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We consider a reaction-diffusion system modeling chemotaxis, which describes the situ-
ation of two species of bacteria competing for the same nutrient. We use Moser-Alikakos
iteration to prove the global existence of the solution. We also study the existence of non-
trivial steady state solutions and their stability.
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1. Introduction

Chemotaxis, the oriented movement of cells in response to ambient chemical gradients, is
a prominent feature in the organization of many biological populations. Since the pioneer
work of Keller and Segel [11] to propose mathematical models for chemotaxis, there has
been great interest in modeling chemotaxis and in the mathematical analysis of systems
like the Keller-Segel model. In this paper, motivated by the model in [15], we consider a
revised model discussed in [16], that is,

∂N

∂t
= μNxx −R1(N)b−R2(N)B, 0 < x < 1, t > 0,

∂b

∂t
= (dbx −αbS1(N)Nx

)
x + b

(
ρ1R1(N)− b−B), 0 < x < 1, t > 0,

∂B

∂t
= (DBx −βBS2(N)Nx

)
x +B

(
ρ2R2(N)− b−B), 0 < x < 1, t > 0,

Nx(0, t)= 0, Nx(1, t)= γ(1−N(1, t)
)
, t > 0,

dbx −αbS1(N)Nx = 0, x = 0,1, t > 0,

DBx −βBS2(N)Nx = 0, x = 0,1, t > 0,

N(x,0)=N0(x), b(x,0)= b0(x), B(x,0)= B0(x), 0 < x < 1.

(1.1)
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2 A system modeling chemotaxis

This is the situation of two species of bacteria competing for the same nutrient, where
N(x, t) is the concentration of the nutrient and b(x, t), B(x, t) are the densities of two
competing species of bacteria. Ri(N), i = 1,2, are the consumption rates of the nutrient
per cell. −μNx, −dbx, and −DBx are the random fluxes of N , b, and B, respectively, while
αbS1(N)Nx and βBS2(N)Nx are the chemotactic fluxes of b and B, where μ > 0, d > 0,
D > 0 and α≥ 0, β ≥ 0. For definiteness, we assume that d < D. Functions Si(N), i= 1,2,
the so-called sensitivity rates, are included to indicate that the sensitivity of cells to the
nutrient may vary at different levels of nutrient concentration. When α = 0, β = 0, and
ρi = 1, this model reduces to the model discussed in [16]. But the present model is not
a trivial generalization of the model discussed in [16] because of the appearance of the
chemotactic fluxes of b and B. Due to the lack of monotone structure on the system,
the main tool—the comparison principle—used in [16] does not work here. In [15],
the authors considered a similar model and discussed the situations when there is no
positive steady state. In this paper, we will give sufficient conditions that guarantee the
existence of positive solutions. The method we use here to investigate the existence of
steady states is different from that used in [15]. We also consider some special cases in
which the sufficient conditions we will derive are not satisfied and the systems have no
nontrivial steady states. The boundary conditions represent that the total fluxes of b and
B at the boundary points x = 0 and x = 1 are zero. This is true forN at x = 0, but at x = 1,
N is diffused into the medium. In the adjacent region, N ≡ 1, which must also be an
upper bound for N inside the medium, and therefore we are only interested in solutions
with 0≤N ≤ 1. For this reason, we assume that 0≤N0 ≤ 1 throughout the paper.

From biological and technical considerations, we assume that

Ri(0)= 0, R′i (N) > 0, Si(N) > 0 on [0,∞). (1.2)

The assumptions about Ri guarantee the nonnegativeness of N , b, and B as long as the
initial functions are nonnegative (see [13]). Therefore we will only consider nonnegative
solutions of (1.1).

This paper is organized as follows. In Section 2, we will prove the global existence of
solutions. In Section 3, we will study the existence of steady states and some special cases.

2. Global existence

By standard existence theory, for example, see [3–5, 12], it is not difficult to establish the
local existence of the unique solution (N(x, t),b(x, t),B(x, t)) for 0≤ t < Tmax, where Tmax

is determined by N0, b0, and B0. It is well known that local existence together with L∞ a
priori bounds ensure the global existence of classical solutions. Therefore, to establish the
global existence, we need only to establish a priori estimates for ‖N(·, t)‖L∞ , ‖b(·, t)‖L∞ ,
and ‖B(·, t)‖L∞ . The boundedness of ‖N(·, t)‖L∞ is trivial because we have 0 ≤ N ≤ 1
(in fact, this can be proved directly by using comparison principle). Therefore we need
only to establish the boundedness of ‖b(·, t)‖L∞ , and ‖B(·, t)‖L∞ . This is done by proving
several lemmas. The following general imbedding result will be of use to us.
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Theorem 2.1 (see [10, 2]). Assume that operator � is sectorial in X = Lp(Ω), 1 < p <∞,
where Ω is a bounded smooth domain inRn and X1 =D(�)↩Wm,p(Ω) (where↩ denotes
topological as well as set inclusion) for some integer m≥ 1. Then for 0 < θ < 1,

(i) Xθ↩Wl,q(Ω) if l = 0,1,2, . . . ,m− 1, 1 ≤ q ≤ +∞, where θ > l/m and 1/q > 1/p−
(θm− l)/n;

(ii) Xθ↩Cν(Ω) if 0≤ ν < θm−n/p.

Lemma 2.2. If 1≤ p <∞, and f ≥ 0, g ≥ 0, and h≥ 0, then

( f + g +h)p ≤ 22p−2( f p + g p +hp
)
. (2.1)

Proof. It is well known that if 1≤ p <∞, and a≥ 0, b ≥ 0, then (e.g., see [1])

(a+ b)p ≤ 2p−1(ap + bp
)
. (2.2)

Therefore,

( f + g +h)p ≤ 2p−1(( f + g)p +hp
)≤ 2p−1(2p−1( f p + g p

)
+hp

)

≤ 22p−2( f p + g p +hp
)
.

(2.3)
�

Lemma 2.3. There exist positive constants cb and CB such that for 0≤ t < Tmax,

b(t)=
∫ 1

0
b(x, t)dx ≤ cb,

B(t)=
∫ 1

0
B(x, t)dx ≤ CB.

(2.4)

Proof. Let

Λ(t)=
∫ 1

0
b(x, t)dx+

∫ 1

0
B(x, t)dx = b(t) +B(t). (2.5)

Obviously, b(t) ≥ 0 and B(t) ≥ 0. Therefore, to prove the lemma, we need only to
prove that there exists a constant M > 0 such that for 0≤ t < Tmax,

Λ(t)≤M. (2.6)

In fact, by adding the b-equation and B-equation in (1.1) and using the boundary condi-
tions, we have

Λ′(t)=
∫ 1

0

(
ρ1R1(N)b(x, t) + ρ2R2(N)B(x, t)

)
dx−

∫ 1

0

(
b(x, t) +B(x, t)

)2
dx

≤ R
∫ 1

0

(
b(x, t) +B(x, t)

)
dx−

(∫ 1

0

(
b(x, t) +B(x, t)

)
dx
)2

= RΛ(t)− (Λ(t)
)2

,

(2.7)

where R=max{ρ1R1(1),ρ2R2(1)}. This implies (2.6). �
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Lemma 2.4. For any small τ > 0, there exists a positive constant δ depending on Ri, Si, b0,
B0, and ‖N(x,τ)‖H2(0,1) such that

max
{∫ 1

0
b2(x, t)dx,

∫ 1

0
B2(x, t)dx

}

≤ 2
(∫ 1

0
b2(x,τ)dx+

∫ 1

0
B2(x,τ)dx

)
+ δ, τ ≤ t < Tmax.

