
Research Article
Spectral Three-Term Constrained Conjugate Gradient Algorithm 
for Function Minimizations

Huda I. Ahmed  ,1 Rana Z. Al-Kawaz,2 and Abbas Y. Al-Bayati3

1�Department of Operations Researches and Intelligent Techniques, College of Computer Sciences and Mathematics,  
University of Mosul, Mosul, Iraq

2Department of Mathematics, College of Basic Education, University of Telafer, Mosul, Iraq
3University of Telafer, Mosul, Iraq

Correspondence should be addressed to Huda I. Ahmed; hudaea72@gmail.com

Received 20 May 2019; Revised 8 August 2019; Accepted 4 September 2019; Published 25 December 2019

Academic Editor: Xiaohui Yuan

Copyright © 2019 Huda I. Ahmed et al. �is is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we tend to deal within the field of the constrained optimization methods of three-term Conjugate Gradient (CG) 
technique which is primarily based on Dai–Liao (DL) formula. �e new proposed technique satisfies the conjugacy property and the 
descent conditions of Karush–Kuhn–Tucker (K.K.T.). Our planned constrained technique uses the robust Wolfe line search condition 
with some assumptions. We tend to prove the global convergence property of the new planned technique. Numeral comparisons 
for (30-thirty) constrained optimization issues make sure the effectiveness of the new planned formula.

1. Introduction

All strategies for constrained problems will be classified into 
(2) basic categories; specifically, direct and indirect ways. 
Generating uncontained sub-problem ways for the later kind 
square measure vital even for a few special optimization inte-
rior and exterior penalty function techniques transform the 
constrained problem into unconstrained optimization type 
problems. �e technique in the main easy and quite sturdy for 
a previous technique known as Sequential Unconstrained 
Minimization Technique (SUMT). �e essential optimization 
problem with inequality constrained of this way outlined as

�is problem is regenerate into unconstrained minimization 
technique by constructing a function of the shape

where �휇 → 0 and �퐵(�푥) is defined by [1]:

�erefore, we can rewrite the Equation (2) as follows

�e derivatives of this functions are ∇�푓(�푥) and ∇�푐�(�푥), for �푖 = 1, ⋅ ⋅ ⋅ , �푛 are linear independent, so that

Now we turn to the second part parallel to the importance of 
the previous part, which is unconstrained optimization tech-
nique and let us know the problem (2), where �휑: �푅� → �푅 is a 
real-valued continuous and scalable derivation function. �e 
iterative is

whereas �� is step-length. �e new search direction ��푘+1 is:

�e value of the derivative function at the current point is �푔(�푥�푘+1) = ∇�휑(�푥�푘+1, �휇�푘+1) and �� is a positive scalar called the 
conjugate gradient parameter.

(1)min�푓(�푥) s.t. �푐�(�푥) ≤ 0 �푖 = 1, ⋅ ⋅ ⋅ �푚.

(2)�휑(�푥, �휇) = �푓(�푥) + �휇�퐵(�푥),

(3)�퐵(�푥) = �푚∑
�푗=1

1�푐�푗(�푥) .

(4)�휑(�푥, �휇) = �푓(�푥) + �휇 �푚∑
�푗=1

1�푐�푗(�푥) .

(5)∇�휑(�푥, �휇) = ∇�푓(�푥) + �휇 �푚∑
�푗=1

( −1
�푐2�푗 (�푥))∇�푐�푗(�푥).

(6)�푥�푘+1 = �푥�푘 + �훼�푘�푑�푘,

(7)�푑�푘+1 = {−∇�휑(�푥�푘+1, �휇�푘+1) for k = 0,−∇�휑(�푥�푘+1, �휇�푘+1) + �훽�푘�푑�푘 for �푘 ≥ 1.
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�ere are some known formulas of �� are from  
Hestenes–Stiefel (HS) [2], Fletcher–Reeves (FR) [3], Polak–
Ribière (PR) [4], Liu–Storey (LS) [5] and Dai–Liao (DL) [6].

In the existing convergence analysis and implementation 
of the CG technique, the weak Wolfe condition [7] are defined 
as:

and 0 < �훿 < �휎 < 1.
By updating one of the conditions also strong Wolfe 

conditions [7] consist of (8) and

Furthermore, the sufficient descent property, namely

�e constant c is a positive number that satisfies the descent 
condition.

