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We deal with the general initial-boundary value problem for a second-order nonlinear
nonstationary evolution equation. The associated operator equation is studied by the
Fredholm and Nemitskii operator theory. Under local Hölder conditions for the non-
linear member, we observe quantitative and qualitative properties of the set of solutions
of the given problem. These results can be applied to different mechanical and natural
science models.

1. Introduction

The generic properties of solutions of the second-order ordinary differential equations
were studied by Brüll and Mawhin in [2], Mawhin in [7], and by Šeda in [8]. Such ques-
tions were solved for nonlinear diffusional-type problems with the Dirichlet-, Neumann-,
and Newton-type conditions in [5, 6].

In this paper, we study the set structure of classic solutions, bifurcation points and
the surjectivity of an associated operator to a general second-order nonlinear evolution
problem by the Fredholm operator theory. The present results allow us to search the
generic properties of nonparabolic models which describe mechanical, physical, reaction-
diffusion, and ecology processes.

2. The formulation of the problem and basic notions

Throughout this paper, we assume that the set Ω ⊂ Rn for n ∈ N is a bounded do-
main with the sufficiently smooth boundary ∂Ω. The real number T is positive and
Q := (0,T]×Ω, Γ := (0,T]× ∂Ω.

We use the notation Dt for ∂/∂t, Di for ∂/∂xi, Dij for ∂2/∂xi∂xj , where i, j = 1, . . . ,n,
and D0u for u. The symbol clM means the closure of a set M in Rn.

We consider the nonlinear differential equation (possibly of a nonparabolic type)

Dtu−A
(
t,x,Dx

)
u+ f

(
t,x,u,D1u, . . . ,Dnu

)= g(t,x) (2.1)
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for (t,x)∈Q, where the coefficients ai j , ai, a0, for i, j = 1, . . . ,n, of the second-order linear
operator

A
(
t,x,Dx

)
u=

n∑
i, j=1

ai j(t,x)Diju+
n∑
i=1

ai(t,x)Diu+ a0(t,x)u (2.2)

are continuous functions from the space C(clQ,R). The function f is from the space
C(clQ×Rn+1,R) and g ∈ C(clQ,R).

Together with (2.1), we consider the following general homogeneous boundary con-
dition:

B3
(
t,x,Dx

)
u|Γ :=

n∑
i=1

bi(t,x)Diu+ b0(t,x)u|Γ = 0, (2.3)

where the coefficients bi, for i= 1, . . . ,n, and b0 are continuous functions from C(clΓ,R).
Furthermore, we require for the solution of (2.1) to satisfy the homogeneous initial

condition

u|t=0 = 0 on clΩ. (2.4)

Remark 2.1. In the case where bi = 0, for i= 1, . . . ,n, and b0 = 1 in (2.3), we get the Dirich-
let problem studied in [5].

If we consider the vector function ν := (0,ν1, . . . ,νn) : clΓ→ Rn+1 and the value ν(t,x)
which means the unit inner normal vector to clΓ at the point (t,x)∈ clΓ and we let bi = νi
for i= 1, . . . ,n on clΓ, then problem (2.1), (2.3), (2.4) represents the Newton or Neuman
problem investigated in [6].

Our considerations are concerned with a broad class of nonparabolic operators.
In the following definitions, we will use the notations

〈u〉st,µ,Q := sup
(t,x),(s,x)∈clQ

t �=s

∣∣u(t,x)−u(s,x)
∣∣

|t− s|µ ,

〈u〉yx,ν,Q := sup
(t,x),(t,y)∈clQ

x �=y

∣∣u(t,x)−u(t, y)
∣∣

|x− y|ν ,

〈 f 〉s,y,v
t,x,u := ∣∣ f (t,x,u0,u1, . . . ,un

)− f
(
s, y,v0,v1, . . . ,vn

)∣∣,

〈 f 〉s,y,v(s,y)
t,x,u(t,x) := ∣∣ f [t,x,u(t,x),D1u(t,x), . . . ,Dnu(t,x)

]
,

− f
[
s, y,v(s, y),D1v(s, y), . . . ,Dnv(s, y)

]∣∣,

(2.5)

where x = (x1, . . . ,xn), y = (y1, . . . , yn) are from Rn, |x − y| = [
∑n

i=1(xi − yi)2]1/2, and
µ,ν∈R.

We will need the following Hölder spaces (see [4, page 147]).
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Definition 2.2. Let α∈ (0,1).

(1) By the symbol C(1+α)/2,1+α
t,x (clQ,R) we denote the vector space of continuous func-

tions u : clQ→ R which have continuous derivatives Diu for i = 1, . . . ,n on clQ, and the
norm

‖u‖(1+α)/2,1+α,Q :=
n∑
i=0

sup
(t,x)∈clQ

∣∣Diu(t,x)
∣∣+ 〈u〉st,(1+α)/2,Q

+
n∑
i=1

〈
Diu

〉s
t,α/2,Q +

n∑
i=1

〈
Diu

〉y
x,α/2,Q

(2.6)

is finite.
(2) The symbol C(2+α)/2,2+α

(t,x) (clQ,R) means the vector space of continuous functions u :
clQ→R for which there exist continuous derivatives Dtu, Diu, Diju on clQ, i, j = 1, . . . ,n,
and the norm