(2.8)

Proof. For 1 < p < 2, let X = Lp(0,1). Operator �p =−μ(d2/dx2) with domain

D
(
�p
)= {u∈W2,p(0,1) : u′(0)= 0= u′(1) + γu(1)

}
(2.9)

is sectorial in X and σ(�p)⊂ {Z∈R : Z > λ0} for a positive number λ0 due to the sym-
metry of �p, where σ(�p) is the spectrum of �p.

Since �p is sectorial in X , the operator −�p generates an analytic semigroup {�p(t)}
with ‖�p(t)‖X ≤ ke−λ0t for t ≥ 0, for a positive constant k.

By Theorem 2.1, we know that, for 1≥ θ > 1/4 + 1/2p, fractional space Xθ↩H1(0,1).
By Theorem 1.4.3 in [10], there exists a constant kθ <∞ such that

∥
∥�p(t)

∥
∥
Xθ ≤ kθt−θe−λ0t . (2.10)

Let u= 1−N , then u satisfies

ut = μuxx +R1(N)b+R2(N)B, 0 < x < 1, t > 0,

ux(0, t)= 0, ux(1, t) + γu(1, t)= 0, t > 0,

u(x,τ)= 1−N(x,τ), 0 < x < 1.

(2.11)

Therefore u∈D(�p) and for τ ≤ t < Tmax,

u(·, t)=�p(t− τ)
(
1−N(·,τ)

)

+
∫ t

τ
�p(t− ξ)

(
R1
(
N(·,ξ)

)
b(·,ξ) +R2

(
N(·,ξ)

)
B(·,ξ)

)
dξ.

(2.12)

Now for τ ≤ t < Tmax, we have
∥
∥Nx(·, t)∥∥L2(0,1) ≤

∥
∥u(·, t)∥∥H1(0,1) ≤ C

∥
∥u(·, t)∥∥Xθ ≤ C

∥
∥�p(t− τ)

(
1−N(·,τ)

)∥∥
Xθ

+C
∫ t

τ

∥
∥�p(t− ξ)

(
R1
(
N(·,ξ)

)
b(·,ξ) +R2

(
N(·,ξ)

)
B(·,ξ)

)∥∥
Xθdξ

≤ C∥∥�p(t− τ)
∥
∥
X

∥
∥1−N(·,τ)

∥
∥
Xθ

+C
∫ t

τ

∥
∥�p(t− ξ)

∥
∥
Xθ

∥
∥R1

(
N(·,ξ)

)
b(·,ξ) +R2

(
N(·,ξ)

)
B(·,ξ)

∥
∥
Xdξ

≤ Ke−λ0(t−τ)
∥
∥1−N(·,τ)

∥
∥
Xθ +CR1(1)

∫ t

τ
kθ(t− ξ)−θe−λ0(t−ξ)

∥
∥b(·,ξ)

∥
∥
Xdξ

+CR2(1)
∫ t

τ
kθ(t− ξ)−θe−λ0(t−ξ)

∥
∥B(·,ξ)

∥
∥
Xdξ.

(2.13)
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Let

ω(t)= max
τ≤ξ<t

∫ 1

0
b2(x,ξ)dx,

Γ(t)= max
τ≤ξ<t

∫ 1

0
B2(x,ξ)dx,

(2.14)

then it is easily seen that ω(t) and Γ(t) are nondecreasing functions of t. By Hölder’s
inequality

∥
∥b(·,ξ)

∥
∥
X ≤ b

(2−p)/p
(t)
(∫ 1

0
b2(x,ξ)dx

)(p−1)/p

≤ b(2−p)/p
(t)
(
ω(t)

)(p−1)/p
,

∥
∥B(·,ξ)

∥
∥
X ≤ B

(2−p)/p
(t)
(
Γ(t)

)(p−1)/p
,

(2.15)

where b(t) and B(t) are defined in Lemma 2.3. Therefore, from (2.13) and Lemma 2.3, we
know that there exist constants k1 depending on ‖N(x,τ)‖H2(0,1), k2, and k3 depending
on Ri such that

∥
∥Nx(·, t)∥∥L2(0,1) ≤ k1 + k2

(
ω(t)

)(p−1)/p
+ k3

(
Γ(t)

)(p−1)/p
. (2.16)

Now multiplying b(x, t) to the b-equation in (1.1) and integrating by parts on [0,1], we
obtain that for τ ≤ t < Tmax,

1
2
d

dt

∫ 1

0
b2(x, t)dx ≤−

∫ 1

0

(
dbx −αbS1(N)Nx

)
bxdx+

∫ 1

0
ρ1R1(N)b2(x, t)dx

≤−d
∫ 1

0
b2
xdx+α

∫ 1

0
S1(N)Nxbbxdx+ ρ1R1(1)

∫ 1

0
b2(x, t)dx

≤−d
∫ 1

0
b2
xdx+ c1

∥
∥b(·, t)∥∥L∞(0,1)

(∫ 1

0
N2
x dx

)1/2(∫ 1

0
b2
xdx

)1/2

+ ρ1R1(1)
∫ 1

0
b2(x, t)dx.

(2.17)

From this and the inequality (see [14])

∥
∥b(·, t)∥∥L∞(0,1) ≤ c

(

b(t) + b
1/3

(t)
(∫ 1

0
b2
x(x, t)dx

)1/3
)

, (2.18)
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we have

1
2
d

dt

∫ 1

0
b2(x, t)dx

≤−d
∫ 1

0
b2
xdx+ c2

(

b(t) + b
1/3

(t)
(∫ 1

0
b2
xdx

)1/3
)(∫ 1

0
N2
x dx

)1/2(∫ 1

0
b2
xdx

)1/2

+ ρ1R1(1)
∫ 1

0
b2(x, t)dx

=−d
∫ 1

0
b2
xdx+ c2b(t)

(∫ 1

0
N2
x dx

)1/2(∫ 1

0
b2
xdx

)1/2

+ c2b
1/3

(t)
(∫ 1

0
N2
x dx

)1/2(∫ 1

0
b2
xdx

)5/6

+ ρ1R1(1)
∫ 1

0
b2(x, t)dx.

(2.19)

From Young’s inequality

XY ≤ ηXp + c(η)Yq, (2.20)

(where 1/p + 1/q = 1, c(η) = (ηp)−q/p/q) with p = q = 2, η = d/4 and p = 6/5, q = 6,
η = d/4, respectively, we have

c2b(t)
(∫ 1

0
N2
x dx

)1/2(∫ 1

0
b2
xdx

)1/2

≤ d

4

∫ 1

0
b2
xdx+

1
d
c2

2b
2
(t)
∫ 1

0
N2
x dx,

c2b
1/3

(t)
(∫ 1

0
N2
x dx

)1/2(∫ 1

0
b2
xdx

)5/6

≤ d

4

∫ 1

0
b2
xdx+ c3b

2
(t)
(∫ 1

0
N2
x dx

)3

.