2. A Modified Dai–Liao Three-Term CG 
Technique

Many researchers have provided different updates which are 
suitable for the parameter of Dai–Liao (DL) CG-method con-
sisting of:

Recall the work of Liveries and Pintelas [8] which they forward 
a new update to the parameter ���

�  which was based on the 
modified secant equation and they replaced �� with this new 
one. Other researchers, e.g. Babaie-Kafaki and Ghanbari [9] 
present in their work a derivation of two modified CG-methods 
which are based on Perry’s work; they got better numerical 
results than the original one given by DL. �e researchers 
continued various updates of the DL-parameter in order to 
obtain some suitable formulas. See for example [10–12]. 
Moreover, the researcher’s Zhang et al. [13] prompt a three-
term CG-technique based mostly of the DL-technique as 
follows:

�is direction satisfying the condition (�푑�푇
�푘+1�푔�푘+1 ≤ −�푐1‖�푔�푘+1‖2) 

for all �. Now, exploitation (13) within the constrained 
CG-technique outlined in (1)–(4) yields

(8)�휑(�푥�푘+1, �휇�푘+1) − �휑(�푥�푘, �휇�푘) ≤ �훿�훼�푘∇�휑(�푥�푘, �휇�푘)�푇�푑�푘,
(9)∇�휑(�푥�푘+1, �휇�푘+1)�푇�푑�푘 ≥ �휎∇�휑(�푥�푘, �휇�푘)�푇�푑�푘,

(10)
�儨�儨�儨�儨�儨∇�휑(�푥�푘+1, �휇�푘+1)�푇�푑�푘

�儨�儨�儨�儨�儨 ≤ −�휎∇�휑(�푥�푘, �휇�푘)�푇�푑�푘.

(11)�푑�푇
�푘+1∇�휑(�푥�푘+1, �휇�푘+1) ≤ −�푐����∇�휑(�푥�푘+1, �휇�푘+1)����2.

(12)�훽�퐷�퐿
�푘 = �푔�푇

�푘+1(�푦�푘 − �푡�푠�푘)�푠�푇�푘�푦�푘
.

(13)

�푑�푘+1 = −�푔�푘+1 + �푔�푇
�푘+1(�푦�푘 − �푡�푠�푘)�푠�푇�푘�푦�푘

�푠�푘 − �푔�푇
�푘+1�푑�푘�푠�푇�푘�푦�푘

(�푦�푘 − �푡�푠�푘), �푡 > 0.

(14)

�푑�푘+1 = − ∇�휑(�푥�푘+1, �휇�푘+1) + ∇�휑(�푥�푘+1, �휇�푘+1)�푇(�푦�푘 − �푡�푠�푘)�푠�푇�푘�푦�푘
�푠�푘

− �푠�푇�푘∇�휑(�푥�푘+1, �휇�푘+1)�푠�푇�푘�푦�푘
(�푦�푘 − �푡�푠�푘).

By updating this formula using the modified techniques of 
Dai–Liao CG in (14), we obtain:

When rewriting the new search direction this is as follows:

where

Since ��
� ��>0 (by the strong Wolfe condition), through these 

inequality and Quasi Newton condition we get:

this means that ��푘+1 is a positive definite matrix.

3. New Theorem

�e new direction ��푘+1 in (15) satisfying the sufficiently 
descent condition (11).

Proof.  Now multiply each side of (15) by ∇�휑(�푥�푘+1, �휇�푘+1) that 
capable for unconstrained optimization then we have a ten-
dency to get

Let �푠� = �훼��푑�

(15)

�푑�푘+1 = − �푠�푇�푘 (�푦�푘 − �푡�푠�푘)�푠�푇�푘�푦�푘
∇�휑(�푥�푘+1, �휇�푘+1)

+ ∇�휑(�푥�푘+1, �휇�푘+1)�푇(�푦�푘 − �푡�푠�푘)�푠�푇�푘�푦�푘
�푠�푘

− �푠�푇�푘∇�휑(�푥�푘+1, �휇�푘+1)�푠�푇�푘�푦�푘
(�푦�푘 − �푡�푠�푘).

(16)�푑�푘+1 = −�푄�푘+1∇�휑(�푥�푘+1, �휇�푘+1),

(17)�푄�푘+1 = 1
�푠�푇�푘�푦�푘

[�푠�푇�푘 (�푦�푘 − �푡�푠�푘).�퐼 + (�푦�푘�푠�푇�푘 − �푠�푘�푦�푇
�푘 )].

