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This paper studies, in a partial but concise manner, approximate solutions of equations
defined by complex spherical multiplier operators. The approximations are from native
spaces embedded in Sobolev-type spaces and derived from the use of positive definite
functions to perform spherical interpolation.

1. Introduction

Let Ω2q be the unit sphere in Cq, q ≥ 2. If the usual inner product between z and w in Cq

is denoted by 〈z,w〉, then

Ω2q =
{
z ∈ Cq : 〈z,z〉 = 1

}
. (1.1)

This paper is concerned with approximate solutions of an equation of the form

T( f )= g, (1.2)

in which T : L2(Ω2q)→ L2(Ω2q) is a spherical multiplier operator. Ideally, the domain DT

of T should contain complex spherical harmonics up to a certain degree. The term har-
monic refers to a function of q complex variables belonging to the kernel of the Laplacian

∆(2q) := 4
q∑
j=1

∂2

∂zj∂z j
, z ∈ Cq. (1.3)

A complex spherical harmonic is then the restriction to Ω2q of a harmonic polynomial of
bidegree (m,n). A polynomial has bidegree (m,n) when it is homogeneous of degree m
with respect to z ∈ Cq and homogeneous of degree n with respect to z.

To better explain what a multiplier operator is in our context, we need to introduce
some notation. We will write {

Y
j
m,n : j = 1, . . . ,d(m,n)

}
(1.4)
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to denote a fixed orthonormal basis for �m,n(Ω2q), the space of complex spherical har-
monics of bidegree (m,n). Orthonormality refers to the usual inner product 〈·,·〉2 of
L2(Ω2q), that is,

〈 f ,g〉2 :=
∫
Ω2q

f (z)g(z)dσq(z), f ,g ∈ L2(Ω2q
)
, (1.5)

in which dσq denotes the Lebesgue measure over Ω2q so normalized that∫
Ω2q

dσq(z) := ωq, (1.6)

the surface measure of Ω2q.
Every function f of L2(Ω2q) has a Fourier-type expansion in the form

f ∼
∑

m,n∈Z+

d(m,n)∑
j=1

f̂m,n( j)Y
j
m,n, f̂m,n( j) := 〈 f ,Y

j
m,n
〉

2. (1.7)

The condensed expansion of f is given by

f ∼
∑

m,n∈Z+

sm,n( f ), sm,n( f ) :=
d(m,n)∑
j=1

f̂m,n( j)Y
j
m,n. (1.8)

A complex spherical multiplier operator T is then an operator

T : L2(Ω2q
)−→ L2(Ω2q

)
, (1.9)

characterized by the following property: there exists a double-indexed sequence
{cm,n}m,n∈Z+ of complex numbers, the spherical symbol, such that cm,n = cn,m, m,n ∈ Z+,
and

T̂( f )m,n( j)= cm,n f̂m,n( j), f ∈ L2(Ω2q
)
, j = 1, . . . ,d(m,n), m,n∈ Z+. (1.10)

In particular, if T is a spherical multiplier operator, then

T
(
Y
j
m,n
)= cm,nY

j
m,n, j = 1, . . . ,d(m,n), m,n∈ Z+. (1.11)

Henceforth, unless stated otherwise, the letter T will denote a spherical multiplier opera-
tor associated with spherical symbol {cm,n}m,n∈Z+ .

The approximations in this paper will take place in spaces constructed from a fixed
basis function K : {z ∈ C : |z| ≤ 1} �→ C having an expansion in the form (see [9])

K(z)=
∑

m,n∈Z+

a
q
m,n(K)P

q−2
m,n (z), a

q
m,n(K)≥ 0, K(1) <∞. (1.12)

The function P
q−2
m,n represents the disk polynomial given by

P
q−2
m,n
(
reiθ

)= r|m−n|ei(n−m)θP
(q−2,|m−n|)
m∧n (2r2− 1), z = reiθ , (1.13)
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where P
(q−2,|m−n|)
m∧n is the Jacobi polynomial of degreem∧n associated with the pair (q− 2,

|m− n|) and so normalized that P
(q−2,|m−n|)
m∧n (1) = 1. Details about disk polynomials can

be found in [1, 4]. For now, we mention the addition formula for disk polynomials

P
q−2
m,n
(〈z,w〉)= ωq

d(m,n)

d(m,n)∑
j=1

Y
j
m,n(z)Y

j
m,n(w), z,w ∈Ω2q. (1.14)

The basis function K is assumed to be smooth with respect to T in the following sense:∑
m,n∈Z+

a
q
m,n(K)

∣∣cm,n
∣∣2
<∞. (1.15)

Among other things, such condition allows us to use K to construct spaces where (1.2)
makes sense and has solutions. In addition, we have the basis function given by

KT(z) :=
∑

m,n∈Z+

a
q
m,n(K)

∣∣cm,n
∣∣2
P
q−2
m,n (z), a

q
m,n(K)

∣∣cm,n
∣∣2 ≥ 0, KT(1) <∞, (1.16)

to be used in Section 3.
We will approximate the solutions f of (1.2) by functions of the form

s f =
N∑
j=1

cj
(
δj ◦Tw

)
K
(〈·,w〉), w ∈Ω2q, cj ∈ C. (1.17)

In this equation,

δj(h) := h(wj
)
, h∈ L2(Ω2q

)
, j = 1, . . . ,N , (1.18)

where the points w1, . . . ,wN are distinct over Ω2q. The notation (δj ◦Tw)K(〈·,w〉) means
that δj ◦T is acting on the function

w ∈Ω2q �−→ K
(〈·,w〉). (1.19)

If {δ1, . . . ,δN} is linearly independent and f is in an appropriate space, then we will show
that s f is the unique function in the space

span
{(
δj ◦Tw

)
K
(〈·,w〉) : j = 1, . . . ,N

}
(1.20)

that is a solution of the interpolation(
δj ◦T

)
(w)= (δj ◦T)( f ), j = 1, . . . ,N. (1.21)

Assuming additional smoothness conditions on T and on the pointsw1, . . . ,wN , we will
establish error estimates for the approximation of solutions of (1.2) by s f in the norm of
spaces of Sobolev-type in which the native spaces are continuously embedded.

We would like to observe that the approach taken here is known (see [3, 5, 11]). What
makes a difference here is that our paper refines and details some ideas presented in other
sources, putting them into the more general complex setting. In addition, estimates not
considered until now are investigated.
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2. Native spaces

In this section, we briefly discuss native spaces associated with sequences and functions.
They are Hilbert spaces where the sequences and functions act as a generalized repro-
ducing kernel. For instance, we will see in Section 3 that a spherical multiplier operator
is surjective when its domain and image are appropriate native spaces in L2(Ω2q). Native
spaces in the real setting were considered in [6, 7].

The native space associated with a complex sequence β := {bm,n}m,n∈Z+ is

�β := { f ∈ L2(Ω2q
)

: ‖ f ‖β <∞, sk,l( f )= 0, (k, l) 
∈ Aβ
}

, (2.1)

in which

Aβ := {(k, l)∈ Z2
+ : bk,l 
= 0

}
,

‖ f ‖2
β := 1

ωq

∑
(m,n)∈Aβ

d(m,n)∣∣bm,n
∣∣ ∥∥sm,n( f )

∥∥2
2.