(2.21)

Using (2.21) in (2.19), we obtain

1
2
d

dt

∫ 1

0
b2(x, t)dx ≤−d

∫ 1

0
b2
xdx+

d

4

∫ 1

0
b2
xdx+

1
d
c2

2b
2
(t)
∫ 1

0
N2
x dx

+
d

4

∫ 1

0
b2
xdx+ c3b

2
(t)
(∫ 1

0
N2
x dx

)3

+ ρ1R1(1)
∫ 1

0
b2(x, t)dx

=−d
2

∫ 1

0
b2
xdx+

1
d
c2

2b
2
(t)
∫ 1

0
N2
x dx+ c3b

2
(t)
(∫ 1

0
N2
x dx

)3

+ ρ1R1(1)
∫ 1

0
b2(x, t)dx

≤−d
2

∫ 1

0
b2
xdx+ c4b

2
(t) + c5b

2
(t)
(∫ 1

0
N2
x dx

)3

+ ρ1R1(1)
∫ 1

0
b2(x, t)dx.

(2.22)

For any ε > 0, from the following inequality (see [14]),

∫ 1

0
b2(x, t)dx ≤ ε

∫ 1

0
b2
xdx+

(
cε−1/2 + 1

)
b

2
(t), (2.23)
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we have

∫ 1

0
b2
xdx ≥

1
ε

(∫ 1

0
b2(x, t)dx− (cε−1/2 + 1

)
b

2
(t)
)
. (2.24)

Therefore,

1
2
d

dt

∫ 1

0
b2(x, t)dx ≤− d

2ε

(∫ 1

0
b2(x, t)dx− (cε−1/2 + 1

)
b

2
(t)
)

+ c4b
2
(t) + c5b

2
(t)
(∫ 1

0
N2
x dx

)3

+ ρ1R1(1)
∫ 1

0
b2(x, t)dx

≤
(
ρ1R1(1)− d

2ε

)∫ 1

0
b2(x, t)dx+ c6b

2
(t) + c5b

2
(t)
(∫ 1

0
N2
x dx

)3

.

(2.25)

By taking ε = d/(3ρ1R1(1)), we obtain

1
2
d

dt

∫ 1

0
b2(x, t)dx ≤−ρ1R1(1)

2

∫ 1

0
b2(x, t)dx+ c6b

2
(t) + c5b

2
(t)
(∫ 1

0
N2
x dx

)3

. (2.26)

Then, in view of (2.16) and Lemma 2.2, we have

1
2
d

dt

∫ 1

0
b2(x, t)dx ≤−ρ1R1(1)

2

∫ 1

0
b2(x, t)dx

+ c6b
2
(t) + c5b

2
(t)
(
k1 + k2

(
ω(t)

)(p−1)/p
+ k3

(
Γ(t)

)(p−1)/p
)6

≤−ρ1R1(1)
2

∫ 1

0
b2(x, t)dx+ c7b

2
(t) + c8b

2
(t)
(
ω(t)

)6(p−1)/p

+ c9b
2
(t)
(
Γ(t)

)6(p−1)/p
.

(2.27)

From this, the monotonicity of ω(t) and Γ(t) and Lemma 2.3, it follows that for τ ≤ t <
Tmax,

∫ 1

0
b2(x, t)dx ≤

∫ 1

0
b2(x,τ)dx+ c10

(
1 +
(
ω(t)

)6(p−1)/p
+
(
Γ(t)

)6(p−1)/p
)
. (2.28)

Thus

ω(t)≤
∫ 1

0
b2(x,τ)dx+ c10

(
1 +
(
ω(t)

)6(p−1)/p
+
(
Γ(t)

)6(p−1)/p
)
. (2.29)
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Similarly, we have

Γ(t)≤
∫ 1

0
B2(x,τ)dx+ c11

(
1 +
(
ω(t)

)6(p−1)/p
+
(
Γ(t)

)6(p−1)/p
)
. (2.30)

Therefore,

ω(t) +Γ(t)≤
∫ 1

0
b2(x,τ)dx+

∫ 1

0
B2(x,τ)dx+ c12

(
1 +
(
ω(t)

)6(p−1)/p
+
(
Γ(t)

)6(p−1)/p
)

≤
∫ 1

0
b2(x,τ)dx+

∫ 1

0
B2(x,τ)dx+ c12 + c13

(
ω(t)

)
+Γ(t)

)6(p−1)/p
.

(2.31)

Now we take 6/5 > p > 1, then 6(p− 1)/p < 1. Therefore there exists a positive constant δ
depending on Ri, Si, ρi, b0, B0, and ‖N(x,τ)‖H2(0,1) such that

ω(t) +Γ(t)≤ 2
(∫ 1

0
b2(x,τ)dx+

∫ 1

0
B2(x,τ)dx

)
+ δ, τ ≤ t < Tmax. (2.32)

From this we know that the lemma is true. �

Lemma 2.5. For any small τ > 0, there exists a positive constant L= L(Tmax) such that

∥
∥Nx(·, t)∥∥L∞(0,1) ≤ L, τ ≤ t < Tmax. (2.33)

Proof. Let X = L2(0,1). Operator �2 =−μ(d2/dx2) with domain

D
(
�2
)= {u∈H2(0,1) : u′(0)= 0= u′(1) + γu(1)

}
(2.34)

is sectorial in X and σ(�2)⊂ {Z∈ R : Z > λ0} for a positive number λ0 due to the sym-
metry of �2, where σ(�2) is the spectrum of �2.

Since �2 is sectorial in X , the operator −�2 generates an analytic semigroup {�2(t)}
with ‖�2(t)‖X ≤ ke−λ0t, for some constant k, for t ≥ 0.

By Theorem 2.1, we know that, for 1 > θ > 1/4, fractional space Xθ↩Cν[0,1] for ν∈
(0,2θ− 1/2). In particular, we take θ > 3/4, then ν can be taken to be 1 and Xθ↩C1[0,1].
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Therefore, from (2.12) with p = 2, we have, for τ ≤ t < Tmax,
∥
∥Nx(·, t)∥∥C[0,1] ≤

∥
∥u(·, t)∥∥C1[0,1] ≤

∥
∥u(·, t)∥∥Xθ ≤

∥
∥�2(t− τ)

(
1−N(·,τ)

)∥∥
Xθ

+
∫ t

τ

∥
∥�2(t− ξ)

(
R1
(
N(·,ξ)

)
b(·,ξ) +R2

(
N(·,ξ)

)
B(·,ξ)

)∥∥
Xθdξ

≤ ∥∥�2(t− τ)
∥
∥
X

∥
∥1−N(·,τ)

∥
∥
Xθ

+
∫ t

τ

∥
∥�2(t− ξ)

∥
∥
Xθ

∥
∥(R1

(
N(·,ξ)

)
b(·,ξ) +R2

(
N(·,ξ)

)
B(·,ξ)

)∥∥
Xdξ

≤ ke−λ0(t−τ)
∥
∥1−N(·,τ)

∥
∥
Xθ +R

∫ t

τ
kθ(t− ξ)−θe−λ0(t−ξ)

∥
∥b(·,ξ)+B(·,ξ)