(18)�푄�푘+1�푠�푘 = �푦�푘 ⇒ �푠�푇�푘�푄�푘+1�푠�푘 > 0,

(19)

∇�휑(�푥�푘+1, �휇�푘+1)�푇�푑�푘+1

= −(�푦�푘 − �푡�푠�푘)�푇�푠�푘
�푠�푇�푘�푦�푘

‖∇�휑(�푥�푘+1, �휇�푘+1)‖2

+ (�푦�푘 − �푡�푠�푘)�푇∇�휑(�푥�푘+1, �휇�푘+1)
�푠�푇�푘�푦�푘

∇�휑(�푥�푘+1, �휇�푘+1)�푠�푘
− �푠�푇�푘∇�휑(�푥�푘+1, �휇�푘+1)

�푠�푇�푘�푦�푘
∇�휑(�푥�푘+1, �휇�푘+1)(�푦�푘 − �푡�푠�푘)

= −[ �푦�푇
�푘 �푠�푘�푦�푇
�푘 �푠�푘 ‖∇�휑(�푥�푘+1, �휇�푘+1)‖2 − �푡 ‖�푠�푘‖2�푦�푇

�푘 �푠�푘 ‖∇�휑(�푥�푘+1, �휇�푘+1)‖2]
= [−1 + �푡 ‖�푠�푘‖2�푦�푇

�푘 �푠�푘 ]‖∇�휑(�푥�푘+1, �휇�푘+1)‖2.

(20)

∇�휑(�푥�푘+1, �휇�푘+1)�푇�푑�푘+1 = [−1 + �푡�훼2
�푘‖�푑�푘‖2�훼�푘�푦�푇

�푘 �푑�푘
]‖∇�휑(�푥�푘+1, �휇�푘+1)‖2

= [−1 + �푡�훼�푘
‖�푑�푘‖2�푦�푇
�푘 �푑�푘

]‖∇�휑(�푥�푘+1, �휇�푘+1)‖2.
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�e scalar ���
�  is known, this means (�푑� = −�푔�). Moreover, 

when multiply the other end of the direction by �� we get:

Where �푐 = −(1 − �푡�훼�) (is a positive constant). Now, we have

which can be written differently

and �(��푘+1) is the Barrier function at point �푘 + 1.
�en depending on one of Karush–Kuhn–Tucker, KKT’s 

[14] optimal conditions and some regularity conditions of [15] 
such that if ∇�푐(�푥)��푑 ≤ 0 as well as formula

So, when �휇�푘+1 → 0 and in order to get a min of the function �푓(�푥) we take the limit for the function �휑(�푥, �휇)when�휇 → 0, in 
form:

we get the required, a sufficient descent direction of our new 
algorithm.� ☐

Lemma 1 [16].  �e new direction ��푘+1 defined in (15) is 
satisfying the conjugacy condition.

Proof.  Let �̃푦 = (�푦� − �푡�푠�)

(21)
�푦�푇
�푘 �푑�푘 = ∇�휑(�푥�푘+1, �휇�푘+1)�푇�푑�푘 − ∇�휑(�푥�푘, �휇�푘)�푇�푑�푘

= ∇�휑(�푥�푘+1, �휇�푘+1)�푇�푑�푘 + ‖�푑�푘‖2 ≥ ‖�푑�푘‖2

(22)

∇�휙(�푥�푘+1, �휇�푘+1)�푇�푑�푘+1 ≤ [−1 + �푡�훼�푘

�����푑�푘
����2�����푑�푘
����2]

����∇�휙(�푥�푘+1, �휇�푘+1)����2
≤ [−1 + �푡 �훼�푘]����∇�휙(�푥�푘+1, �휇�푘+1)����2.

(23)

∇�휑(�푥�푘+1, �휇�푘+1)�푇�푑�푘+1

≤ −�푐����∇�휑(�푥�푘+1, �휇�푘+1)����2
(∇�푓(�푥�푘+1) − �휇�푘+1 �푚∑

�푗=1

1
�푐2�푗 (�푥�푘+1)∇�푐�푗(�푥�푘+1))

�푇

�푑�푘+1

≤ −�푐[∇�푓(�푥�푘+1) + �휇�푘+1 �푚∑
�푗=1

( −1
�푐2�푗 (�푥�푘+1))∇�푐�푗(�푥�푘+1)]