(2.2)

It is very easy to see that ‖ · ‖β is a norm obtainable from the inner product

〈 f ,g〉β := 1
ωq

∑
(m,n)∈Aβ

d(m,n)∣∣bm,n
∣∣ d(m,n)∑

j=1

f̂m,n( j)ĝm,n( j), f ,g ∈�β. (2.3)

In addition, we have the following result.

Theorem 2.1. The space �β possesses these properties:

(i) �m,n(Ω2q)⊆�β if and only if (m,n)∈ Aβ;
(ii) (�β,〈·,·〉β) is a Hilbert space;

(iii) the space span{Y j
m,n : j = 1, . . . ,d(m,n), (m,n)∈Aβ} is dense in �β.

Proof. (i) If (m,n)∈ Aβ, then

sk,l
(
Y
j
m,n
)=

Y
j
m,n, (k, l)= (m,n),

0, (k, l) 
= (m,n),
j = 1, . . . ,d(m,n). (2.4)

Hence,

∥∥Y j
m,n
∥∥2
β =

d(m,n)
ωq
∣∣bm,n

∣∣ , sk,l
(
Y
j
m,n
)= 0, (k, l) 
∈Aβ. (2.5)

Thus, �m,n(Ω2q)⊂�β. The converse is immediate.
(ii) If 〈 f , f 〉β = 0 for some f ∈�β, then sm,n( f ) = 0, (m,n) ∈ Aβ. Since sm,n( f ) = 0,

(m,n) 
∈ Aβ, by definition, it follows that sm,n( f )= 0 for all m and n. The linear indepen-

dence of the set {Y j
m,n : j = 1, . . . ,d(m,n),m,n∈ Z+} now implies that

f̂m,n( j)= 0, j = 1, . . . ,d(m,n), m,n∈ Z+, (2.6)
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that is, f = 0. The other properties needed here are standard and require the following
two facts: (L2(Ω2q),〈·,·〉2) is a Hilbert space and the mapping f ∈ L2(Ω2q) �→ sm,n( f )∈
L2(Ω2q) is a linear operator.

(iii) It suffices to use (ii) and a known result on total sets in Hilbert spaces (see [4,
page 169]). �

Native spaces are continuously imbedded in (�(Ω2q),‖ · ‖∞).

Theorem 2.2. If |β| := {|bm,n|}m,n∈Z+ is summable, then �β is a subspace of �(Ω2q). In
addition, there exists a positive constant C0, not depending on f , such that

‖ f ‖∞ ≤ C0‖ f ‖β, f ∈�β. (2.7)

Proof. It suffices to show that the condensed expansion (1.8) of a function f in �β is
absolutely convergent. To do that, we use the Cauchy-Schwarz inequality and the addition
formula for spherical harmonics to obtain

 ∑
m,n∈Z+

∣∣sm,n( f )(z)
∣∣2

=
 ∑

(m,n)∈Aβ

∣∣sm,n( f )(z)
∣∣


2

=
∑

(m,n)∈Aβ

d(m,n)∑
j=1

(∣∣bm,n
∣∣ωq)1/2

d(m,n)1/2

∣∣Y j
m,n(z)

∣∣ d(m,n)1/2(∣∣bm,n
∣∣ωq)1/2

∣∣ f̂m,n( j)
∣∣

≤
∑

(m,n)∈Aβ

∣∣bm,n
∣∣ωq

d(m,n)

d(m,n)∑
j=1

∣∣Y j
m,n(z)

∣∣2 ∑
(m,n)∈Aβ

d(m,n)
ωq
∣∣bm,n

∣∣ d(m,n)∑
j=1

∣∣ f̂m,n( j)
∣∣2

≤
 ∑
m,n∈Z+

∣∣bm,n
∣∣
 1
ωq

∑
(m,n)∈Aβ

d(m,n)∣∣bm,n
∣∣ ∥∥sm,n( f )

∥∥2
2


= C2

0‖ f ‖2
β, z ∈Ω2q,

(2.8)

in which C2
0 =

∑
m,n∈Z+

|bm,n| <∞. �

Corollary 2.3. If |β| is summable and z ∈Ω2q, then the point-evaluation functional δz
given by δz( f )= f (z), f ∈�β, is continuous.

3. Multiplier operators and native spaces

This section contains technical results to be used later and examples of multiplier opera-
tors. In particular, we establish a setting where (1.2) has a unique solution.
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We begin recalling the concept of spherical convolution. If K is as in (1.12) and such
that a

q
m,n(K)= aqn,m(K), then the spherical convolution operator with K is given by

ΨK ( f ) :=
∫
Ω2q

K
(〈z,·〉) f (z)dσq(z), f ∈ L2Ω2q. (3.1)

The addition formula for disk polynomials and the Fubini-Tonellli’s theorem (see [2,
page 223]) imply that ΨK is a multiplier operator with spherical symbol

a
q
m,n(K)ωq
d(m,n)

, m,n∈ Z+. (3.2)

More information about this operator, including a complex version of the Funk-Hecke
formula, can be found in [8].

Next, we explore the native space associated with a function K as in (1.12). When
the sequence β in the definition of native space is {aqm,n(K)}m,n∈Z+ , we write �K :=�β,
‖ · ‖K := ‖·‖β and AK := Aβ. An analogous remark applies to basis function KT .

Theorem 3.1. Let T be a multiplier operator andw a fixed element of Ω2q. IfK is a function
as in (1.12) and obeying (1.15), then functions

z ∈Ω2q �−→ K
(〈z,w〉), z ∈Ω2q �−→ Tw

(
K〈z,w〉), z ∈Ω2q �−→ Tz

(
K〈z,w〉)

(3.3)

belong to �K .

Proof. Write g(z)= K(〈z,w〉), z ∈Ω2q. We obtain

ĝm,n( j)= a
q
m,n(K)ωq
d(m,n)

Y
j
m,n(w), j = 1, . . . ,d(m,n), m,n∈ Z+. (3.4)

The addition formula yields

∥∥sm,n(g)
∥∥2

2 =
d(m,n)∑
j=1

∣∣ĝm,n( j)
∣∣2 = a

q
m,n(K)2ω2

q

d(m,n)2

d(m,n)∑
j=1

∣∣Y j
m,n(w)

∣∣2

= a
q
m,n(K)2ωq
d(m,n)

, m,n∈ Z+.

(3.5)

Hence,

‖g‖2
K =

∑
(m,n)∈AK

d(m,n)

a
q
m,n(K)ωq

a
q
m,n(K)2ωq
d(m,n)

=
∑

(m,n)∈AK
a
q
m,n(K) <∞. (3.6)
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The proofs in the other two cases are very much alike. We include the details for the
function h(z)= TzK(〈z,w〉), z ∈Ω2q. As above

ĥm,n( j)= a
q
m,n(K)ωq
d(m,n)

cm,nY
j
m,n(w), j = 1,2, . . . ,d(m,n), m,n∈ Z, (3.7)

∥∥sm,n(h)
∥∥2

2 =
d(m,n)∑
j=1

∣∣ĥm,n( j)
∣∣2 = a

q
m,n(K)2ωq
d(m,n)

∣∣cm,n
∣∣2

, m,n∈ Z. (3.8)

Thus,

‖h‖2
K =

∑
(m,n)∈AK

d(m,n)

a
q
m,n(K)ωq

a
q
m,n(K)2ωq
d(m,n)

∣∣cm,n
∣∣2 =

∑
(m,n)∈AK

a
q
m,n(K)

∣∣cm,n
∣∣2
<∞. (3.9)

Finally, note that if (k, l) 
∈ AK , then sk,l(g)= 0 and sk,l(h)= 0. �

Theorem 3.2. Let T and K be as in the previous theorem. Then TzTw(K〈z,w〉) defines a
uniformly convergent series with sum KT(〈z,w〉).