∥
∥
Xdξ

≤ ke−λ0(t−τ)
∥
∥1−N(·,τ)

∥
∥
Xθ

+R
∫ t

τ
kθ(t− ξ)−θe−λ0(t−ξ)(∥∥b(·,ξ)

∥
∥
X +

∥
∥B(·,ξ)

∥
∥
X

)
dξ

≤ ke−λ0(t−τ)
∥
∥1−N(·,τ)

∥
∥
Xθ

+R
∫ t

τ
2
(

2
(∫ 1

0
b2(x,τ)dx+

∫ 1

0
B2(x,τ)dx

)
+ δ
)1/2

kθ(t− ξ)−θe−λ0(t−ξ)dξ

= ke−λ0(t−τ)
∥
∥1−N(·,τ)

∥
∥
Xθ

+ 2R
(

2
(∫ 1

0
b2(x,τ)dx+

∫ 1

0
B2(x,τ)dx

)
+ δ
)1/2∫ t

τ
kθ(t− ξ)−θe−λ0(t−ξ)dξ,

(2.35)

where R=max{R1(1),R2(1)}. This completes the proof. �

Lemma 2.6. There exists a positive constant M > 0 such that for τ ≤ t < Tmax,

max
{∥∥b(·, t)∥∥L∞ ,

∥
∥B(·, t)∥∥L∞

}≤M. (2.36)

The proof is similar to that of Lemma 4.7 in [14] and therefore is omitted.
Thus we have the following global existence and boundedness theorem.

Theorem 2.7 (global existence and boundedness). For any N0, b0, and B0 ∈ H1(0,1)
satisfying N0(x) > 0, b0(x) > 0, and B0(x) > 0 on [0,1], (1.1) has a unique positive global
solution (N ,b,B) such that

(i) (N(x, t),b(x, t),B(x, t))∈ C([0,∞),H1(0,1)×H1(0,1)×H1(0,1)),

(N ,b,B)∈ C2+2ε,1+ε
loc

(
[0,1]× (0,∞)

)
; (2.37)

(ii) N > 0, b > 0, and B > 0 are bounded on [0,1]× [0,∞).

3. Existence of steady states

In this section, we study the existence of steady states of (1.1). Basically, we study the ex-
istence of nontrivial steady state solutions of (1.1) in the framework of [9]. But in [9], the
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author made several assumptions about the reaction terms. Unfortunately, in our model
the reaction functions do not satisfy all these assumptions. This fact causes difficulties
in using the theory developed in [9]. Therefore, we must do some careful and technical
analysis for our model. The steady states of (1.1) satisfy

μN ′′ −R1(N)b−R2(N)B = 0, 0 < x < 1,
(
db′ −αbS1(N)N ′)′ + b

(
ρ1R1(N)− b−B)= 0, 0 < x < 1,

(
DB′ −βBS2(N)N ′)′ +B

(
ρ2R2(N)− b−B)= 0, 0 < x < 1,

N ′(0)= 0, N ′(1)= γ(1−N(1)
)
,

db′ −αbS1(N)N ′ = 0 at x = 0,1,

DB′ −βBS2(N)N ′ = 0 at x = 0,1.

(3.1)

Obviously, (1,0,0) is a solution of (3.1), that is, it is a steady state of (1.1). For this, we
have the following theorem.

Theorem 3.1. The trivial steady state solution (N ,b,B)= (1,0,0) is unstable.

Proof. To prove this theorem, we use the definition of instability (e.g., see [6]). That is, if
Oε is a neighborhood of (1,0,0) consisting of (N ,b,B) such that

‖1−N‖L∞ +‖b‖L∞ +‖B‖L∞ < ε, (3.2)

we can show that for a small ε > 0, the solution (N(x, t),b(x, t),B(x, t)) always leaves Oε
in finite time no matter how close the initial values (N0,b0,B0) are to (1,0,0). In fact, for
ε > 0 small, we have

ρ1R1(N)− b−B ≥ ρ1R1(1)
2

> 0, x ∈ [0,1], t > 0. (3.3)

Then by integrating the b-equation in (1.1), we have

d

dt

∫ 1

0
b(x, t)dx ≥ ρ1R1(1)

2

∫ 1

0
b(x, t)dx, t > 0. (3.4)

It follows that
∫ 1

0
b(x, t)dx ≥ e(ρ1R1(1)/2)t

∫ 1

0
b0(x)dx −→∞ as t −→∞. (3.5)

This implies that (N(x, t),b(x, t),B(x, t)) must leave Oε in finite time. �

Lemma 3.2. If (N(x),b(x),B(x)) is a solution of (3.1) such that at least one of the functions
b(x) and B(x) is positive, then

0 < N ′(x) < γ for 0 < x ≤ 1, 0 < N(x) < 1 for 0 < x ≤ 1, (3.6)

and there exists a positive constant K1 such that

max
{‖b‖L1 ,‖B‖L1

}≤ K1. (3.7)
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Also
(i) 0≤ b(x)≤ ρ1R1(1)e(α/d)

∫ 1
0 S1(y)dy , and 0≤ B(x)≤ ρ2R2(1)e(β/D)

∫ 1
0 S2(y)dy ,

(ii) there exists a positive constant K2 such that

max
{∣∣b′(x)

∣
∣,
∣
∣B′(x)

∣
∣}≤ K2. (3.8)

Proof. From the assumptions and the first equation of (3.1), we have N ′′(x) > 0. There-
fore N ′(x) is increasing. From N ′(0)= 0, we know that N ′(x) > 0 for 0 < x ≤ 1. In partic-
ular, we have N ′(1) > 0. Then the N-boundary condition at x = 1 implies that N ′(1) < γ.
Since N ′(x) is increasing, we must have N ′(x) < γ for 0 ≤ x ≤ 1. Also, from the N-
boundary condition at x = 1, we have N(1) < 1. Observe that N(x) is also increasing,
hence for 0≤ x ≤ 1, N(x) < 1. By the comparison principle and the condition Ri(0)= 0,
we have N(x) > 0 for x > 0.

Integrating the b-equation in (3.1) from 0 to 1 and using the boundary conditions, we
have

∫ 1

0
b
(
ρ1R1(N)− b−B)dx = 0. (3.9)

Therefore,

∫ 1

0
bρ1R1(N)dx =

∫ 1

0
b(b+B)dx =

∫ 1

0
b2dx+

∫ 1

0
bBdx. (3.10)

Similarly,

∫ 1

0
Bρ2R2(N)dx =

∫ 1

0
B(b+B)dx =

∫ 1

0
B2dx+

∫ 1

0
bBdx. (3.11)

Adding (3.10) and (3.11), we obtain

∫ 1

0

(
ρ1R1(N)b+ ρ2R2(N)B

)
dx =

∫ 1

0
(b+B)2dx ≥

(∫ 1

0
(b+B)dx

)2

. (3.12)

It follows that

(∫ 1

0
(b+B)dx

)2

≤
∫ 1

0

(
ρ1R1(N)b+ ρ2R2(N)B

)
dx ≤ R

∫ 1

0
(b+B)dx, (3.13)

where R=max{ρ1R1(1),ρ2R2(1)}. This implies that there is a constant K such that

∫ 1

0
(b+B)dx ≤ K. (3.14)