2

(∇�푓(�푥�푘+1) − �휇�푘+1 �푚∑
�푗=1

1
�푐2�푗 (�푥�푘+1)∇�푐�푗(�푥�푘+1))

�푇

�푑�푘+1

≤ −�푐(∇�푓(�푥�푘+1)�푇∇�푓(�푥�푘+1) − 2�휇�푘+1∇�푓(�푥�푘+1)�푇
�푚∑
�푗=1

1
�푐2�푗 (�푥�푘+1)∇�푐�푗(�푥�푘+1)

+�휇2
�푘+1(

�푚∑
�푗=1

1
�푐2�푗 (�푥�푘+1)∇�푐�푗(�푥�푘+1)�푇

�푚∑
�푗=1

1
�푐2�푗 (�푥�푘+1)∇�푐�푗(�푥�푘+1))),

(24)(∇�푓(�푥�푘+1) − �휇�푘+1 �푚∑
�푗=1

1
�푐2�푗 (�푥�푘+1)∇�푐�푗(�푥�푘+1))

�푇

�푑�푘+1

≤ −�푐[∇�푓(�푥�푘+1) + �휇�푘+1∇�퐵(�푥�푘+1)]2,

(25)�휇�푘+1 = �휇�푘10 , �휇0 > 0.

(26)∇�푓(�푥�푘+1)�푇�푑�푘+1 ≤ −�푐����∇�푓(�푥�푘+1)����2,

where �휙 > 0 and this condition is equal to (�푦�푇
�푘 �푑�푘+1 = −�푡�푠�푇�푘�푔�푘+1) 

where

� ☐

4. Global Convergence Property

In this part of the article, we will address the convergence 
analysis of the new algorithm where the following assumptions 
are o�en used in CG techniques.

Assumptions [17] and [18]. 

(i) �Let the level set �푆 = {�푥 : �휙(�푥, �휇) ≤ �휙(�푥0, �휇)} bounded 
i.e., there exists a constant q > 0 such that 

(ii) �Clearly there is some neighborhood � of �, the func-
tion � is continuously differentiable, and its gradient is 
Lipschitz continuous, i.e. there exists a constant �퐿 > 0 
such that

Assuming that conditions (i) and (ii) are satisfy, we can deduce 
that there exists a constant �훾 > 0 such that 

6. Global Convergence for New Theorem

Consider the new three-term CG-technique (15) which is sat-
isfying (13) and assume that the step-size �� satisfies (8) and 
(10) then

Proof.  �e new search direction is:

(27)

∼�푦�푇
�푘�푑�푘+1 = −

∼�푦�푇
�푘 �푠�푘�푦�푇
�푘 �푠�푘

∼�푦�푇
�푘∇�휑(�푥�푘+1, �휇�푘+1) +

∼�푦�푇
�푘∇�휑(�푥�푘+1, �휇�푘+1)�푦�푇

�푘 �푠�푘 �̃푦�푇
�푘 �푠�푘

− �푠�푇�푘∇�휑(�푥�푘+1, �휇�푘+1)�푦�푇
�푘 �푠�푘 �̃푦�푇

�푘�푦�푘.

(28)

∼�푦�푇
�푘�푑�푘+1 = −

�������
∼�푦�������

2

�푦�푇
�푘 �푠�푘 �푠

�푇
�푘∇�휑(�푥�푘+1, �휇�푘+1) = −�휙�푠�푇�푘∇�휑(�푥�푘+1, �휇�푘+1),

(29)�푔�푘+1 = ∇�휑(�푥�푘+1, �휇�푘+1).

(30)‖�푥‖ ≤ �푞, ∀�푥 ∈ �푆.

(31)
�儩�儩�儩�儩∇�휙(�푥, �휇) − ∇�휙(�푦, �휇)�儩�儩�儩�儩 ≤ �퐿�儩�儩�儩�儩�푥 − �푦�儩�儩�儩�儩, ∀�푥, �푦 ∈ �푁.

(32)�儩�儩�儩�儩∇�휙(�푥, �휇)�儩�儩�儩�儩 ≤ �훾.

(33)lim
�푘→∞

‖∇�휑(�푥�푘+1, �휇�푘+1)‖ = 0.