Proof. For z,w ∈Ω2q, the addition formula implies that

TzTwK
(〈z,w〉)∼ ∑

m,n∈Z+

a
q
m,n(K)

∣∣cm,n
∣∣2
P
q−2
m,n
(〈z,w〉). (3.10)

Condition (1.15) completes the proof. �

Below, we investigate some connections between the native spaces of K and KT . In
particular, we present a setting in which T becomes surjective, a condition that guarantees
the existence of solutions of the equation T( f ) = g. This seems to be forgotten in the
real setting.

Theorem 3.3. Let T be a multiplier operator and K as described in (1.12). Then �KT ⊆
T(�K ).

Proof. Let g ∈�KT
. The function f ∈ L2(Ω2q) with Fourier coefficients given by

f̂m,n( j)=

ĝm,n( j)
cm,n

, (m,n)∈AKT ,

0, (m,n) 
∈AKT ,
(3.11)

satisfies

sm,n( f )=

sm,n(g)
cm,n

, (m,n)∈AKT ,

0, (m,n) 
∈AKT .
(3.12)
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Consequently,

∑
(m,n)∈AK

d(m,n)

a
q
m,n(K)

∥∥sm,n( f )
∥∥2

2 =
∑

(m,n)∈AKT

d(m,n)

a
q
m,n(K)

∣∣cm,n
∣∣2

∥∥sm,n(g)
∥∥2

2

= ωq‖g‖2
KT
<∞,

(3.13)

that is, ‖ f ‖K <∞. Since the definition of f reveals that sm,n( f )= 0, (m,n) 
∈AK , it is now
clear that f ∈�K . Thus, g = T( f ). In addition, the Fourier series of g and T( f ) coincide
in L2(Ω2q). �

In some situations, the functions in the space �K need to have some desirable addi-
tional smoothness. Theorem 3.4 below reveals how one can substitute that space by an-
other one composed of smoother functions and not too much different from the original
space. It has to do with the composition ΨK ◦K(〈·,w〉) for some w ∈Ω2q.

Theorem 3.4. Let K and ΨK be as in Theorem 3.1. If w ∈Ω2q, then the function

z ∈Ω2q �−→ΨK ◦K
(〈·,w〉)(z) (3.14)

is of form K1(〈·,w〉), where K1 is representable as in (1.12). In addition, K1 obeys (1.15) if
K does.

Proof. Using the additional formula and the orthogonality of spherical harmonics, we
obtain

ΨK
(
K
(〈·,w〉)(z)

)= ∫
Ω2q

K
(〈ζ ,z〉)K(〈ζ ,w〉)dσq(ζ)

=
∑

m,n∈Z+

a
q
m,n(K)

∫
Ω2q

K
(〈ζ ,z〉)Pq−2

m,n
(〈ζ ,w〉)dσq(ζ)

=
∑

m,n∈Z+

a
q
m,n(K)ωq
d(m,n)

d(m,n)∑
j=1

ΨK
(
Y
j
m,n
)
(z)Y

j
m,n(w)

=
∑

m,n∈Z+

(
a
q
m,n(K)ωq
d(m,n)

)2 d(m,n)∑
j=1

Y
j
m,n(z)Y

j
m,n(w)

=
∑

m,n∈Z+

a
q
m,n(K)2ωq
d(m,n)

P
q−2
m,n
(〈z,w〉) := K1

(〈z,w〉), z ∈Ω2q.

(3.15)

It follows that K1 has an expansion as in (1.12) because

∑
m,n∈Z+

a
q
m,n(K)ωq
d(m,n)

<∞, lim
m,n→∞a

q
m,n(K)= 0. (3.16)

A similar argument resolves the last statement of the theorem. �

The function ΨK (K(〈·,w〉)) appearing above is frequently called the spherical convo-
lution of K by itself and it is denoted by K ∗K . Although AK∗K = AK , the spaces �K∗K
and �K are usually different.
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For future use, we mention the series representation of KT ∗KT(〈·,w〉):

KT ∗KT
(〈·,w〉)= ∑

m,n∈Z+

a
q
m,n(K)2ωq
d(m,n)

∣∣cm,n
∣∣4
P
q−2
m,n
(〈·,w〉), w ∈Ω2q. (3.17)

4. Native spaces and Sobolev spaces

We will work with estimates in the spaces �K and other spaces containing them. Among
such spaces are certain Sobolev-type spaces on Ω2q which we now define.

Henceforth, −λm,n will denote the sole eigenvalue of the restriction of the Laplace-
Beltrami operator to the space �m,n(Ω2q) while λ will denote the double-indexed se-
quence {λm,n}m,n∈Z+ . Given a real number µ and a real sequence α := {αm,n}m,n∈Z+ satis-
fying

1 +αm,n ≤ Cα
(
1 + λm,n

)
, m,n∈ Z+ (4.1)

for some positive constant Cα > 0, the Sobolev-type space associated with α and µ is the
space

�µ(α) := { f ∈ L2(Ω2q
)

: ‖ f ‖α,µ <∞
}

, (4.2)

in which

‖ f ‖2
α,µ :=

∑
m,n∈Z+

(
1 +αm,n

)µ∥∥sm,n( f )
∥∥2

2. (4.3)

Since λm,n = (m+n)(m+n+ 2q− 2), it is not surprising at all that the following equal-
ity of Sobolev-type spaces holds. This explains why some authors use the sequence δ in-
stead of λ in the above definition.

Theorem 4.1. If δ := {m+n}m,n∈Z+ , then �2µ(δ)=�µ(λ), µ∈R.

Proof. Analyzing the graphs of the functions fq : [0,∞)→R given by

fq(x)= x2 + (2q− 2)x+ 1
(1 + x)2

, q = 2,3, . . . , (4.4)

we obtain the inequalities

1≤ fq(x)≤ q

2
. (4.5)

Since fq(m+n)= (1 + λm,n)(1 +m+n)−2, m,n∈ Z+, it follows that

(1 +m+n)2 ≤ (1 + λm,n
)≤ q

2
(1 +m+n)2, m,n∈ Z+. (4.6)

Hence, there is a positive constant K := K(µ,q) such that

(1 +m+n)2µ ≤ (1 + λm,n
)µ ≤ K(1 +m+n)2µ, µ∈R. (4.7)

The assertion of the theorem follows. �
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Next, we will consider spherical multiplier operators possessing polynomial decay. For
such operators, it is possible to visualize a Sobolev-type space setting where (1.2) makes
sense and has solutions. This additional assumption on the operators is not as incon-
venient as it seems because all important examples considered here and elsewhere have
some decay.