‖u‖(2+α)/2,2+α,Q =
n∑
i=0

sup
(t,x)∈clQ

∣∣Diu(t,x)
∣∣+ sup

(t,x)∈clQ

∣∣Dtu(t,x)
∣∣

+
n∑

i, j=1

sup
(t,x)∈clQ

∣∣Diju(t,x)
∣∣+

n∑
i=1

〈
Diu

〉s
t,(1+α)/2,Q +

〈
Dtu

〉s
t,α/2,Q

+
n∑

i, j=1

〈
Diju

〉s
t,α/2,Q +

〈
Dtu

〉y
x,α,Q +

n∑
i, j=1

〈
Diju

〉y
x,α,Q

(2.7)

is finite.
(3) The symbol C(3+α)/2,3+α

t,x (clQ,R) means the vector space of continuous functions
u : clQ → R for which the derivatives Dt, Diu, DtDiu, Diju, Dijku, i, j,k = 1, . . . ,n, are
continuous on clQ, and the norm

‖u‖(3+α)/2,3+α,Q :=
n∑
i=0

sup
(t,x)∈clQ

∣∣Diu(t,x)
∣∣+

n∑
i, j=1

sup
(t,x)∈clQ

∣∣Diju(t,x)
∣∣

+
n∑
i=0

sup
(t,x)∈clQ

∣∣DtDiu(t,x)
∣∣+

n∑
i, j,k=1

sup
(t,x)∈clQ

∣∣Dijku(t,x)
∣∣

+
〈
Dtu

〉s
t,(1+α)/2,Q +

n∑
i, j=1

〈
Diju

〉s
t,(1+α)/2,Q

+
n∑
i=1

〈
DtDiu

〉s
t,α/2,Q +

n∑
i, j,k=1

〈
Dijku

〉s
t,α/2,Q

+
n∑
i=1

〈
DtDiu

〉y
x,α,Q +

n∑
i, j,k=1

〈
Dijku

〉y
x,α,Q

(2.8)

is finite.
The above-defined norm spaces are Banach ones.
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Definition 2.3 (the smoothness condition (S1+α
3 )). Let α ∈ (0,1). The differential oper-

ators A(t,x,Dx) from (2.1) and B3(t,x,Dx) from (2.3) satisfy the smoothness condition
(S1+α

3 ) if, respectively,

(i) the coefficients ai j , ai, a0 from (2.1), for i, j = 1, . . . ,n, belong to the space

C(1+α)/2,1+α
t,x (clQ,R) and ∂Ω∈ C3+α,

(ii) the coefficients bi from (2.3), for i=1, . . . ,n, belong to the spaceC(2+α)/2,2+α
t,x (clΓ,R).

Definition 2.4 (the complementary condition (C)). If at least one of the coefficients bi,
for i= 1, . . . ,n, of the differential operator B3(t,x,Dx) in (2.3) is not zero, then B3(t,x,Dx)
satisfies the complementary condition (C).

Now, we are prepared to formulate hypotheses for deriving fundamental lemmas.

Definition 2.5. (1) Fredholm conditions.
(A1) Consider the operator A3 : X3 → Y3, where

A3u=Dtu−A
(
t,x,Dx

)
u, u∈ X3, (2.9)

and the operators A(t,x,Dx) and B3(t,x,Dx) satisfy the smoothness condition
(S1+α

3 ) for α ∈ (0,1) and the complementary condition (C). Here, we consider the vec-
tor spaces

D
(
A3
)

:= {u∈ C(3+α)/2,3+α
t,x (clQ,R); B3

(
t,x,Dx

)
u|Γ = 0, u|t=0(x)= 0 for x ∈ clQ

}
,

H
(
A3
)

:= {v ∈ C(1+α)/2,1+α
t,x (clQ,R); B3

(
t,x,Dx

)
v(t,x)|t=0,x∈∂Ω = 0

}
(2.10)

and Banach subspaces (of the given Hölder spaces)

X3 =
(
D
(
A3
)
,‖ · ‖(3+α)/2,3+α,Q

)
,

Y3 =
(
H
(
A3
)
,‖ · ‖(1+α)/2,1+α,Q

)
.

(2.11)

(A2) There is a second-order linear homeomorphism C3 : X3 → Y3 with

C3u=Dtu−C
(
t,x,Dx

)
u, u∈ X3, (2.12)

where

C
(
t,x,Dx

)
u=

n∑
i, j=1

ci j(t,x)Diju+
n∑
i=1

ci(t,x)Diu+ c0(t,x)u, (2.13)

satisfying the smoothness condition (S1+α
3 ). The operator C3 is not necessarily a parabolic

one.
(2) Local Hölder and compatibility conditions.
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Let f := f (t,x,u0,u1, . . . ,un) : clQ ×Rn+1 → R, α ∈ (0,1), and let p, q, pr , for r =
0,1, . . . ,n be nonnegative constants. Here, D represents any compact subset of (clQ)×
Rn+1. For f , we need the following assumptions:

(B1) let f ∈ C1(clQ×Rn+1,R) and let the first derivatives ∂ f /∂xi, ∂ f /∂uj be locally
Hölder continuous on clQ×Rn+1 such that

〈
∂ f

∂xi


s,y,v

t,x,u
≤ p|t− s|α/2 + q|x− y|α +

n∑
r=0

pr
∣∣ur − vr

∣∣,

〈
∂ f

∂uj


s,y,v

t,x,u
≤ p|t− s|α/2 + q|x− y|α +

n∑
r=0

pr
∣∣ur − vr

∣∣,

(2.14)

for i= 1, . . . ,n, j = 0,1, . . . ,n, and any D;
(B2) let f ∈ C3(clQ×Rn+1,R) and let the local growth conditions for the third deriva-

tives of f hold on any D:

〈
∂3 f

∂τ∂xi∂uj


t,x,v

t,x,u
≤

n∑
s=0

ps
∣∣us− vs

∣∣βs ,
〈

∂3 f

∂τ∂uj∂uk


t,x,v

t,x,u
≤

n∑
s=0

ps
∣∣us− vs

∣∣βs ,
〈

∂3 f

∂xi∂xl∂uj


t,x,v

t,x,u
≤

n∑
s=0

ps
∣∣us− vs

∣∣βs ,
〈

∂3 f

∂xi∂uj∂uk


t,x,v

t,x,u
≤

n∑
s=0

ps
∣∣us− vs

∣∣βs ,
〈

∂3 f

∂uj∂uk∂ur


t,x,v

t,x,u
,≤

n∑
s=0

ps
∣∣us− vs

∣∣βs ,

(2.15)

where βs > 0 for s= 0,1, . . . ,n and i, l = 1, . . . ,n; j,k,r = 0,1, . . . ,n;
(B3) the equality of compatibility

n∑
i=1

bi(t,x)Di f (t,x,0, . . . ,0) + b0(t,x) f (t,x,0, . . . ,0)|t=0,x∈∂Ω = 0 (2.16)

holds.

(3) Almost coercive condition.
Let, for any bounded set M3 ⊂ Y3, there exist a number K > 0 such that for all solutions

u ∈ X3 of problem (2.1), (2.3), (2.4) with the right-hand sides g ∈M3, the following
alternative holds:
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(C1) either
(α1) ‖u‖(1+α)/2,1+α,Q ≤ K , f := f (t,x,u0) : clQ×R→R, and the coefficients of the

operators A3 and C3 (see (2.1) and (A2)) satisfy the equations

ai j = ci j , ai = ci, for i, j = 1, . . . ,n, a0 �= c0 on clQ, (2.17)

or
(α2) ‖u‖(2+α)/2,2+α,Q ≤ K , f := f (t,x,u0,u1, . . . ,un) : clQ×Rn+1 →R, and the coef-

ficients of the operators A3 and C3 satisfy the relations

ai j = ci j for i, j = 1, . . . ,n, ai �= ci for at least one i= 1, . . . ,n (2.18)

on clQ.

Remark 2.6. (1) Especially, condition (A2) is satisfied for the diffusion operator

C3u=Dtu−� u, u∈ X3, (2.19)

or for any uniformly parabolic operator C3 with sufficiently smooth coefficients. How-
ever, the operator C3 is not necessarily uniform parabolic.

(2) The local Hölder conditions in (B1) and (B2) admit sufficiently strong growths of
f in the last variables u0,u1, . . . ,un. For example, they include exponential and power-type
growths.

Definition 2.7. (1) A couple (u,g) ∈ X3 × Y3 will be called the bifurcation point of the
mixed problem (2.1), (2.3), (2.4) if u is a solution of that mixed problem and there exists
a sequence {gk} ⊂ Y3 such that gk → g in Y3 as k→∞, and problem (2.1), (2.3), (2.4) for
g = gk has at least two different solutions uk, vk for each k ∈N and uk → u, vk → u in X3

as k→∞.
(2) The set of all solutions u ∈ X3 of (2.1), (2.3), (2.4) (or the set of all functions

g ∈ Y3) such that (u,g) is a bifurcation point of problem (2.1), (2.3), (2.4) will be called
the domain of bifurcation (the bifurcation range) of that problem.

3. Fundamental lemmas

Lemma 3.1. Let conditions (A1) and (A2) hold (see Definition 2.5). Then,

(1) dimX3 = +∞;
(2) the operator A3 : X3 → Y3 is a linear bounded Fredholm operator of the zero index.

Proof. (1) To prove the first part of this lemma, we use the decomposition theorem from
[9, page 139].

Let X be a linear space and let x∗ : X →R be a linear functional on X such that x∗ �= 0.
Furthermore, let M = {x ∈ X ; x∗(x)= 0} and let x0 ∈ X −M. Then, every element x ∈ X
can be expressed by the formula

x =
[
x∗(x)
x∗
(
x0
)]x0 +m, m∈M, (3.1)

that is, there is a one-dimensional subspace L1 of X such that X = L1⊕M.
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If we now let

M1 :=
{
u∈ C(3+α)/2,3+α

t,x (clQ,R)=: H3+α; B3
(
t,x,Dx

)
u|Γ = 0

}
, (3.2)

which is the linear subspace of H3+α, then there exists a linear subspace L1 of H3+α

with dimL1 = 1 such that H3+α = L1 ⊕M1. Similarly, if we take M2 := {u ∈M1; u|t=0 =
0 on clΩ}, then there is a subspace L2 of M1 with dimL2 = 1 such that M1 = L2 ⊕M2.
Hence, we have H3+α = L1⊕L2⊕D(A3). Since dimH3+α = +∞, we get that dimX3 = +∞.

(2) (a) In the first step, we prove the boundedness of the linear operator A3. To this
end, we observe the norm ‖A3u‖(1+α)/2,1+α,Q for u∈D(A3). From the assumption (S1+α

3 )
we get for k = 0,1, . . . ,n,

sup
(t,x)∈clQ

∣∣DkA3u(t,x)
∣∣≤ K1‖u‖(3+α)/2,3+α,Q, K1 > 0. (3.3)

Applying again the smoothness assumption (S1+α
3 ), the mean value theorem for the

functions u and Diu, and the boundedness of Q, we obtain for the second member of the
above-mentioned norm the following estimation:

〈
A3u

〉s
t,(1+α)/2,Q = sup

(t,x),(s,x)∈clQ
t �=s

∣∣A3u(t,x)−A3u(s,x)
∣∣

|t− s|(1+α)/2

≤ K2‖u‖(3+α)/2,3+α,Q, K2 > 0.