In turn, this implies that (3.7) is true.
Let G1(τ) = ∫ τ0 S1(y)dy ≥ 0, G2(τ) = ∫ τ0 S2(y)dy ≥ 0 and z = e−(α/d)G1(N)b, Z =

e−(β/D)G2(N)B, then we have

b′ − α

d
S1(N)N ′b = e(α/d)G1(N)z′, (3.15)
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and z satisfies
(
e(α/d)G1(N)z′

)′
+d−1e(α/d)G1(N)z

(
ρ1R1(N)− e(α/d)G1(N)z− e(β/D)G2(N)Z

)= 0, 0 < x < 1,

z′(0)= z′(1)= 0.
(3.16)

Assume that z(x) has its maximum at x1. Then z′(x1)= 0 and z′′(x1)≤ 0. From the above
equation, we have, at x1,

ρ1R1(N)− e(α/d)G1(N)z− e(β/D)G2(N)Z ≥ 0. (3.17)

Therefore,

z
(
x1
)≤ ρ1R1(N)e−(α/d)G1(N) ≤ ρ1R1(1). (3.18)

This implies

z(x)≤ ρ1R1(1). (3.19)

Thus we have

b(x)≤ ρ1R1(1)e(α/d)G1(1) = ρ1R1(1)e(α/d)
∫ 1

0 S1(y)dy. (3.20)

Similarly,

B(x)≤ ρ2R2(1)e(β/D)
∫ 1

0 S2(y)dy. (3.21)

Integrating the b-equation from 0 to x and using the b-boundary condition at x = 0, we
have

db′(x)= αbS1(N)N ′ +
∫ x

0
b
(
b+B− ρ1R1(N)

)
ds

≤ αbS1(1)γ+
∫ x

0
b(b+B)ds≤ αbS1(1)γ+

∫ 1

0
b(b+B)ds

≤ αρ1R1(1)e(α/d)
∫ 1

0 S1(y)dyS1(1)γ

+
∫ 1

0
ρ1R1(1)e(α/d)

∫ 1
0 S1(y)dy(ρ1R1(1)e(α/d)

∫ 1
0 S1(y)dy + ρ2R2(1)e(β/D)

∫ 1
0 S2(y)dy)ds

= αρ1R1(1)e(α/d)
∫ 1

0 S1(y)dyS1(1)γ

+ ρ1R1(1)e(α/d)
∫ 1

0 S1(y)dy(ρ1R1(1)e(α/d)
∫ 1

0 S1(y)dy + ρ2R2(1)e(β/D)
∫ 1

0 S2(y)dy)

≤ ρ1R1(1)e(α/d)
∫ 1

0 S1(y)dy(αS1(1)γ+R
(
e(α/d)

∫ 1
0 S1(y)dy + e(β/D)

∫ 1
0 S2(y)dy)).

(3.22)

Therefore,

b′(x)≤ d−1{ρ1R1(1)e(α/d)
∫ 1

0 S1(y)dy(αS1(1)γ+R
(
e(α/d)

∫ 1
0 S1(y)dy + e(β/D)

∫ 1
0 S2(y)dy))}.

(3.23)
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We also have

db′(x)= αbS1(N)N ′ +
∫ x

0
b
(
b+B− ρ1R1(N)

)
ds≥

∫ x

0
b
(− ρ1R1(N)

)
ds

≥
∫ x

0
ρ1R1(1)e(α/d)

∫ 1
0 S1(y)dy(− ρ1R1(1)

)
ds≥−(ρ1R1(1)

)2
e(α/d)

∫ 1
0 S1(y)dy.

(3.24)

Now, let

M1 = d−1{ρ1R1(1)e(α/d)
∫ 1

0 S1(y)dy(αS1(1)γ+R
(
e(α/d)

∫ 1
0 S1(y)dy + e(β/D)

∫ 1
0 S2(y)dy))},

(3.25)

then
∣
∣b′(x)

∣
∣≤M1. (3.26)

We can prove a similar estimate for |B′(x)|. Therefore (3.8) is true. �

Corollary 3.3. For any ν∈ (0,1), there is a positive constantK such that for any nontrivial
solution (N ,b,B) of (3.1),

max
{‖N‖Cν([0,1]),‖b‖Cν([0,1]),‖B‖Cν([0,1])

}≤ K. (3.27)

What we are interested in is whether (3.1) has any nontrivial solutions. The caseN �≡ 0
is excluded by the boundary conditions. Therefore we need only to consider the possibil-
ities of the existence of following two types of solutions:

(i) semitrivial solutions: (N ,b,0), (N ,0,B);
(ii) positive solutions: (N ,b,B),

where the components N > 0, b > 0, B > 0. In what follows, we use the theory of fixed
point index on cones in a Banach space to study the existence of solutions of these types.
First we study the existence of semitrivial solutions.

3.1. Existence of semitrivial solutions. From the symmetry of b and B, we need only to
study the existence of solutions of the form (N ,b,0). For the convenience of notations,
we write N and b as u0 and u1, respectively, omit the subscripts of R1, S1, and ρ1, and
consider the system

μu′′0 −R
(
u0
)
u1 = 0, 0 < x < 1,

(
du′1−αu1S

(
u0
)
u′0
)′

+u1
(
ρR
(
u0
)−u1

)= 0, 0 < x < 1,

u′0(0)= 0, u′0(1)= γ(1−u0(1)
)
,

du′1−αu1S
(
u0
)
u′0 = 0 at x = 0,1.

(3.28)

For ν∈ (0,1), let

Ei =
{
u∈ Cν

(
[0,1]

)}
, i= 0,1,

Ci =
{
u∈ Cν

(
[0,1]

)
: u≥ 0 on [0,1]

}
, i= 0,1,

E = E0⊕E1, C = C0⊕C1,

(3.29)
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then E is an ordered Banach space with positive cone C. For V = (v0,v1) ∈ C, let u0 =
A0(V) be the solution of

u′′0 = μ−1R
(
u0
)
v1, 0 < x < 1,

u′0(0)= 0, u′0(1) + γu0(1)= γ.
(3.30)

With u0 = u0(v0,v1) given, define operators Φ1 and Γ1 as follows.
Φ1(V) : C→ L(Cν([0,1])), the Banach space of bounded linear maps from Cν([0,1])

to itself, is defined by the following.
For v ∈ Cν([0,1]), let u=Φ1(V)v be the solution of the problem

−u′′ +
(
α

d

(
S
(
u0
)
u′0u

)′
+Pu= v, 0 < x < 1,

du′ −αS(u0
)
u′0u= 0 at x = 0,1,

(3.31)

and define

Γ1(V)= d−1v1
(
ρR
(
v0
)− v1

)
+Pv1, (3.32)

where P is a positive constant such that d−1(ρR(v0)− v1) +P > 0 for 0≤ v0 ≤ 2, 0≤ v1 ≤
P1, where P1 = 2ρR(1)e(α/d)

∫ 1
0 S(y)dy . Then system (3.28) can be written as a fixed point

equation U =A(U), where U = A(V) is given by

u0 =A0(V), u1 = A1(V)=Φ1(V)◦Γ1(V). (3.33)

It is easily seen that Γ1 satisfies,

Γ1
(
u0,0

)= 0. (3.34)

Now we prove the following lemmas.