A spherical multiplier operator T is pseudodifferential of order ν∈R if there exist pos-
itive constants c and C such that

c
(
1 + λm,n

)ν ≤ ∣∣cm,n
∣∣2 ≤ C(1 + λm,n

)ν
, m,n∈ Z+. (4.8)

Theorem 4.2. LetK be a function as in (1.12) and obeying (1.15). If T is pseudo-differential
of order ν then �K ⊆�ν(λ).

Proof. By using inequality (4.8) and condition (1.12), it is not hard to see that there exists
a constant C(ν,q) such that

(
1 + λm,n

)ν ≤ C(ν,q)
d(m,n)

a
q
m,n(K)ωq

, (m,n)∈ AK. (4.9)

Hence,

‖ f ‖2
λ,ν ≤ C(ν,q)

∑
(m,n)∈AK

d(m,n)

a
q
m,n(K)ωq

∥∥sm,n( f )
∥∥2

2 = C(ν,q)‖ f ‖2
K , f ∈�K . (4.10)

The proof is complete. �

The reader may verify that the inclusion in Theorem 4.2 becomes an equality when
a
q
m,n(K) > 0, m,n∈ Z+, and cm,n 
= 0, m,n∈ Z+.

Theorem 4.3 below establishes a Sobolev-type space setting for solving (1.2). A weaker
version of part (ii) was proved in [11]. The setting there was the real one. The proof
presented here is simpler.

Theorem 4.3. Let T be a pseudodifferential of order ν, α a sequence satisfying (4.1), and
µ∈R. The following assertions hold:

(i) if µ≥ ν, there exists a constant C(α,µ,T) such that∥∥T( f )
∥∥
α,µ−ν ≤ C(α,µ,T)‖ f ‖λ,µ, f ∈�µ(λ); (4.11)

in particular, T(�µ(λ))⊆�µ−ν(α);
(ii) if µ≥ 0, there exists a constant c(α,µ,T) such that

‖ f ‖α,µ ≤ c(α,µ,T)
∥∥T( f )

∥∥
λ,µ−ν, f ∈�µ(α). (4.12)

Proof. (i) Let f ∈�α(λ). Due to (4.1) and (4.8), we see that

∣∣cm,n
∣∣2(

1 +αm,n
)µ−ν ≤ ∣∣cm,n

∣∣2
C
µ−ν
α
(
1 + λm,n

)µ−ν ≤ CCµ−ν
α
(
1 + λm,n

)µ
, m,n∈ Z+.

(4.13)
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Hence, ∥∥T( f )
∥∥2
α,µ−ν =

∑
m,n∈Z+

(
1 +αm,n

)µ−ν∣∣cm,n
∣∣2∥∥sm,n( f )

∥∥2
2

≤ CCµ−ν
α

∑
m,n∈Z+

(
1 + λm,n

)µ∥∥sm,n( f )
∥∥2

2.
(4.14)

The constant C(α,µ,T) in the statement (i) satisfies C(α,µ,T)2 = CCµ−ν
α .

(ii) It suffices to adapt the proof of (i) using the inequalities

(
1 +αm,n

)µ ≤ Cµα(1 + λm,n
)µ ≤ C

µ
α

c

(
1 + λm,n

)µ−ν∣∣cm,n
∣∣2

(4.15)

instead. The constant c(α,µ,T) satisfies cc(α,µ,T)2 = Cµα. �

We close the section mentioning without proof a version of Theorem 4.3 which does
not involve the condition µ ≥ ν. The sequence α needs to be replaced with λ. Part (ii)
holds even when ν is nonpositive.

Theorem 4.4. Let T be a pseudodifferential operator of order ν and µ ∈ R. The following
assertions hold:

(i) there exist a positive constant C(T) such that∥∥T( f )
∥∥
λ,µ−ν ≤ C(T)‖ f ‖λ,µ, f ∈�µ(λ); (4.16)

in particular, T(�µ(λ))⊆�µ−ν(λ);
(ii) there exists a positive constant c(T) such that

‖ f ‖λ,µ ≤ c(T)
∥∥T( f )

∥∥
λ,µ−ν, f ∈�µ(λ). (4.17)

5. Approximate solutions

In this section, we describe the construction of approximate solutions of the equation
T( f ) = g. Throughout the section, T will be a multiplicative operator and K will be a
function as described in (1.12) and obeying (1.15).

Given a Hilbert space (�, [[·,·]]), a closed subspace V , and u∈�, we will denote by
p(u,V) the unique element of V satisfying [[u− p(u,V),v]]= 0, v ∈V . Such an element
satisfies ∣∣[[u− v]]

∣∣2 = ∣∣[[u− p(u,V)]]
∣∣2

+
∣∣[[v− p(u,V)]]

∣∣2
, v ∈V , (5.1)

in which |[[·]]| denotes the norm induced by [[·,·]].
If W = {w1, . . . ,wN} is a subset of Ω2q, we define

VW := span
{(
δj ◦Tw

)
K
(〈·,w〉) : 1≤ j ≤N},

VWT := span
{
δj
(
KT
(〈·,w〉)) : 1≤ j ≤N}. (5.2)

Due to Theorem 3.2, VW and VWT are subspaces of �K and �KT , respectively. They
are obviously closed.
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The interpolatory properties of the spaces defined above are collected in the follow-
ing result.

Theorem 5.1. Let W = {w1, . . . ,wN } be a subset of Ω2q such that {δk ◦T : k = 1, . . . ,N} is
linearly independent. The following assertions hold:

(i) if f ∈�K , then s= p( f ,VW ) is the unique element of VW satisfying

(
δj ◦T

)
(s)= (δj ◦T)( f ), j = 1, . . . ,N ; (5.3)

(ii) if g ∈�KT , then s= p(g,VWT ) is the unique element of VWT satisfying

δj(s)= g
(
wj
)
, j = 1, . . . ,N ; (5.4)

(iii) if g ∈�KT , f ∈�K , and g = T( f ), then T(p( f ,VW ))= p(g,VWT ).

Proof. (i) Let f ∈�K . Due to Corollary 2.3, we know that every δj belongs to �∗
K , the

dual of �K . Theorem 3.2 guarantees that the interpolation matrix

((
δi ◦Tz

)(
δj ◦Tw

)
K
(〈z,w〉))i, j=1,...,N (5.5)

is well defined. We now shows that it is invertible. The quadratic form Q defined by the
matrix in (5.5) can be written, with the help of the addition formula for spherical har-
monics and of Theorem 3.3, in the form

Q =
N∑
µ=1

N∑
ν=1

cµcν
(
δµ ◦Tz

)(
δν ◦Tw

)
K
(〈z,w〉)

=
N∑
µ=1

N∑
ν=1

cµcν
(
δµ ◦Tz

)(
δν ◦Tw

) ∑
m,n∈Z+

a
q
m,n(K)P

q−2
m,n
(〈z,w〉)

=
∑

m,n∈Z+

a
q
m,n(K)ωq
d(m,n)

d(m,n)∑
j=1

∣∣∣∣∣
N∑
µ=1

cµ
(
δµ ◦T

)(
Y
j
m,n
)∣∣∣∣∣

2

.