(3.4)

For the third member of the norm (2.6), we estimate for k = 1, . . . ,n as follows:

〈
DkA3u

〉s
t,α/2,Q = sup

(t,x),(s,x)∈clQ
t �=s

∣∣DkA3u(t,x)−DkA3u(s,x)
∣∣

|t− s|α/2

≤ K3‖u‖(3+α)/2,3+α,Q, K3 > 0.

(3.5)

An estimation of the last member in (2.6) for A3u is given by the following inequality
for k = 1, . . . ,n:

〈
DkA3u

〉y
x,α/2,Q = sup

(t,x),(t,y)∈clQ
x �=y

∣∣DkA3u(t,x)−DkA3u(t, y)
∣∣

|x− y|α/2

≤ K4‖u‖(3+α)/2,3+α,Q, K4 > 0.

(3.6)

From the estimations (3.3), (3.4), (3.5), and (3.6), we can conclude that

∥∥A3u
∥∥
Y3
= ∥∥A3u

∥∥
(1+α)/2,1+α,Q ≤ K

(
n,T ,α,Ω,ai j ,ai,a0

)‖u‖X3 . (3.7)

(b) To prove that A3 is a Fredholm operator with the zero index, we express it in the
form

A3u= C3u+
[
C
(
t,x,Dx

)−A
(
t,x,Dx

)]
u=: C3u+T3u, (3.8)
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where C3 : X3 → Y3 is a linear homeomorphism and C is the linear operator from (A2).
By the decomposition Nikoľskii theorem [10, page 233], it is sufficient to show that T3 :
X3 → Y3 is a linear completely continuous operator.

The complete continuity of T3 can be proved by the Ascoli-Arzelá theorem (see [11,
page 141]).

From (S1+α
3 ), the uniform boundedness of the operator

T3u=
n∑

i, j=1

[
ci j(t,x)− ai j(t,x)

]
Diju+

n∑
i=1

[
ci(t,x)− ai(t,x)

]
Diu

+
[
c0(t,x)− a0(t,x)

]
u

(3.9)

follows by the same way as the boundedness of the operator A3 in the previous part (1).
Thus, for all u∈M ⊂ X3, where M is a set bounded by the constant K1 > 0, we obtain the
estimate

∥∥T3u
∥∥
Y3
≤ K

(
n,αT ,Ω,ai j ,ci j ,ai,ci,a0,c0

)‖u‖X3 ≤ KK1. (3.10)

Using the smoothness condition of the operators A and C, we get the inequalities

∣∣T3u(t,x)−T3u(s, y)
∣∣≤ n∑

i, j=1

∣∣[ci j − ai j
]
(t,x)− [ci j − ai j

]
(s, y)

∣∣∣∣Diju(t,x)
∣∣

+
n∑

i, j=1

∣∣ci j(s, y)− ai j(s, y)
∣∣∣∣Diju(t,x)−Diju(s, y)

∣∣

+
n∑
i=1

∣∣[ci− ai
]
(t,x)− [ci− ai

]
(s, y)

∣∣∣∣Diu(t,x)
∣∣

+
n∑
i=1

∣∣ci(s, y)− ai(s, y)
∣∣∣∣Diu(t,x)−Diu(s, y)

∣∣
+
∣∣[c0− a0

]
(t,x)− [c0− a0

]
(s, y)

∣∣∣∣u(t,x)
∣∣

+
∣∣c0(s, y)− a0(s, y)

∣∣∣∣u(t,x)−u(s, y)
∣∣

≤ 4K1Kn
2[|t− s|α/2 + |x− y|α]

+ 2K1Kn
[(|t− s|α/2 + |x− y|α)+

(|t− s|(1+α)/2 + |x− y|)]
+ 2K1K

[(|t− s|α/2 + |x− y|α)+
(|t− s|+ |x− y|)],

(3.11)

where K1, K are positive constants. Hence, the equicontinuity of T3M ⊂ Y3 follows. This
finishes the proof of Lemma 3.1. �

Lemma 3.1 implies the following alternative.
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Corollary 3.2. Let L mean the set of all second-order linear differential operators

A3 =Dt −A
(
t,x,Dx

)
: X3 −→ C(1+α)/2,1+α

t,x (clQ,R) (3.12)

satisfying conditions (C) and (S1+α
2 ). Then, for each A3 ∈ L, the mixed homogeneous problem

A3u= 0 on Q, (2.3), and (2.4) has a nontrivial solution or any A3 ∈ L is a linear bounded
Fredholm operator of the zero-index mapping X3 onto Y3.

The following lemma establishes the complete continuity of the Nemitskii operator
from the nonlinear part of (2.1).

Lemma 3.3. Let assumptions (B1) and (B3) be satisfied. Then the Nemitskii operator N3 :
X3 → Y3 defined by

(
N3u

)
(t,x)= f

[
t,x,u(t,x),D1u(t,x), . . . ,Dnu(t,x)

]
(3.13)

for u∈ X3 and (t,x)∈ clQ is completely continuous.

Proof. Let M3 ⊂ X3 be a bounded set. By the Ascoli-Arzelá theorem, it is sufficient to show
that the set N3(M3) is uniformly bounded and equicontinuous. We will use assumption
(B3) to prove the inclusion N3(M3)⊂ Y3.