Lemma 3.4. The operator A(V) = (A0(V),A1(V)) : Ω→ C is a well-defined completely
continuous operator, where

Ω= {(v0,v1
)∈ C : 0≤ v0 < 2, 0≤ v1 < P1

}
. (3.35)

Moreover, fixed points of A in C are nonnegative solutions of (3.28).

Proof. First we show that, for V = (v0,v1)∈Ω, (3.30) has a unique nonnegative solution
u0 �≡ 0 and u0 ∈ C2+ν([0,1]). In fact, it is easily seen that u = 0 and u = 1 is a pair of
sub- and supersolutions of (3.30). Therefore (3.30) has a solution u0(x) satisfying 0 ≤
u0(x)≤ 1. From the boundary conditions, we have u0 �≡ 0. From the regularity theory of
elliptic equations and the smoothness of R, we have u0 ∈ C2+ν([0,1]). Now we prove the
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uniqueness. If there is another solution u0(x) of (3.30). Let u= u0−u0, then u satisfies

−u′′ +μ−1R′(ũ)uv1 = 0, 0 < x < 1,

u′(0)= 0, u′(1) + γu(1)= 0.
(3.36)

From maximum principle, we have u≡ 0.
With u0 given, u1 is the solution of the problem

−
(
u′1−

α

d
S
(
u0
)
u′0u1

)′
+Pu1 = d−1v1

(
ρR
(
v0
)− v1

)
+Pv1, 0 < x < 1,

du′1−αS
(
u0
)
u′0u1 = 0 at x = 0,1.

(3.37)

Let G(τ)= ∫ τ0 S(y)dy ≥ 0 and z = e−(α/d)G(u0)u1, then we have

u′1−
α

d
S
(
u0
)
u′0u1 = e(α/d)G(u0)z′, (3.38)

and z satisfies

−(e(α/d)G(u0)z′
)′

+Pe(α/d)G(u0)z = d−1v1
(
ρR
(
v0
)− v1

)
+Pv1, 0 < x < 1,

z′(0)= z′(1)= 0.
(3.39)

Observe that d−1(ρR(v0)− v1) + P > 0, from maximum principle, we have z > 0. There-
fore, u1 > 0. From Schauder’s theory for elliptic equations, we have U = A(V) ∈
C2+ν([0,1]). Therefore A is completely continuous. It is easily seen that the fixed points
of A in C are nonnegative solutions of (3.28). �

Lemma 3.5. There is an M > 0 such that

deg
(
I −A,BM ,0

)= 1, (3.40)

where BM = {U ∈ C : ‖U‖E <M}.
Proof. Consider H(η,U) : [0,1]×C→ E defined by

H(η,U)= A(ηU). (3.41)

We use the homotopy invariance property to H(η,U). For η ∈ [0,1], V ∈ C,

Uη = (u0,u1
)=H(η,V)= (H0(η,V),H1(η,V)

)
(3.42)

is given by

u′′0 = μ−1R
(
u0
)
ηv1, 0 < x < 1,

u′0(0)= 0, u′0(1) + γu0(1)= γ,

−
(
u′1−

α

d
S
(
u0
)
u′0u1

)′
+Pu1 = d−1ηv1

(
ρR
(
ηv0
)−ηv1

)
+Pηv1, 0 < x < 1,

du′1−αS
(
u0
)
u′0u1 = 0 at x = 0,1.

(3.43)
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It is easy to verify that H(η,U) is completely continuous and there is a constant K such
that for the solution of U =H(η,U), that is, U = A(ηU), we have ‖U‖E ≤ K . Therefore
for M > K , U = A(ηU) has no solution satisfying ‖U‖E =M. This implies that for 0 ≤
η ≤ 1, 0 �∈ (I−H(η,•))(∂BM). Therefore, deg(I−H(η,•),BM ,0) is a constant for 0≤η≤1.
Thus

deg
(
I −A,BM ,0

)= deg
(
I −H(1,•),BM ,0

)= deg
(
I −H(0,•),BM ,0

)
. (3.44)

But H(0,U) = A(0) is a constant map. Therefore deg(I −H(0,•),BM ,0) = 1. That is,
deg(I −A,BM ,0)= 1. �

Let

Δ{0} =
{
U = (u0,0

)∈Ω : A(U)=U , u0 > 0
}

, (3.45)

then we have Δ{0} = {(1,0)}. For (v0,v1)∈ C, we set T1(v0,v1)=Φ1(v0,v1) ◦ ∂1Γ1(v0,v1),
where ∂1Γ1(v0,v1) is the partial derivative of Γ1(v0,v1) with respect to v1. An easy compu-
tation shows that the operator T1((1,0)) : C1 → C1 is defined by the following for v ∈ C1,
u= T1((1,0))v is the solution of the boundary value problem

−u′′ +Pu= (d−1ρR(1) +P
)
v, 0 < x < 1,

u′(0)= u′(1)= 0.
(3.46)

Now we cite the following theorem.

Theorem 3.6 (see [7]). Let �(y) = a2(x)y′′ + a1(x)y′ + a0(x)y be a linear differential
operator with no singular points in [x1,x2], and suppose that f (x) is continuous on [x1,x2].
Assume also that (A1,A2) �= (0,0) and (B1,B2) �= (0,0). Then the BVP

�(y)= f (x); A1y
(
x1
)

+A2y
′(x1

)= 0, B1y
(
x2
)

+B2y
′(x2

)= 0, (3.47)

has a unique solution if and only if the associated homogeneous problem �(y)= 0 with the
same boundary conditions has only the trivial solution.

It is easily seen that the homogeneous problem associated with (3.46)

−u′′ +Pu= 0, 0 < x < 1,

u′(0)= u′(1)= 0,
(3.48)

has only the trivial solution when P > 0. Therefore, from the theorem, we know that for
any v ∈ C1, (3.46) has unique solution and by maximum principle, we have u(x) > 0 on
[0,1]. That is, T1((1,0)) is strongly positive. The eigenvalue problem T1((1,0))ψ = λψ, is
equivalent to

−ψ′′ +Pψ = λ−1
(
ρ

d
R(1) +P

)
ψ, 0 < x < 1,

ψ′(0)= ψ′(1)= 0.
(3.49)
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Obviously, 1 is not an eigenvalue of (3.49) corresponding to a positive eigenfunction. In
fact, the eigenvalues of (3.49) are

λn = (ρ/d)R(1) +P
P−n2π2

, n= 0,1,2, . . . , (3.50)

and the associated eigenfunctions are ψn = cos(nπx). Therefore we can see that the eigen-
value that corresponds to the positive eigenfunction is λ = ((ρ/d)R(1) +P)/P > 1. This
implies that the spectral radius of T1((1,0)) is greater than 1 and therefore, from [9, The-
orem 3.1], we have ind(A,Δ{0})= 0. From Lemma 3.5, we know that for some M > 0, the
set of fixed points of A is in BM . Therefore, from Lemma 3.5, we have

ind(A,Ω)= ind
(
A,BM

)= 1 �= 0= ind
(
A,Δ{0}

)
. (3.51)

From [9, Theorem 3.1] mentioned above, we know that (3.28) has at least one positive
solution. This implies that (3.1) has solutions of the form (N ,b,0) with N > 0 and b > 0.
Similarly, we know that (3.1) has solutions of the form (N ,0,B) with N > 0 and B > 0.
Summarizing the analysis above, we have the following theorem.