(5.6)

Since the coefficients of this series are nonnegative, the equality Q = 0 occurs if and only
if

N∑
µ=1

cµ
(
δµ ◦T

)(
Y
j
m,n
)= 0, j = 1, . . . ,d(m,n), m,n∈ Z+. (5.7)

However, the fundamentality of {Y j
m,n : j = 1, . . . ,d(m,n), (m,n)∈ AK} in �K (Theorem

2.1) reveals that (5.7) is equivalent to

N∑
µ=1

cµ
(
δµ ◦T

)= 0, j = 1, . . . ,d(m,n), m,n∈ Z+. (5.8)
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Since {δk ◦ T : k = 1, . . . ,N} is linearly independent, (5.8) yields cµ = 0, µ = 1, . . . ,N . It
follows that (5.3) has a unique solution, say s0. On the other hand, by (3.7),

〈
K
(〈·,w〉),Y j

m,n
〉

2 =
a
q
m,n(K)ωq
d(m,n)

Y
j
m,n(w), w ∈Ω2q, j = 1, . . . ,d(m,n), m,n∈ Z+.

(5.9)

Hence, by the definition of inner product in �K ,

0= (δj ◦T)( f − s0)(w)= (δj ◦T)
( ∑

(m,n)∈AK

d(m,n)∑
j=1

〈
f − s0,Y

j
m,n
〉

2Y
j
m,n(w)

)

= (δj ◦Tw
)( ∑

(m,n)∈AK

d(m,n)

a
q
m,n(K)ωq

d(m,n)∑
j=1

〈
f − s0,Y

j
m,n
〉

2

〈
Y
j
m,n,K

(〈·,w〉)〉2

)

= (δj ◦Tw
)〈
f − s0,K

(〈·,w〉)〉K
= 〈 f − s0,

(
δj ◦Tw

)
K
(〈·,w〉)〉K , j = 1, . . . ,N.

(5.10)

Thus, 〈 f − s0,h〉K = 0, h∈ VW . Therefore, by (5.1), s0 = p( f ,VW ). In other words, 〈 f −
s0,h〉K = 0, h∈VW , that is, s0 = p( f ,VW ).

(ii) Due to its similarity with the proof of (i), it will be omitted.
(iii) Using (i) and the hypothesis, we have that

δj
(
T
(
p
(
f ,VW

)))= δj(T( f )
)= δj(g)= g(wj

)
, j = 1, . . . ,N. (5.11)

Theorem 3.3 allows us to write

T
(
p
(
f ,VW

))= T( N∑
k=1

dk
(
δµ ◦Tw

)
K
(〈·,w〉))= N∑

k=1

dkδµ
(
KT
(〈·,w〉))∈VWT , (5.12)

with dk ∈ C, k = 1, . . . ,N . By (ii), p(g,VWT ) is the unique solution w of VWT with the
property that δj(w)= g(wj), j = 1, . . . ,N . It follows that T(p( f ,VW ))= p(g,VWT ). �

Theorem 5.1 still holds when we substitute the linear independence hypothesis of the
set {δk ◦T : k = 1, . . . ,N} by the following pair of conditions: cm,n 
= 0, (m,n) ∈ AK , and
{δk : k = 1, . . . ,N} is linearly independent. The first one determines that T is an isomor-
phism between �K and �KT .

6. Approximations

In this section, T , K , and KT are as in the previous section and g is a fixed element in
�KT . We obtain error estimates for the approximation of a solution f ∈�K of (1.2) by a
function of the form p( f ,VW ), for some W , at least in the case in which T is pseudodif-
ferential. Since �K can be embedded in Sobolev-type spaces (Theorem 4.2), the estimates
are obtained in the norm of the latter.

Corollary 2.3 shows that if W = {w1, . . . ,wN } ⊂Ω2q, then

�W := span
{
δj : 1≤ j ≤N} (6.1)
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is a subspace of �∗
K . In particular, it makes sense to consider the distance between δ ∈�∗

K

and �W given by

d∗
(
δ,�W

)
:= inf

τ∈�W

‖δ− τ‖�∗
K

, (6.2)

in which ‖ · ‖�∗
K

denotes the usual norm of �∗
K .

The preliminary estimates are given bellow.

Theorem 6.1. Let f ∈�K be a solution of (1.2) and Y = {w1, . . . ,wN } a subset of Ω2q. As-
sume that {δµ ◦ T : µ = 1, . . . ,n} is linearly independent and consider p( f ,VW ) and
p(g,VWT ), as given by Theorem 5.1. If T is a pseudodifferential of order ν, then

∥∥ f − p
(
f ,VW

)∥∥
λ,ν ≤ c(T)

√
σq
∥∥g − p

(
g,VWT

)∥∥
KT

sup
z∈Ω2q

d∗
(
δz,�W

)
, (6.3)

where c(T) is the constant described in Theorem 4.4.

Proof. By Theorem 5.1, we see that

T
(
f − p

(
f ,VW

))
(z)= δz

(
T( f )−T(p( f ,VW

)))= δz(g − p
(
g,VWT

))
= (δz − δj)(g − p

(
g,VWT

))
, j = 1, . . . ,N.

(6.4)

Hence,

∣∣T( f − p
(
f ,VW

))
(z)
∣∣≤ d∗(δz,�W

)∥∥g − p
(
g,VWT

)∥∥
KT

, z ∈Ω2q. (6.5)

Using this and Theorem 4.4, we obtain

∥∥ f − p
(
f ,VW

)∥∥
λ,ν ≤ c(T)

∥∥T( f − p
(
f ,VW

))∥∥
λ,0

= c(T)
∥∥T( f − p

(
f ,VW

))∥∥
2 ≤ c(T)

√
ωq
∥∥T( f − ( f ,VW

))∥∥∞
≤ c(T)

√
ωq
∥∥g − p

(
g,VWT

)∥∥
KT

sup
z∈Ω2q

d∗
(
δz,�W

)
,

(6.6)

concluding the proof. �

Next, we will search for estimates of the two quantities on the right-hand side of the
inequality in Theorem 6.1. The first one is handled in an easy manner.

Theorem 6.2. Let W = {w1, . . . ,wN} be a subset of Ω2q. Assume that {δk ◦T : k = 1, . . . ,n}
is linearly independent and consider p(g,VWT ), as given by Theorem 5.1(ii). Then the fol-
lowing inequalities hold:

(i) ‖g − p(g,VWT )‖KT ≤ ‖g‖KT , g ∈�KT ;
(ii) ‖g − p(g,VWT )‖KT ≤

√ωq‖g‖KT∗KT supz∈Ω2q
d∗(δz,�W ), g ∈�KT∗KT .
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Proof. The first assertion of the theorem is consequence of (5.1). As for the second, if
g ∈�KT∗KT , we use the Cauchy-Schwarz inequality to obtain∥∥g − p

(
g,VWT

)∥∥2
KT
= 〈g,g − p

(
g,VWT

)〉
KT

= 1
ωq

∑
(m,n)∈AKT

d(m,n)

a
q
m,n(K)

∣∣cm,n
∣∣2

d(m,n)∑
j=1

〈
g,Y

j
m,n
〉

2

〈
Y
j
m,n,g − p

(
g,VWT

)〉
2

≤
 1
ω2
q

∑
(m,n)∈AKT

d(m,n)2(
a
q
m,n(K)

)2∣∣cm,n
∣∣4

d(m,n)∑
j=1

∣∣〈g,Y
j
m,n
〉

2

∣∣2


1/2

×
 ∑
m,n∈Z+

d(m,n)∑
j=1

∣∣〈g − p
(
g,VWT

)
,Y

j
m,n
〉

2

∣∣2

1/2

= ‖g‖KT∗KT
∥∥g − p

(
g,VWT

)∥∥
2, g ∈�KT∗KT .