(34)

�儩�儩�儩�儩�푑�푘+1
�儩�儩�儩�儩 ≤

�儨�儨�儨�儨�푦�푘 − �푡�푠�푘�儨�儨�儨�儨�儩�儩�儩�儩�푠�푘�儩�儩�儩�儩�儩�儩�儩�儩�푦�푘
�儩�儩�儩�儩�儩�儩�儩�儩�푠�푘�儩�儩�儩�儩

�儩�儩�儩�儩∇�휑(�푥�푘+1, �휇�푘+1)�儩�儩�儩�儩
+ �儨�儨�儨�儨�푦�푘 − �푡�푠�푘�儨�儨�儨�儨�儩�儩�儩�儩�푠�푘�儩�儩�儩�儩�儩�儩�儩�儩�푦�푘

�儩�儩�儩�儩�儩�儩�儩�儩�푠�푘�儩�儩�儩�儩
�儩�儩�儩�儩∇�휑(�푥�푘+1, �휇�푘+1)�儩�儩�儩�儩

+ �儩�儩�儩�儩∇�휑(�푥�푘+1, �휇�푘+1)�儩�儩�儩�儩�儩�儩�儩�儩�푠�푘�儩�儩�儩�儩�儨�儨�儨�儨�푦�푘 − �푡�푠�푘�儨�儨�儨�儨�儩�儩�儩�儩�푦�푘
�儩�儩�儩�儩�儩�儩�儩�儩�푠�푘�儩�儩�儩�儩

≤ (�儩�儩�儩�儩�푦�푘
�儩�儩�儩�儩 + �푡�儩�儩�儩�儩�푠�푘�儩�儩�儩�儩)(3�儩�儩�儩�儩∇�휑(�푥�푘+1, �휇�푘+1)�儩�儩�儩�儩�儩�儩�儩�儩�푦�푘

�儩�儩�儩�儩 ).
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the number of perform function evaluations, NOI denotes the 
number of iterations required to minimize the test problem 
and NOC denotes the number of constrained evaluations. We 
adopt the performance profiles given by Dolan and More [21].

�e following three forms have the task of clarifying the 
performance of the algorithm more clearly as follows:

	(i)	� Figure 1 illustrates the activity of the new algorithm 
in calculating the number of function values.

	(ii)	� Figure 2 shows the level of improvement of the 
number of iterations.

	(iii)	� Figure 3 illustrates the efficiency of the new algorithm 
in the calculation of constraints.

To measure the percentages of optimization for better accuracy 
we give the following Table 1 showing the percentage of effec-
tiveness of the new algorithm and the efficiency of the number 
of updates to reach the optimal solution.

From the last Table 1, it is evident that the new proposed 
constrained CG-technique formulated in (15) outdo the 

From Lipschitz condition and

Hence, by taking the summation of the search direction we 
get:

�is means that (33) is true.� ☐

7. Numerical Experiments

In order to assess the performance of the planned new algo-
rithm outlined in (15). �e new constrained CG technique is 
checked over thirty nonlinear-selected test functions (see the 
Appendix of [1, 19, 20] for the details of those test problems). 
For all cases the stopping criterion is taken to be

�e comparative performance of all thought of algorithms is 
evaluated by considering NOF, NOI, NOC where NOF denotes 

(35)

�휇‖�푠�푘‖2 ≤ �푦�푇
�푘 �푠�푘 ≤ �퐿‖�푠�푘‖ ≤ (�퐿‖�푠�푘‖ + �푡‖�푠�푘‖)( 3�훾�휇‖�푠�푘‖)

≤ (�퐿 + �푡)(3�훾�휇 ) = �푟.

(36)∑
�푘≥1

1
‖�푑�푘+1‖2 ≥ 1�푟 ∑

�푘≥1
1 = ∞.

(37)

�儩�儩�儩�儩∇�휑(�푥�푘+1, �휇�푘+1)�儩�儩�儩�儩 ≤ 0.000001 or �儨�儨�儨�儨�儨�儨�儨�儨�儨
�휑(�푥�푘+1, �휇�푘+1) − �휑(�푥�푘, �휇�푘)�휑(�푥�푘+1, �휇�푘+1)

�儨�儨�儨�儨�儨�儨�儨�儨�儨≤ 0.000001.
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Figure 1: Performance profiles based on function evaluation.

Table 1:  Percentage performance of algorithm (15) against  
algorithm (13).