Theorem 3.7. System (3.1) has solutions of the form (N ,b,0) and (N ,0,B) with N > 0,
b > 0, and B > 0.

3.2. Existence of positive solutions. Now we study the existence of positive solutions of
(3.1). As before, we write N , b, and B as u0, u1, and u2, respectively, and write system
(3.1) in the form of a fixed point equation as follows.

For ν∈ (0,1), let

Ei =
{
u∈ Cν

(
[0,1]

)}
, i= 0,1,2,

Ci =
{
u∈ Cν

(
[0,1]

)
: u≥ 0 on [0,1]

}
, i= 0,1,2,

E = E0⊕E1⊕E2, C = C0⊕C1⊕C2.

(3.52)

For V = (v0,v1,v2)∈ C, let u0 = A0(V) be the solution of

u′′0 = μ−1(R1
(
u0
)
v1 +R2

(
u0
)
v2
)
, 0 < x < 1,

u′0(0)= 0, u′0(1) + γu0(1)= γ. (3.53)

With u0 given, define operators Φi and Γi, i= 1,2, as

Φ1(V)=
{
− d2•
dx2

+
α

d

(
S1
(
u0
)
u′0 •

)′
+P•, d

d•
dx
−α• S1

(
u0
)
u′0

}−1

,

Φ2(V)=
{
− d2•
dx2

+
β

D

(
S2
(
u0
)
u′0 •

)′
+P•, D

d•
dx
−β • S2

(
u0
)
u′0

}−1

,

Γ1(V)= d−1v1
(
ρ1R1

(
v0
)− v1− v2

)
+Pv1,

Γ2(V)=D−1v2
(
ρ2R2

(
v0
)− v1− v2

)
+Pv2,

(3.54)
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where P is a positive constant such that d−1(ρ1R1(v0)− v1− v2)+P> 0 andD−1(ρ2R2(v0)−
v1− v2)+P > 0 for 0≤v0≤2, 0≤ v1≤P1, and 0≤v2≤P2, where P1=2ρ1R1(1)e(α/d)

∫ 1
0 S1(y)dy

and P2 = 2ρ2R2(1)e(β/D)
∫ 1

0 S2(y)dy . Then system (3.1) can be written as a fixed point equa-
tion U = A(U), where U =A(V) is given by

u0 =A0(V), ui =Ai(V)=Φi(V)◦Γi(V), i= 1,2. (3.55)

It is easily seen that Γi satisfies

Γi
(
v0,v1,v2

)= 0 if vi = 0. (3.56)

Similar to the proofs of Lemmas 3.4 and 3.5, we can prove the following two lemmas.

Lemma 3.8. The operator A(V) = (A0(V),A1(V),A2(V)) : Ω→ C is a well-defined com-
pletely continuous operator, where

Ω= {(v0,v1,v2
)∈ C : 0≤ v0 < 2, 0≤ v1 < P1, 0≤ v2 < P2

}
. (3.57)

Moreover, fixed points of A in C are nonnegative solutions of (3.1).

Lemma 3.9. There is an M > 0 such that

deg
(
I −A,BM ,0

)= 1, (3.58)

where BM = {U ∈ C : ‖U‖E <M}.
For i= 1,2, let

Δ{0,i} =
{
U = (u0,u1,u2

)∈Ω :A(U)=U , u0 > 0, ui > 0, uj = 0 for j �= i or 0
}
. (3.59)

From the analysis in Section 3.1, we know that Δ{0,1} and Δ{0,2} are nonempty. We con-
sider the following two conditions.

(�1) For any U = (ǔ0, ǔ1,0)∈ Δ{0,1}, the largest eigenvalue of the eigenvalue problem

−φ′′ +
β

D

(
S2
(
ǔ0
)
ǔ′0φ

)′
+Pφ= λ−1(D−1(ρ2R2

(
ǔ0
)− ǔ1

)
+P
)
φ, 0 < x < 1,

Dφ′ −βS2
(
ǔ0
)
ǔ′0φ= 0 at x = 0,1,

(3.60)

is greater than 1 and for any U = (û0,0, û2)∈ Δ{0,2}, the largest eigenvalue of the
eigenvalue problem

−ψ′′ +
α

d

(
S1
(
û0
)
û′0ψ

)′
+Pψ = λ−1(d−1(ρ1R1

(
û0
)− û2

)
+P
)
ψ, 0 < x < 1,

dψ′ −αS1
(
û0
)
û′0ψ = 0 at x = 0,1,

(3.61)

is greater than 1.
(�2) Both eigenvalues of (3.60) and (3.61) are all less than 1.

We have the following theorem.

Theorem 3.10. If either (�1) or (�2) holds, then (3.1) has at least one positive solution.
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Proof. From Lemmas 3.2 and 3.9, we have ind(A,Ω)= 1. Let

Δ{0} =
{
U = (u0,0,0

)∈Ω : A(U)=U , u0 > 0
}

, (3.62)

then we have Δ{0} = {(1,0,0)} and ind(A,Δ{0})= 0.
For i= 1,2, set

Ti(V)=Φi(V)◦ ∂iΓi(V), (3.63)

where ∂iΓi(V)= ∂iΓi(v0,v1,v2) is the partial derivative of Γi(V) with respect to vi, then an
easy calculation shows that, for U = (ǔ0, ǔ1,0)∈ Δ{0,1}, the operator T2(ǔ0, ǔ1,0) is given
by

T2
(
ǔ0, ǔ1,0

)=
(
− d2•
dx2

+
β

D

(
S2
(
ǔ0
)
ǔ′0 •

)′
+P •

)−1(
D−1(ρ2R2

(
ǔ0
)− ǔ1

)
+P
)

(3.64)

with the boundary condition in (3.60), and for U = (û0,0, û2) ∈ Δ{0,2}, the operator
T1(û0,0, û2) is given by

T1
(
û0,0, û2

)=
(
− d2•
dx2

+
α

d

(
S1
(
û0
)
û′0 •

)′
+P •

)−1(
d−1(ρ1R1

(
û0
)− û1

)
+P
)

(3.65)

with the boundary condition in (3.61). It is easy to verify thatT2(ǔ0, ǔ1,0) andT1(û0,0, û2)
are all strongly positive. By using the Krein-Rutman theorem, we can see if (�1) holds,
then the spectral radii of T2(ǔ0, ǔ1,0) and T1(û0,0, û2) are all less than 1 and ind(A,Δ{0,1})
= 1 and ind(A,Δ{0,2})= 1. Thus

ind
(
A,Δ{0}

)
+ ind

(
A,Δ{0,1}

)
+ ind

(
A,Δ{0,2}

)= 0 + 1 + 1= 2 �= ind(A,Ω)= 1. (3.66)

From [9, Theorem 3.1], we know that (3.1) has positive solutions.
If (�2) holds, the spectral radii of T2(ǔ0, ǔ1,0) and T1(û0,0, û2) are all greater than 1

and ind(A,Δ{0,1})= 0 and ind(A,Δ{0,2})= 0. Thus

ind
(
A,Δ{0}

)
+ ind

(
A,Δ{0,1}

)
+ ind

(
A,Δ{0,2}

)= 0 + 0 + 0= 0 �= ind(A,Ω)= 1. (3.67)

As before, we conclude that (3.1) has positive solutions. �

3.3. Some special cases. Now we consider some special situations.
(I) First we consider α= 0, β = 0, ρ= 1, and R1 = R2 = R, this is the model discussed

in [16], that is,

μN ′′ −R(N)(b+B)= 0, 0 < x < 1,

db′′ + b
(
R(N)− b−B)= 0, 0 < x < 1,

DB′′ +B
(
R(N)− b−B)= 0, 0 < x < 1,

N ′(0)= 0, N ′(1)= γ(1−N(1)
)
,

b′(0)= b′(1)= 0,

B′(0)= B′(1)= 0.