(6.7)

The procedure used in the proof of Theorem 6.1 yields∥∥g − p
(
g,VWT

)‖2 ≤ √ωq∥∥g − p
(
g,VWT

)∥∥∞
≤ √ωq ∥∥g − p

(
g,VWT

)∥∥
KT

sup
z∈Ω2q

d∗
(
δz,�W

)
. (6.8)

Thus, the inequality follows in the case ‖g − p(g,VWT )‖KT 
= 0. Otherwise, it is trivial. �

The bounding of the second quantity in the inequality of Theorem 6.1 requires a more
intricate argument. We adapt a procedure introduced in [3]. However, a more sophisti-
cated argument involving positive quadratures may be found in [10]. To do that, we need
to deal with the mesh norm of a subset W of Ω2q, that is, the positive number given by

η = η(W) := sup
z∈Ω2q

{
inf
w∈W

d2q
(
Υq(z),Υq(w)

)}
, (6.9)

in which d2q denotes the usual geodesic distance on S2q−1 and Υq stands for the bijective
identification Υq : Ω2q → S2q−1 given by

Υq
(
x1 + iy1, . . . ,xq + iyq

)= (x1, y1, . . . ,xq, yq
)
. (6.10)

In what follows, we will deal with functions in �(Ω2q) and their restrictions to a fi-
nite subset W of Ω2q. The uniform norm of �(Ω2q) will be denoted by ‖ · ‖∞ while the
uniform norm of �(W) will be written as ‖ · ‖W . We will not distinguish between the
functions and their restrictions.

Proposition 6.3. Let W be a subset of Ω2q. If κ is a positive integer at most (2η)−1, then

‖g‖W ≤ ‖g‖∞ ≤ 2‖g‖W , g ∈
κ⊕

k+l=0

�k,l
(
Ω2q

)
. (6.11)
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Proof. The first inequality is obvious. As for the other, let g ∈ ⊕κ
k+l=0�k,l(Ω2q). We can

assume that ‖g‖∞ 
= 0 since otherwise there is nothing to be proved. Pick ζ ∈Ω2q such
that ‖g‖∞ = |g(ζ)|. Using (6.9), we can select a w0 ∈W such that d2q(Υq(ζ),Υq(w0)) ≤
η ≤ 1/2κ. Using the well-known Markov inequality, we deduce that

∣∣∣∣ g(ζ)
‖g‖∞ −

g
(
w0
)

‖g‖∞
∣∣∣∣≤ κd2q

(
Υq(ζ),Υq

(
w0
))≤ 1

2
. (6.12)

It follows that

∣∣∣∣g
(
w0
)

‖g‖∞
∣∣∣∣≥ ∣∣∣∣ g(ζ)

‖g‖∞
∣∣∣∣−∣∣∣∣ g(ζ)

‖g‖∞ −
g
(
w0
)

‖g‖∞
∣∣∣∣≥ 1

2
. (6.13)

Consequently,

1
‖g‖∞ sup

w∈W

∣∣g(w)
∣∣≥ ∣∣g(w0

)∣∣
‖g‖∞ ≥ 1

2
. (6.14)

Thus, ‖g‖∞ ≤ 2‖g‖W , completing the proof of the proposition. �

Corollary 6.4. Let W be a subset of Ω2q. If κ is a positive integer at most (2η)−1, then
the map

h∈
κ⊕

k+l=0

�k,l
(
Ω2q

) ψ�−→ h|W ∈�(W) (6.15)

is a monomorphism.

Lemma 6.5 is purely technical and probably well known. We use {ε1, . . . ,εN} to denote
the canonical basis for CN while {ε∗1 , . . . ,ε∗N} denotes the corresponding dual basis.

Lemma 6.5. Let W = {w1, . . . ,wN} be a subset of Ω2q. Then the dual space of �(W) coin-
cides with span{δj|�(W) : j = 1, . . . ,N}.
Proof. The space CN endowed with its maximum norm is isomorphic to (�(W),‖ · ‖∞)
and the isomorphism is given by

S(g)= (g(w1
)
, . . . ,g

(
wN
))

, g ∈�(W). (6.16)

In particular, the adjoint S∗ of S defines an isomorphism between (CN )∗ and �(W)∗. If
Λ∈�(W)∗, then S∗(Γ)=Λ for some Γ in (CN )

∗
given by

Γ=
N∑
j=1

ajε
∗
j , a1, . . . ,aN ∈ C. (6.17)
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Now, by using the definition of S∗ and direct computation, we obtain

Λ(g)=
( N∑

j=1

ajδj

)
(g), g ∈�(W). (6.18)

Hence, Λ =∑N
j=1 ajδj is an element of span{δj|�(W) : j = 1, . . . ,N}. On the other hand,

if Γ =∑N
j=1 bjδj , b1, . . . ,bN ∈ C, then the functional Λ of (CN )

∗
given by Λ =∑N

j=1 bjε
∗
j

satisfies Γ= S∗(Λ). Thus, Γ∈�(W)∗. �

Theorem 6.6. Let W be a finite subset of cardinality N of Ω2q. If κ is a positive integer at
most (2η)−1 and z ∈Ω2q, then δz can be written as

δz(g)=
N∑
µ=1

cµδµ(g), g ∈
κ⊕

k+l=0

�k,l
(
Ω2q

)
, (6.19)

in which the complex numbers c1, . . . ,cN satisfy
∑N

µ=1 |cµ| ≤ 2.

Proof. The map ψ in Corollary 6.4 is an isomorphism between spaces ⊕κ
k+l=0�k,l(Ω2q)

and ψ(⊕κ
k+l=0�k,l(Ω2q)). Due to Proposition 6.3,

∥∥ψ−1
∥∥= sup

‖ψ(g)‖W≤1

∥∥ψ−1(ψ(g)
)∥∥∞ = sup

‖g‖W≤1
‖g‖∞ ≤ 2, g ∈

κ⊕
k+l=0

�k,l
(
Ω2q

)
. (6.20)

It follows that

ψ∗ : ψ
(⊕κ

k+l=0 �k,l
(
Ω2q

))∗ �−→ (⊕κ
k+l=0 �k,l

(
Ω2q

))∗
(6.21)

is an isomorphism and ‖ψ∗−1‖ = ‖ψ−1‖ ≤ 2. It is now clear that there is a Λ in the space
ψ(⊕κ

k+l=0�k,l(Ω2q))∗ such that ψ∗(Λ) coincides with the restriction of δz to
⊕κ
k+l=0�k,l(Ω2q). Also,

‖Λ‖ = ∥∥ψ∗−1(δz)
∥∥≤ ∥∥ψ∗−1∥∥≤ 2. (6.22)