Tools Algorithm (13) Zhang algorithm New algorithm (15)
NOF 100% 40.35
NOI 100% 52.84
NOC 100% 92.43
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Figure 2: Performance profiles based on number of iterations.
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Figure 3: Performance profiles based on number of constrained.
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[12] � M. Y. Waziri, K. Ahmed, and J. Sabi’u, “A Dai–Liao conjugate 
gradient method via modified secant equation for system of 
nonlinear equations,” Arabian Journal of Mathematics, 2019.

[13] � J. Zhang, Y. Xiao, and Z. Wei, “Nonlinear conjugate gradient 
methods with sufficient descent condition for large-scale 
unconstrained optimization,” Mathematical Problems in 
Engineering, vol. 2009, Article ID 243290, 16 pages, 2009.

[14] � M. Freund Robert, Optimality Condition for Constrained 
Optimization Problems, Massachusetts Institute of Technology 
(K.K.T.), 2004.

[15] � D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 
2nd edition, 1999.

[16] � G. Li, C. Tang, and Z. Wei, “New conjugacy condition and 
related new conjugate gradient techniques for unconstrained 
optimization,” Journal of Computation and Applied Mathematics, 
vol. 202, pp. 523–539, 2007.

[17] � N. Andrei, “A modified Ribière–Polyak conjugate gradient 
algorithm for unconstrained optimization,” Optimization,  
vol. 60, no. 12, pp. 1457–1471, 2011.
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standard three-term CG-technique formulated in (12) in 
about (59)% NOF; (47)% in NOI and (7)% in NOC, 
respectively.

Data Availability

�e data used the support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

�e authors declare that they have no conflicts of interest.

Acknowledgments

�e research is supported by College of Computer Sciences 
and Mathematics, University of Mosul, Republic of Iraq, under 
Project No. 6378368.

References

  [1] � S. S. Rao, Engineering Optimization �eory and Practice, John 
Wiley & Sons Inc., Hoboken, New Jersey, Canada, 4th edition, 
2009.

  [2] � M. R. Hestenes and E. Stiefel, “Techniques of conjugate gradients 
for solving linear system,” Journal of Research of the National 
Bureau of Standards, vol. 49, pp. 409–436, 1952.

  [3] � R. Fletcher and C. M. Reeves, “Function minimization by 
conjugate gradients,” �e Computer Journal, vol. 7, pp. 149–154, 
1964.

  [4] � E. Polak and G. Ribière, “Note sur la convergence de méthodes 
de directions conjuguées,” ESAIM, Mathematical Modeling and 
Numerical Analysis, vol. 3, pp. 35–43, 1969.

  [5] � Y. Liu and C. Storey, “Efficient generalized conjugate gradient 
algorithms, part1: theory,” Journal of Optimization �eory and 
Applications, vol. 69, pp. 129–137, 1991.

  [6] � Y. Dai and L. Z. Liao, “New conjugacy conditions and related 
nonlinear conjugate gradient methods,” Applied Mathematical 
Optimization, vol. 43, no. 1, pp. 87–101, 2001.

  [7] � P. Wolfe, “Convergence condition for ascent methods. II: some 
corrections,” SIAM Review, vol. 13, pp. 185–188, 1971.

  [8] � I. E. Liveries and P. Pintelas, “A descent Dai–Liao conjugate 
gradient method based on a modified secant equation and 
its global convergence,” ISRN Computational Mathematics,  
vol. 2012, Article ID 435495, 8 pages, 2012.

  [9] � S. Babaie-Kafaki and R. Ghanbari, “�e Dai–Liao nonlinear 
conjugate gradient method with optimal parameter choices,” 
European Journal of Operational Research, vol. 234, no. 3, 
pp. 625–630, 2014.

[10] � M. R. Arazm, S. Babaie-Kafaki, and R. Ghanbari, “An extended 
Dai–Liao conjugate gradient method with global convergence 
for nonconvex functions,” Glasnik Matematicki, vol. 52, no. 2, 
pp. 361–375, 2017.

[11] � S. Babaie-Kafaki and R. Ghanbari, “A descent family of Dai–Liao  
conjugate gradient methods,” Optimization Methods and 
So�ware, vol. 29, no. 3, pp. 583–591, 2014.


	Spectral Three-Term Constrained Conjugate Gradient Algorithm for Function Minimizations
	1. Introduction
	2. A Modified Dai–Liao Three-Term CG Technique
	3. New Theorem
	4. Global Convergence Property
	6. Global Convergence for New Theorem
	7. Numerical Experiments
	Data Availability
	Conflicts of Interest
	Acknowledgments
	References