(3.68)
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In this case, (3.60) and (3.61) become

−φ′′ +Pφ= λ−1((D−1(R
(
ǔ0
)− ǔ1

)
+P
)
φ, 0 < x < 1,

φ′(0)= φ′(1)= 0,
(3.69)

−ψ′′ +Pψ = λ−1(d−1(R
(
û0
)− û2

)
+P
)
ψ, 0 < x < 1,

ψ′(0)= ψ′(1)= 0.
(3.70)

Let

�0 =
(
− d2

dx2

)−1(R
(
u0
)−u1

D

)
,

�P =
(
− d2

dx2
+P
)−1(R

(
u0
)−u1

D
+P
)
.

(3.71)

We denote the spectral radius of operator � by Υ(�). It is well known that
Υ(�0) > 1 if and only if Υ(�P) > 1 for all P ≥ 0. Therefore we know that the
largest eigenvalues of both (3.69) and (3.70) are greater than 1 if and only if the
largest eigenvalues of the following two eigenvalue problems are greater than 1:

−φ′′ = λ−1D−1(R
(
ǔ0
)− ǔ1

)
φ, 0 < x < 1,

φ′(0)= φ′(1)= 0,
(3.72)

−ψ′′ = λ−1d−1(R
(
û0
)− û2

)
ψ, 0 < x < 1,

ψ′(0)= ψ′(1)= 0.
(3.73)

But it is easily seen that the largest eigenvalue of (3.72) is λ̌1 = d/D < 1 and the

largest eigenvalue of (3.73) is λ̂1 = D/d > 1. Therefore neither (�1) nor (�2) is
satisfied. In fact, we can prove that (3.68) has no positive solutions directly. To
do this, we first cite the following lemma from [8].

Lemma 3.11. Consider the eigenvalue problem

d�φ+ q(x)φ= λφ, x ∈Ω,

∂φ

∂ν
= 0, x ∈ ∂Ω,

(3.74)

where d > 0, q(x)∈ C2+α(Ω) for some α > 0. Let λ1 = λ(q,d) be the unique “prin-
cipal eigenvalue”. Then λ(q,d) is a continuous nonincreasing function of d, and is
strictly decreasing if q(x) is not a constant. Furthermore, the following hold:

(a) λ(q,d) ↑Q =maxΩ q(x) as d→ 0;
(b) λ(q,d) ↓ ω = (1/|Ω|)∫Ω q(x)dx as d→∞;
(c) if q1(x) ≥ q2(x) for x ∈ Ω, then λ(q1,d) ≥ λ(q2,d) with strict inequality if

q1(x) �≡ q2(x).
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Now we can prove the following theorem.

Theorem 3.12. Equation (3.68) has no positive solution.

Proof. In fact, if (3.68) has a positive solutionU = (N(x),b(x),B(x)) withN(x) >
0, b(x) > 0, and B(x) > 0, then b(x) > 0 and B(x) > 0 satisfy

db′′ +
(
R(N)− b−B)b = 0, 0 < x < 1,

DB′′ +
(
R(N)− b−B)B = 0, 0 < x < 1,

b′(0)= b′(1)= B′(0)= B′(1)= 0.

(3.75)

Because of the positivity of b(x) and B(x), we can consider them as the principal
eigenfunctions of the eigenvalue problem

dφ′′ + q(x)φ= λφ, 0 < x < 1,

φ′(0)= φ′(1)= 0,
(3.76)

Bφ′′ + q(x)φ= λφ, 0 < x < 1,

φ′(0)= φ′(1)= 0,
(3.77)

with q(x)= R(N(x))− b(x)−B(x), associated with the principal eigenvalue λ=
0, respectively. So we have λ(q(x),d)= λ(q(x),D). Since q(x)= R(N(x))− b(x)−
B(x) �= constant, by Lemma 3.11, this contradicts the assumption d < D. The
proof of Theorem 3.12 is complete. �

(II) Now we consider the following model, which was discussed in [15]:

N ′′ −R(N)(b+B)= 0, 0 < x < 1,
(
db′ −αbS(N)N ′)′ + b

(
ρR(N)− θ)= 0, 0 < x < 1,

(
DB′ −βBS(N)N ′)′ +B

(
ρR(N)− θ)= 0, 0 < x < 1,

N ′(0)= 0, N ′(1)= γ(1−N(1)
)
,

db′ −αbS(N)N ′ = 0 at x = 0,1,

DB′ −βBS(N)N ′ = 0 at x = 0,1,

(3.78)

where θ > 0 is a constant. In this case, (3.60) and (3.61) become

−φ′′ +
β

D

(
S
(
ǔ0
)
ǔ′0φ

)′
+Pφ= λ−1(D−1(ρR

(
ǔ0
)− θ)+P

)
φ, 0 < x < 1,

Dφ′ −βS(ǔ0
)
ǔ′0φ= 0 at x = 0,1,

(3.79)

−ψ′′ +
α

d

(
S
(
û0
)
û′0ψ

)′
+Pψ = λ−1(d−1(ρR

(
û0
)− θ)+P

)
ψ, 0 < x < 1,

dψ′ −αS(û0
)
û′0ψ = 0 at x = 0,1.

(3.80)

The largest eigenvalues of the two eigenvalue problems above are greater than 1
if and only if the largest eigenvalues of the following two eigenvalue problems are
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greater than 1:

−φ′′ +
β

D

(
S
(
ǔ0
)
ǔ′0φ

)′ = λ−1D−1(ρR
(
ǔ0
)− θ)φ, 0 < x < 1,

Dφ′ −βS(ǔ0
)
ǔ′0φ = 0 at x = 0,1,

(3.81)

−ψ′′ +
α

d

(
S
(
û0
)
û′0ψ

)′ = λ−1d−1(ρR
(
û0
)− θ)ψ, 0 < x < 1,

dψ′ −αS(û0
)
û′0ψ = 0 at x = 0,1.

(3.82)

A special case is α/d = β/D. For this case, it is easily seen that the largest eigen-
value of (3.81) is λ1 = d/D < 1 and the associated eigenfunction is φ = ǔ1. The
largest eigenvalue of (3.82) is λ1 = D/d > 1 and the associated eigenfunction is
ψ = û2. Therefore, neither (�1) nor (�2) is satisfied. In fact, from [15], we know
that (3.78) has no positive solutions for this situation.
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