By the Hahn-Banach theorem, there exists ϑ∈�(W)∗ such that ‖ϑ‖ = ‖Λ‖ and

ϑ
(
ψ(g)

)=Λ
(
ψ(g)

)
, g ∈

κ⊕
k+l=0

�k,l
(
Ω2q

)
. (6.23)

Next, we use Lemma 6.5 to select complex numbers c1, . . . ,cN such that

ϑ
(
ψ(g)

)= N∑
j=1

cjδj
(
ψ(g)

)
, g ∈

κ⊕
k+l=0

�k,l
(
Ω2q

)
. (6.24)
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We observe that
∑N

j=1 |cj| = ‖Λ‖ = ‖ϑ‖ ≤ 2. Finally, noticing that

δj
(
ψ(g)

)= δj(g), g ∈⊕κ
k+l=0�k,l

(
Ω2q

)
(6.25)

and using (6.22), (6.23), and (6.24), we obtain

δz(g)=Λ
(
ψ(g)

)= N∑
j=1

cjδj
(
ψ(g)

)= ( N∑
j=1

cjδj

)
(g), g ∈

κ⊕
k+l=0

�k,l
(
Ω2q

)
. (6.26)

This completes the proof. �

The dual distance (6.2) has the estimate given below.

Theorem 6.7. LetW = {w1, . . . ,wN} be a subset of Ω2q and z ∈Ω2q. If κ is a positive integer
at most (2η)−1, then

d∗
(
δz,�W

)≤ 3

( ∑
m+n>κ

a
q
m,n(K)

∣∣cm,n
∣∣2
)1/2

. (6.27)

Proof. We take δz as in Theorem 6.6 and define c0 =−1, w0 = z and the linear functional

υ :=−δz +
N∑
µ=1

cµδµ =
N∑
µ=0

cµδµ. (6.28)

Corollary 2.3 guarantees that υ∈�∗
KT . The expansion of g as in (1.8) guarantees that

υ(g)=
∑

m+n>κ

υ
(
sm,n(g)

)
, g ∈�KT

. (6.29)

Defining

∑
m+n>κ

∣∣sm,n(g)
(
wM

)∣∣ :=max

{ ∑
m+n>κ

∣∣sm,n(g)
(
wk
)∣∣ : k = 0, . . . ,N

}
, g ∈�KT

, (6.30)

and using the fact that
∑N

k=1 |ck| ≤ 2, we see that

∣∣υ(g)
∣∣≤ ∑

m+n>κ

N∑
k=0

∣∣ck∣∣∣∣sm,n(g)
(
wk

)∣∣= N∑
k=0

∣∣ck∣∣
( ∑
m+n>κ

∣∣sm,n(g)
(
wk

)∣∣)

≤
N∑
k=0

∣∣ck∣∣
( ∑
m+n>κ

∣∣sm,n(g)
(
wM

)∣∣)≤ 3
∑

m+n>κ

∣∣sm,n(g)
(
wM

)∣∣, g ∈�KT
.

(6.31)
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Finally, the Cauchy-Schwartz inequality and the addition formula imply that

d∗
(
δz,�W

)≤ ∥∥∥∥∥δz −
N∑
k=1

ckδk

∥∥∥∥∥
�∗
KT

= sup
‖h‖KT≤1

∣∣υ(h)
∣∣≤ 3 sup

‖h‖KT≤1

{ ∑
m+n>κ

∣∣sm,n(h)
(
wM

)∣∣}

= 3 sup
‖h‖KT≤1


∑

m+n>κ
(m,n)∈AKT

∣∣sm,n(h)
(
wM

)∣∣


≤ 3 sup
‖h‖KT≤1

‖h‖KT

 ∑
m+n>κ

(m,n)∈AKT

a
q
m,n(K)

∣∣cm,n
∣∣2
ωq

d(m,n)

d(m,n)∑
j=1

∣∣Y j
m,n
(
wM

)|2


1/2

≤ 3

( ∑
m+n>κ

a
q
m,n(K)

∣∣cm,n
∣∣2
)1/2

,

(6.32)

completing the proof. �

7. Error estimates in specific cases

It is now evident that it is not possible to further estimate d∗(δz,�W ), unless additional
assumptions on either T or K are made. In this section, we present estimates in the case
when T is pseudodifferential and the sequence {aqm,n(K)}m,n∈Z+ obeys a stronger decay
condition. Throughout the section, T andK are as described at the beginning of Section 5
and W is a finite subset of Ω2q with mesh norm η.

Theorem 7.1. Let κ be a positive integer such that (2η)−1 ∈ (κ,κ+ 1]. Assume that T is a
pseudodifferential of order ν and that a

q
m,n(K)≤D(1 + λm,n)−s−1, m+ n > κ, for some s > ν

and some D > 0. Then, there exists a positive constant C1 = C1(s− ν) such that

∑
m+n>κ

a
q
m,n(K)

∣∣cm,n
∣∣2 ≤ C1η

2(s−ν). (7.1)

Proof. Using the hypotheses and borrowing the notation from (4.7) and (4.8), we have
that

a
q
m,n(K)

∣∣cm,n
∣∣2

≤ CD(1 + λm,n
)ν−s−1

≤ CDK(1 +m+n)2ν−2s−2, m+n > κ.

(7.2)
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Since 2ν− 2s < 0,

∑
m+n>κ

a
q
m,n(K)

∣∣cm,n
∣∣2 ≤

∑
m+n>κ

CDK(1 +m+n)2ν−2s−2

= CDK
∞∑
j=1

( ∑
m+n=κ+ j

(1 +m+n)2ν−2s−2

)

= CDK
∞∑
j=1

(1 + κ+ j)2ν−2s−1 ≤ CDK
∫∞

1
(1 + κ+ t)2ν−2s−1dt

= CDK

2s− 2ν
(2 + κ)2ν−2s ≤ CDK22s−2ν

2s− 2ν
η2s−2ν,

(7.3)

which is the desired inequality. �

Theorem 7.2. Let κ be a positive integer such that (2η)−1 ∈ (κ,κ+ 1]. Assume that T is a
pseudodifferential of order ν and that a

q
m,n(K)≤Dexp(−a(1 +m+n)s),m+n > κ, for some

s > 0 and some positive constants a andD. Then there exists a positive constant C2 = C2(s,a)
such that

∑
m+n>κ

a
q
m,n(K)

∣∣cm,n
∣∣2 ≤


C2e−a(2η)−s , 2ν + 2≤ s,

C2

(
4η+ 1

2η

)2ν−s+1

e−a(2η)−s , s < 2ν + 2≤ s(a+ 1).
(7.4)

Proof. The procedure employed at the beginning of the proof of Theorem 7.1 produces
the inequality

a
q
m,n(K)

∣∣cm,n
∣∣2 ≤ CDKe−a(1+m+n)s(1 +m+n)2ν, m+n > κ. (7.5)

If 2ν− s+ 2≤ 0, then

∑
m+n>κ

a
q
m,n(K)

∣∣cm,n
∣∣2 ≤ CDK

∑
m+n>κ

e−a(1+m+n)s(1 +m+n)s−2

≤ CDK
∫∞

1
e−a(1+κ+t)s(1 + κ+ t)s−1dt

= CDK

as
e−a(2+κ)s ≤ CDK

as
e−a(2η)−s .