Take u ∈M3. According to assumption (B1), we obtain the local boundedness of the
function f and of its derivatives ∂ f /∂xi on (clQ)×Rn+1 for i = 1, . . . ,n. From this and
from the equation

Di
(
N3u

)
(t,x)=

{
Di f [·] +

n∑
l=0

∂ f

∂ul
[·]DiDlu

}[·,·,u,D1u, . . . ,Dnu
]
(t,x), (3.14)

we have the estimation

sup
(t,x)∈clQ

∣∣Di
(
N3u

)
(t,x)

∣∣≤ K1 (3.15)

for i= 0,1, . . . ,n with a positive sufficiently large constant K1 not depending on u∈M3.
Using the differentiability of f and the mean value theorem in the variable t for the

difference of the derivatives of u, we can write

〈
N3u

〉s
t,(1+α)/2,Q ≤ K1. (3.16)

Similarly, by (2.14), we have

〈
DiN3u

〉s
t,α/2,Q ≤ K1,

〈
DiN3u

〉y
x,α,Q ≤ K1, (3.17)

for i= 1, . . . ,n and u∈M3. The previous estimations yield the inequality

∥∥N3u
∥∥
Y3
≤ K1 (3.18)

for all u∈M3.
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With respect to (B1), for any u ∈M3 and (t,x),(s, y) ∈ clQ such that |t− s|2 + |x−
y|2 < δ2 with a sufficiently small δ > 0, we have

∣∣N3u(t,x)−N3u(s, y)
∣∣ < ε, ε > 0, (3.19)

which is the equicontinuity of N3(M3). This finishes the proof of Lemma 3.3. �

Lemma 3.4. Let assumptions (A1), (A2), (B1), (B3), and (C1) hold. Then the operator
F3 = A3 +N3 : X3 → Y3 is coercive.

Proof. We need to prove that if the set M3 ⊂ Y3 is bounded in Y3, then the set of argu-
ments F−1

3 (M3)⊂ X3 is bounded in X3.
In both cases (α1) and (α2), we get for all u∈ F−1

3 (M3),

∥∥N3u
∥∥

(1+α)/2,1+α,Q ≤ K1, (3.20)

where K1 > 0 is a sufficiently large constant. Hence,

∥∥A3u
∥∥
Y3
≤ K1 (3.21)

for any u∈ F−1
3 (M3).

Hypothesis (A2) ensures the existence and uniqueness of the solution u ∈ X3 of the
linear equation

C3u= y, (3.22)

and for any y ∈ Y3,

‖u‖X3 ≤ K1‖y‖Y3 . (3.23)

If we write

C3u= A3u+
n∑

i, j=1

[
ai j(t,x)− ci j(t,x)

]
Diju

+
n∑
i=1

[
ai(t,x)− ci(t,x)

]
Diu+

[
a0(t,x)− c0(t,x)

]
u,

(3.24)

then in both cases and for each u∈ F−1
3 (M3), we obtain

‖y‖Y3 ≤
∥∥C3u

∥∥
Y3
≤ K1, (3.25)

whence, by inequality (3.23), we can conclude that the operator F3 is coercive. �

Lemma 3.5. Let the Nemitskii operator N3 : X3 → Y3 from (3.13) satisfy conditions (B2)
and (B3). Then the operator N3 is continuously Fréchet-differentiable, that is, N3 ∈ C1(X3,
Y3) and it is completely continuous.
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Proof. From (B2), we obtain (B1) which implies by Lemma 3.3 the complete continuity
of N3. To obtain the first part of the assertion of this lemma, we need to prove that the
Fréchet derivative N ′

3 : X3 → L(X3,Y3) defined by the equation

N ′
3(u)h(t,x)=

n∑
j=0

∂ f

∂uj

(
t,x,u(t,x),D1u(t,x), . . . ,Dnu(t,x)

]
Djh(t,x) (3.26)

for u,h∈ X3 is continuous on X3. Thus, we must prove, for every v ∈ X3, that

∀ε > 0 ∃δ(ε,v) > 0, ∀u∈ X3, ‖u− v‖X3 < δ : sup
h∈X3,‖h‖X3≤1

∥∥[N ′
3(u)−N ′

3(v)
]
h
∥∥
Y3
< ε.

(3.27)

Using the norms (2.6), (2.8) and the estimation ‖u− v‖X3 < δ, we have for the first term
of (3.27) by the mean value theorem,

n∑
i=0

sup
(t,x)∈clQ

∣∣Di
[
N ′

3(u)−N ′
3(v)

]
h(t,x)

∣∣

≤
n∑

i, j=0

sup
(t,x)∈clQ

[〈
∂2 f

∂xi∂uj


t,x,v(t,x)

t,x,u(t,x)

∣∣Djh(t,x)
∣∣

+
n∑

k=0

〈
∂2 f

∂uj∂uk


t,x,v(t,x)

t,x,u(t,x)

∣∣Diku
∣∣ ·∣∣Djh

∣∣(t,x)

+
n∑

k=0

∣∣∣∣ ∂2 f

∂uj∂uk

(
t,x,v(t,x), . . .

)∣∣∣∣∣∣Diku−Dikv
∣∣∣∣Djh

∣∣(t,x)

+
〈
∂ f

∂uj


t,x,v(t,x)

t,x,u(t,x)

∣∣Dijh(t,x)
∣∣] < Kδ, K > 0.

