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A general Ostrowski’s type inequality for double integrals is given. We utilize function whose partial derivative of order four exists

and is bounded.

1. Introduction

In 1938, Ostrowski [1] introduced the following integral
inequality.

Theorem 1. Let f: [a,b] — R be continuous mapping on
[a,b] and differentiable on (a,b), whose derivative f !
(a,b) — Risbounded on (a,b), i.e., ||f'||OO = supte[a’bllf’(tﬂ
< 00, then for all x € [a,b]

@t [ o
2 0

1, G-@rb)2) ,

- [T - (ba—+a)2 ](b_a) 171

The constant 1/4 is sharp in the sense that it cannot be
replaced by a smaller one.

In 1975, Milovanovi¢ [2] proposed the following general-
ization of (1) for a function f of several variables whose first
order partial derivatives are bounded.

Theorem 2. Let f: R — R be a differentiable function
defined on D and let [0f [0x;| < M; (M; > 0;i = 1,...,m)
in D. Then, for every X = (xy,...,X,,) € D,
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In 1998, Barnett and Dragomir [3] proved the following
Ostrowski type inequality for mappings of two variables with
bounded second order partial derivatives.

Theorem 3. Let f: [a,b] x [¢,d] — R continuous on [a, b] x
[, d], f” = Bzf/axay exists on (a, b) x (¢, d) and is bounded,

i.e.,

o’ f (x.y)

”fs”t 0 0x0y

sup
(x,y)€(a,b)x(c,d)

< 00, (3)

Then we have the inequality

Lb f £ (s,) dsdt - [(b _a) Ld £t dt

b
+(d—c)L f(s,y)dS—(d—C)(b—a)f(x’)’)H
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forall (x,y) € [a,b] x [c,d].

(4)
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In [4], Xue et al. derive the following inequality of
Ostrowski type.

Theorem 4. Let f: [a,b] x [c,d] — R be an absolutely
continuous function such that the partial derivatives of order
two exist and suppose that there exist constants y,T € R with
y < Bzf(t, s)/otos < T for all (t,s) € [a,b] x [c,d]. Then we
have
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forall (x,y) € [a+ A((b—-a)/2),b-A(b-a)/2)] x [c+
A(d-¢)/2),d - AM(d —¢)/2)] and A € [0,1].

More recently, Sarikaya et al. [5] establish weighted
Ostrowski type inequalities considering function whose sec-
ond order partial derivatives are bounded as follows.

Theorem 5. Let f: [a,b] x [¢c,d] — R be an absolutely
continuous function such that the partial derivatives of order
two exist and are bounded, i.e.,

*f (t,s)
otos

*f (t,s)
otos
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for all (t,s) € [a,b] x [c,d].Then we have
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where
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mi(a,b):J fw)dt, i=0,1,...,

_ m; (a,b)
p(a,b) = (D)’ 8)
o (ab) = M@ — i (a.b).

m, (a,b)

For other related work, we refer the reader to [6-15].

In this paper, motivated by the ideas in both [4, 5],
we shall derive a new inequality of Ostrowski’s type similar
to the inequalities (5) and (7), involving functions of two
independent variables.

2. Main Results

In order to introduce our main results, we commence with
the following lemma.

Lemma 6. Let f: [a,b] x [c,d] — R be an absolutely
continuous function such that the partial derivative of order 4
exists for all (x,y) € [a+ h((b - a)/2),b - h((b - a)/2)] x
[c + h((d - ¢)/2),d — h((d - ¢)/2)] and h € [0,1]. Then
for any two mappings K,(t;x) : [a,b] X [a,b] — R and
Ky(s;9) : [c,d] x [c,d] — R, where

[t—<a+hb;a>]2, t € [a,x]

[t—(b—hb;a)]z, t € (x,b]

Ky (tx) = )

N = =
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and
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holds.

Proof. By definitions of K| (¢; x) and K,(s; y) in both (9) and

(10), we have

b a'f (t, 1
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For I,, integration by parts yields
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Similarly, I,, I5, and I, can be obtained.
Thus, by adding I, I,, I5, and I, we easily deduce

b d *f(t,
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-fts(t,s)dsdmjjjj[ (b L= a)]
'[5_< - d;C)]ftS(t:s)det.

By further algebraic manipulations and assuming result
by [4], the proof of Lemma 6 is completed. O

(14)

Theorem 7. Let f: [a,b] x [c,d] — R such that f €
C*([a,b] x [c,d]) be an absolutely continuous function such
that the partial derivative of order 4 exists and is bounded; i.e.,

o f (t,5) o'f (t,9)
Btzasz o B (x,)€(@a,b)x(c,d) Btzasz
for all (t,s) € [a,b] x [c,d]. Then for all (x, y) € [a+ h((b -

a)/2),b = h((b - a)/2)] x [c + h((d - ¢)/2),d — h((d - ¢)/2)]
and h € [0, 1], we have

(15)

() < [

(l—h)(b a) (1—h) (b a)’

<
)
<

(l—h)(d—c) (1—h) (d—C)
c+d a4f(t,s)
+(y_ 2 ))] oot |,

where the functional E(f; h) is given by (11).

Proof. By considering (11), we have

b d o' f(t,s
)= [ [ w0k () Golasan
b rd o*f (t,s)
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+ +|x—-— ,
2 12 2
and
d h3 5
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(19)
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L L) ( { +[y__]>.
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Now, substituting (18), (19) into (17) gives (16) and, hence,
completes the proof. O

Corollary 8. Under the assumption of Theorem 7 with h = 0,
we have

’f(xy <a+b-x><c+d-y>fts(x y)

+<a+b—x)ft(x,y)+<¥—)’>fs(x>J’)

2

1 c+d
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: b (b- a)
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)5 03)
0t20s?

Corollary 9. Under the assumption of Theorem 7 with h = 0,
x=(a+b)/2,and y = (c +d)/2 we have

Mb C;d)_[(bia) th<t’¥>dt

’ (dic) ff<a;b’s>ds] " m

ne:

(21)
b d
j J £(ts) dsdt
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- 576 01205

Corollary10. Under the assumption of Theorem 7 with h = 0,
x=(a+b)/4,and y = (c +d)/4 we have

‘f<a+b c+d>+

4

(a+b)(c+d) <a+b c+d>
16 fus ’

<a+b>ft<a+b,czd>+<czd>4 4
) A 455

(b-a) (¢ a+b
+(d—c)jc fz( 1 ,s)ds]

5
1 b c+d

_[(b—a)Lf<t’ 4 )dt
1 d a+b

+(d—c>Lf< 1 ’5>"’5]

1 b (b-a)
fo-a@- C)J j f<t5)d5dt<_[ 2
+(a+b)2 (d—c)2+(c+d)2 o'f (t,s)

16 ot?os* ||
(22)

Remark 11. In Corollaries 8, 9, and 10 we assume that the
involved integrals can more easily be computed than the
original double integral.
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