(7.6)

Thus, we assume that 2ν− s+ 2 > 0. Certainly,

∑
m+n>κ

a
q
m,n(K)

∣∣cm,n
∣∣2 ≤ CDK

∫∞
1

(1 + κ+ t)2ν+1e−a(1+κ+t)sdt (7.7)
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and we have to handle the integral I in the left-hand side of the inequality. Integrating by
parts we obtain

I =
∫∞

1
(1 + κ+ t)2ν−s+2(1 + κ+ t)s−1e−a(1+κ+t)sdt

= (2 + κ)2ν−s+2

asea(2+κ)s
+

2ν− s+ 2
as

∫∞
1

(1 + κ+ t)2ν−s+1e−a(1+κ+t)sdt

≤ (2 + κ)2ν−s+2

asea(2+κ)s
+

2ν− s+ 2
as(2 + κ)s

∫∞
1

(1 + κ+ t)2ν+1e−a(1+t+κ)sdt

= (2 + κ)2ν−s+2

asea(2+κ)s
+

2ν− s+ 2
as(2 + κ)s

I.

(7.8)

In particular,

I ≤ (2 + κ)2ν−s+2

saea(2+κ)s
+

2ν− s+ 2
sa

I. (7.9)

If s(a+ 1) > 2ν + 2, we further estimate to reach

I ≤D′ (2 + κ)2ν−s+2

asea(2+κ)s
≤ D

′

as
(2 + (2η)−1)2ν−s+1e−a(2η)−s , (7.10)

where D
′ = sa/(s(a+ 1)− 2ν− 2) > 0. If s(a+ 1)= 2ν + 2, the estimate above occurs with

D
′ = 2s/(2s− 1). This completes the proof of the theorem. �

Usually one seeks estimates when the mesh norm is close to zero, that is, when the set
Y is somehow dense on the sphere. If such assumption is added to the hypotheses, the
following version of Theorem 7.2 holds.

Theorem 7.3. Let κ be a positive integer such that (2η)−1 ∈ (κ,κ+ 1]. Assume that T is a
pseudodifferential of order ν and that a

q
m,n(K)≤Dexp(−a(1 +m+n)s),m+n > κ, for some

s∈ (0,2ν + 2) and some positive constants a and D. If

κ >−2 +
(

2ν− s+ 2
sa

)1/s

, (7.11)

then there exists a positive constant C2 such that

∑
m+n>κ

a
q
m,n(K)

∣∣cm,n
∣∣2 ≤ C2

(
4η+ 1

2η

)2ν−s+2

e−a/(2η)s . (7.12)

Proof. It is very easy to see that if κ satisfies (7.11), then (2ν− s+ 2)s−1a−1(2 + κ)−s < 1.
The second half of the proof of Theorem 7.2 now implies that

I ≤ C2
(2 + κ)2ν−s+2

sae(2+κ)sa
, (7.13)

in which C2 is independent of s, a, and κ. The rest follows. �
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The following estimates follow from the results in this and the previous section. They
encompass those in [11] and consider several other situations including that when g ∈
�KT .

Theorem 7.4. Let κ be a positive integer such that (2η)−1 ∈ (κ,κ+ 1]. Assume the notation
and hypotheses of Theorem 7.1. The following assertions hold.

(i) If a
q
m,n(K)≤D(1 + λm,n)−s−1, m+n > κ, for some s > ν and some D > 0, then

∥∥ f − p
(
f ,VW

)∥∥
λ,ν ≤ 3c(T)

√
C1ωqη

s−ν‖g‖KT . (7.14)

If g ∈�KT∗KT , then the inequality above specializes to∥∥ f − p
(
f ,VW

)∥∥
λ,ν ≤ 9c(T)C1ωqη

2(s−ν)‖g‖KT∗KT . (7.15)

(ii) If a
q
m,n(K)≤Dexp(−a(1 +m+n)s),m+n > κ, for some s > 0 and some positive con-

stants a and D, then∥∥ f − p
(
f ,VW

)∥∥
λ,ν

≤


3c(T)

√
C2ωqe−a/2(2η)s‖g‖KT , 2ν + 2≤ s,

3c(T)
√
C2ωq

(
4η+ 1

2η

)ν−(s−1)/2

e−a/2(2η)s‖g‖KT , s < 2ν + 2≤ s(a+ 1).

(7.16)

If g ∈�KT∗KT , the inequality specializes to∥∥ f − p
(
f ,VW )

∥∥
λ,ν

≤


9C(T)C2ωqe−a/(2η)s‖g‖KT∗KT , 2ν + 2≤ s,

9C(T)C2ωq

(
4η+ 1

2η

)2ν−s+1

e−a/(2η)s‖g‖KT∗KT , s < 2ν + 2≤ s(a+ 1).

(7.17)

(iii) If a
q
m,n(K) ≤ Dexp(−a(1 +m+n)s), m + n > κ, for some s ∈ (0,2ν + 1) and some

positive constants a and D, and in addition,

κ≥−2 +
(

2ν− s+ 2
sa

)1/s

, (7.18)

then

∥∥ f − p
(
f ,VW

)∥∥
λ,ν ≤ 3c(T)

√
C2ωq

(
4η+ 1

2η

)ν+1−s/2
e−a/2(2η)s‖g‖KT . (7.19)

If g ∈�KT∗KT , then this inequality specializes to

∥∥ f − p
(
f ,VW

)∥∥
λ,ν ≤ 9c(T)C2ωq

(
4η+ 1

2η

)2ν−s+2

e−a/(2η)s‖g‖KT∗KT . (7.20)
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[3] K. Jetter, J. Stöckler, and J. D. Ward, Error estimates for scattered data interpolation on spheres,
Math. Comp. 68 (1999), no. 226, 733–747.

[4] T. H. Koornwinder, The addition formula for Jacobi polynomials. II: The Laplace type integral rep-
resentation and the product formula, Tech. Report TW 133, Math. Centrum, Afd. Toegepaste
Wisk., Amsterdam, 1972.

[5] Z. Luo and J. Levesley, Error estimates and convergence rates for variational Hermite interpola-
tion, J. Approx. Theory 95 (1998), no. 2, 264–279.

[6] W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite
functions, Approx. Theory Appl. 4 (1988), no. 4, 77–89.

[7] , Multivariate interpolation and conditionally positive definite functions. II, Math. Comp.
54 (1990), no. 189, 211–230.

[8] V. A. Menegatto and C. P. Oliveira, Annihilating properties of convolution operators on complex
spheres, to appear in Anal. Math.

[9] V. A. Menegatto and A. P. Peron, Strict positive definiteness on spheres via disk polynomials, Int.
J. Math. Math. Sci. 31 (2002), no. 12, 715–724.

[10] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Spherical Marcinkiewicz-Zygmund inequalities
and positive quadrature, Math. Comp. 70 (2001), no. 235, 1113–1130.

[11] T. M. Morton and M. Neamtu, Error bounds for solving pseudodifferential equations on spheres
by collocation with zonal kernels, J. Approx. Theory 114 (2002), no. 2, 242–268.

C. P. Oliveira: Instituto de Ciências Exatas, Universidade Federal de Itajubá, Caixa Postal 50, 37500-
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