(3.28)

For the second term of (3.27), we estimate as follows:

〈[
N ′

3(u)−N ′
3(v)

]
h
〉s
t,(1+α)/2,Q

≤
n∑
j=0

sup
clQ, t �=s

|t− s|−(1+α)/2
[∣∣∣∣
∫ t

s
Dτ

〈
∂ f

∂uj


τ,x,v(τ,x)

τ,x,u(τ,x)
dτ
∣∣∣∣∣∣Djh(t,x)

∣∣

+
〈
∂ f

∂uj


s,x,v(s,x)

s,x,u(s,x)

∣∣∣∣
∫ t

s
DτDjh(τ,x)dτ

∣∣∣∣
]

≤ Kδ, K > 0.

(3.29)

Here, we have used the mean value theorem for ∂2 f /∂τ∂uj , ∂2 f /∂uj∂uk, and ∂ f /∂uj for
j,k = 0,1, . . . ,n.
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The third term of (3.27) gives by (2.15),

n∑
i=1

〈
Di
{[
N ′

3(u)−N ′
3(v)

]
h
}〉s

t,α/2,Q

≤
n∑
i=1

n∑
j=0

sup
clQ, t �=s

|t− s|−α/2

×
{∣∣∣∣
∫ t

s
Dτ

〈
∂2 f

∂xi∂uj


τ,x,v(τ,x)

τ,x,u(τ,x)
dτ
∣∣∣∣∣∣Djh(t,x)

∣∣

+
〈

∂2 f

∂xi∂uj


s,x,v(s,x)

s,x,u(s,x)

∣∣∣∣
∫ t

s
DτDjh(τ,x)dτ

∣∣∣∣

+
n∑

k=0

[∣∣∣∣
∫ t

s
Dτ

〈
∂2 f

∂uj∂uk


τ,x,v(τ,x)

τ,x,u(τ,x)
dτ
∣∣∣∣∣∣Diku

∣∣∣∣Djh
∣∣(t,x)

+
∣∣∣∣
∫ t

s
Dτ

[
∂2 f

∂uj∂uk
(τ,x,v, . . .)dτ

]∣∣∣∣
×∣∣Diku(t,x)−Dikv(t,x)

∣∣∣∣Djh(t,x)
∣∣

+
〈

∂2 f

∂uj∂uk


s,x,v(s,x)

s,x,u(s,x)

∣∣Diku(t,x)−Diku(s,x)
∣∣∣∣Djh(t,x)

∣∣

+
∣∣∣∣ ∂2 f

∂uj∂uk
(s,x,v, . . .)

∣∣∣∣
×∣∣Diku(t,x)−Dikv(t,x)− [Diku(s,x)−Dikv(s,x)

]∣∣∣∣Djh(t,x)
∣∣

+
〈

∂2 f

∂uj∂uk


s,x,v(s,x)

s,x,u(s,x)

∣∣Diku(s,x)
∣∣∣∣∣∣
∫ t

s
DτDjh(τ,x)dτ

∣∣∣∣
+
∣∣∣∣ ∂2 f

∂uj∂uk
(s,x,v, . . .)

∣∣∣∣∣∣Diku(s,x)−Dikv(s,x)
∣∣

×
∣∣∣∣
∫ t

s
DτDjh(τ,x)dτ

∣∣∣∣
+
∣∣∣∣
∫ t

s
Dτ

〈
∂ f

∂uj


τ,x,v(τ,x)

τ,x,u(τ,x)
dτ
∣∣∣∣∣∣Dijh(t,x)

∣∣

+
〈
∂ f

∂uj


s,x,v(s,x)

s,x,u(s,x)

∣∣Dijh(t,x)−Dijh(s,x)
∣∣]}

≤ K

( n∑
s=0

δβs + δ

)
, K > 0.

(3.30)
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Making the corresponding changes, the last term of (3.27), by condition (B2), gives the
required estimation:

n∑
i=1

〈
Di
{[
N ′

3(u)−N ′
3(v)

]
h
}〉y

x,α,Q. (3.31)

This finishes the proof of Lemma 3.5. �

4. Generic properties for continuous operators

On a mutual equivalence between the solution of the given initial-boundary value prob-
lem and an operator equation, we have the following lemma.

Lemma 4.1. Let A3 : X3 → Y3 be the linear operator from Lemma 3.1, let N3 : X3 → Y3 be
the Nemitskii operator from Lemma 3.3, and let F3 = A3 +N3 : X3 → Y3. Then,

(1) the function u ∈ X3 is a solution of the initial-boundary value problem (2.1), (2.3),
(2.4) for g ∈ Y3 if and only if F3u= g;

(2) the couple (u,g)∈ X3×Y3 is the bifurcation point of the initial-boundary value prob-
lem (2.1), (2.3), (2.4) if and only if F3(u)= g and u∈ Σ, where Σ means the set of all
points of X3 at which F3 is not locally invertible.

Proof. (1) The first equivalence directly follows from the definition of the operator F3 and
of the mixed problem (2.1), (2.3), (2.4).

(2) If (u,g) is a bifurcation point of the mixed problem (2.1), (2.3), (2.4) and uk, vk,
and gk for k = 1,2, . . . have the same meaning as in Definition 2.7, then with respect to (1)
we have F3(u)= g, F3(uk)= gk = F3(vk). Thus, F3 is not locally injective at u. Hence, F3 is
not locally invertible at u, that is, u∈ Σ. Conversely, if F3 is not locally invertible at u and
F3(u)= g, then F3 is not locally injective at u. Indirectly, from Definition 2.7, we see that
the couple (u,g) is a bifurcation point of (2.1), (2.3), (2.4). �

Lemma 4.2. Let

(i) the operator A(t,x,Dx) �= 0 from (2.1) and the operator B3(t,x,Dx) from (2.3) satisfy
the smoothness condition (S1+α

3 );
(ii) the nonlinear part f of (2.1) belong to C(clQ×Rn+1,R);

(iii) the operator A3 +N3 : X3 → Y3 be nonconstant.

