F; is coercive.

Now we show that condition (i) implies the conditions from [8, Theorem 3.2, Corol-
lary 3.3, and Remark 3.1] for F(u) = C5' o F5(u) and C(u) = G(u) = u, u € Xs.
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In fact, as C; ' o F5(u) = ku if and only if F3(u) = kCs(u), we get for k < 0,
C3u+(1—k)_1[A3u—C3u+N3u] =0, (4.9)

where (1 -k)~! € (0,1).
In case («1), there is a constant K > 0 such that for all solutions u € X3 of (4.9),

lull gray21400 < K, (4.10)

and in case (a,),

Nl 24a)2,2+00 < K. (4.11)
Furthermore, by the same method as in Lemma 3.4, we get the estimation

lullx, <Ky, Ki>0, (4.12)

for all solutions u € X3 of C;' o F3u = ku. Hence, we get the surjectivity of F3 and thus
(m).

(n) From Theorem 4.4(h) and the surjectivity of Fs, it follows that there is n3, # 0.
This finishes the proof of Theorem 4.6. O
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