Then, for any compact set of the right-hand sides g ∈ Y3 from (2.1), the set of all solutions
of problem (2.1), (2.3), (2.4) is compact (possibly empty).

Proof. Following the proof of Lemma 3.1, we see that dimX3 = +∞ and the linear opera-
tor A3 : X3 → Y3 is continuous and accordingly closed. From hypothesis (ii) the Nemitskii
operator N3 : X3 → Y3 given in (4.9) is closed too. By [8, Proposition 2.1], the operator
F3 = A3 + N3 : X3 → Y3 is proper, and with respect to Lemma 4.1 we get our assertion.

�

Theorem 4.3. Under assumptions (A1), (A2) and (B1), (B3), the following statements hold
for problem (2.1), (2.3), (2.4):
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(a) the operator F3 = A3 +N3 : X3 → Y3 is continuous;
(b) for any compact set of the right-hand sides g ∈ Y3 from (2.1), the corresponding set of

all solutions is a countable union of compact sets;
(c) for u0 ∈ X3, there exist neighborhoods U(u0) of u0 and U(F3(u0)) of F3(u0) ∈ Y3

such that for each g ∈ U(F3(u0)), there is a unique solution of (2.1), (2.3), (2.4) if
and only if the operator F3 is locally injective at u0.

Moreover, if (C1) is assumed, then

(d) for each compact set of Y3, the corresponding set of all solutions is compact (possibly
empty).

Proof. Assertion (a) is evident by Lemmas 3.1 and 3.3.
Using the Nikoľskii theorem for A3, we can write

F3 = C3 +
(
T3 +N3

)
, (4.1)

where C3 : X3 → Y3 is a linear homeomorphism and is proper (see [8, Proposition 2.1])
and T3 +N3 : X3 → Y3 is a completely continuous mapping.

Now take the compact sets K ⊂ Y3 and F−1
3 (K). Then there exists a sequence of the

closed and bounded sets Mn ⊂ F−1
3 (K)⊂ X3 for n= 1,2, . . . such that

⋃∞
n=1Mn = F−1

3 (K).
According to [8, Proposition 2.2], the restrictions F3|Mn for n = 1,2, . . . are proper

mappings and
F3|Mn

−1
(K)=Mn is a compact set. Hence, the operator F3 is σ-proper,

which gives the result (b).
Assertion (d) is a direct consequence of [8, Proposition 2.2].
Suppose now that F3 is injective in a neighborhood U(u0) of u0 ∈ X3. From the de-

composition (4.1) the mapping

C−1
3 F3 = I +C−1

3

(
T3 +N3

)
, (4.2)

where I : X → Y is the identity, is completely continuous and injective in U(u0). On the
basis of the Schauder domain invariance theorem (see [3, page 66]), the set
C−1

3 F3(U(u0)) is open inX3 and the restrictionC−1
3 F3|U(u0) is a homeomorphism ofU(u0)

onto C−1
3 F3(U(u0)). Therefore, F3 is locally invertible. From Lemma 4.1 we obtain (c).

The most important properties of the mapping F3, whereby A3 is a linear bounded
Fredholm operator of zero index, N3 is completely continuous, and F3 is coercive, give
the following theorem. �

Theorem 4.4. If hypotheses (A1), (A2), (B1), (B3), and (C1) are satisfied, then for the
initial-boundary value problem (2.1), (2.3), (2.4), the following statements hold.

(e) For each g ∈ Y3, the set S3g of all solutions is compact (possibly empty).
(f) The set R(F3) = {g ∈ Y3 : there exists at least one solution of the given problem} is

closed and connected in Y3.
(g) The domain of bifurcation D3b is closed in X3 and the bifurcation range R3b is closed

in Y3. F3(X3−D3b) is open in Y3.
(h) If Y3 − R3b �= ∅, then each component of Y3 − R3b is a nonempty open set (i.e., a

domain).
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The number n3g of solutions is finite, constant (it may be zero) on each component of the set
Y3−R3b, that is, for every g belonging to the same component of Y3−R3b.

(i) If R3b = 0, then the given problem has a unique solution u∈ X3 for each g ∈ Y3 and
this solution continuously depends on g as a mapping from Y3 onto X3.

(j) If R3b �= ∅, then the boundary of the F3-image of the set of all points from X3 in which
the operator F3 is locally invertible is a subset of the F3-image of the set of all points
from X3 in which F3 is not locally invertible, that is,

∂F3
(
X3−D3b

)⊂ F3
(
D3b

)= R3b. (4.3)

Proof. Statement (e) follows immediately from Theorem 4.3(d).
(f) Let the sequence {gn}n∈N ⊂ R(F3)⊂ Y3 converge to g ∈ Y3 as n→∞. By Theorem

4.3(d), there is a compact set of all solutions {uγ}γ∈I ⊂ X3 (I is an index set) of the equa-
tions F3(u)= gn for all n= 1,2, . . . . Then there exists a sequence {unk}k∈N ⊂ {uγ}γ∈I con-
verging to u∈ X3 for which F3(unk )= gnk → g. Since the operator F3 is proper, whence it
is closed, we have F3(u)= g. Hence, g ∈ R(F3) and R(F3) is a closed set.

The connectedness of R(F3)= F3(X3) follows from the fact that R(F3) is a continuous
image of the connected set X3.

(g) According to Lemma 4.1(2), D3b = Σ3 and R3b = F3(D3b). Since X3−Σ3 is an open
set, D3b and its continuous image R3b are closed sets in X3 and Y3, respectively.

Since X3−D3b is a set of all points in which the mapping F3 is locally invertible, then
it ensures that to each u0 ∈ X3−D3b there is a neighborhood U1(F3(u0))⊂ F3(X3−D3b),
which means that the set F3(X3−D3b) is open.

(h) The set Y3−R3b = Y3− F3(D3b) �= 0 is open in Y3, then each of its components is
nonempty and open.

The second part of (h) follows from Ambrosetti theorem [1, page 216].
(i) Since R3b =∅, the mapping F3 is locally invertible in X3. From [8, Proposition 2.2],

we get that F3 is a proper mapping. Then the global inverse mapping theorem [12, page
174] proves this statement.

(j) By (f) and (g), we have (Σ3 =D3b)

F3
(
X3
)= F3

(
Σ3
)∪F3

(
X3−Σ3

)= F3
(
Σ3
)∪F3

(
X3−Σ3

)= F
(
X3
)
. (4.4)

Furthermore, ∂F3(X3−Σ3)= F(X3−Σ3)−F(X3−Σ3), and thus the previous equality
implies assertion (j). �

Theorem 4.5. Under assumption (A1), (A2), (B1), (B3), and (C1), each of the following
conditions is sufficient for the solvability of problem (2.1), (2.3), (2.4) for each g ∈ Y3:

(k) for each g ∈ R3b, there is a solution u of (2.1), (2.3), (2.4) such that u∈ X3−D3b;
(l) the set Y3−R3b is connected and there is a g ∈ R(F3)−R3b.

Proof. First of all, we see that conditions (k) and (l) are mutually equivalent to the fol-
lowing conditions:
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(k′) F3(D3b)⊂ F3(X3−D3b),
(l′) Y3−R3b is a connected set and

F3
(
X3−D3b

)−R3b �= ∅, (4.5)

respectively (D3b = Σ3).

Then it is sufficient to show that conditions (k′) and (l′), respectively, are sufficient for
the surjectivity of the operator F3 : X3 → Y3.

(k′) From the first equality of (4.4), we obtain F3(X3)= F3(X3−D3b). Hence, R(F3) is
an open as well as a closed subset of the connected space Y3. Thus, R(F3)= Y3.

(l′) By Theorem 4.4(h), cardF−1
3 ({q})= const=: k ≥ 0 for every q ∈ Y3−R3b.

If k = 0, then F3(X3) = R3b and F3(X3 −D3b) ⊂ R3b. This is a contradiction to (4.5).
Then k > 0 and R(F3)= Y3. �

The other surjectivity theorem is true.

Theorem 4.6. Let hypotheses (A1), (A2), (B1), (B3), and (C1) hold and

(i) there exists a constant K > 0 such that all solutions u ∈ X3 of the initial-boundary
value problem for the equation

C3u+µ
[
A3u−C3u+N3u

]= 0, µ∈ (0,1), (4.6)

with data (2.3), (2.4), fulfil one of conditions (α1) and (α2) of the almost coercive
condition (C1), then

(m) problem (2.1), (2.3), (2.4) has at least one solution for each g ∈ Y3;
(n) the number n3g of solutions of (2.1), (2.3), (2.4) is finite, constant, and different from

zero on each component of the set Y3−R3b (for all g belonging to the same component
of Y3−R3b).

Proof. (m) It is sufficient to prove the surjectivity of the mapping F3 : X3 → Y3. By Lemma
3.1, we can write

F3 =A3 +N3 = C3 +
(
T3 +N3

)
, (4.7)

where C3 : X3 → Y3 is a linear homeomorphism from X3 onto Y3 and T3 +N3 : X3 → Y3 is
a completely continuous operator. Then the operator

C−1
3 F3 = I +C−1

3

(
T3 +N3

)
: X3 −→ X3 (4.8)

is completely continuous and condensing (see [12, page 496]). The set Σ3 =D3b is the set
of all points u∈ X3 where C−1

3 F3, as well as F3, is not locally invertible.
Denote S1 ⊂ X3 a bounded set. Then C3(S1)=: S is bounded in Y3, and by Lemma 3.4,

F−1
3 (S)= F−1

3 (C3(S1))= (C−1
3 ◦F3)−1(S1) is a bounded set in X3. Thus, the operator C−1

3 ◦
F3 is coercive.

Now we show that condition (i) implies the conditions from [8, Theorem 3.2, Corol-
lary 3.3, and Remark 3.1] for F(u)= C−1

3 ◦F3(u) and C(u)=G(u)= u, u∈ X3.
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In fact, as C−1
3 ◦F3(u)= ku if and only if F3(u)= kC3(u), we get for k < 0,

C3u+ (1− k)−1[A3u−C3u+N3u
]= 0, (4.9)

where (1− k)−1 ∈ (0,1).
In case (α1), there is a constant K > 0 such that for all solutions u∈ X3 of (4.9),

‖u‖(1+α)/2,1+α,Q ≤ K , (4.10)

and in case (α2),

‖u‖(2+α)/2,2+α,Q ≤ K. (4.11)

Furthermore, by the same method as in Lemma 3.4, we get the estimation

‖u‖X3 < K1, K1 > 0, (4.12)

for all solutions u ∈ X3 of C−1
3 ◦ F3u = ku. Hence, we get the surjectivity of F3 and thus

(m).
(n) From Theorem 4.4(h) and the surjectivity of F3, it follows that there is n3g �= 0.

This finishes the proof of Theorem 4.6. �
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