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We consider a damped Kirchhoff-type equation with Dirichlet boundary conditions. The objective is to show the Fréchet
differentiability of a nonlinear solution map from a bilinear control input to the solution of a Kirchhoff-type equation. We use
this result to formulate the minimax optimal control problem. We show the existence of optimal pairs and find their necessary
optimality conditions.

1. Introduction

Let Ω be an open bounded set of R𝑛(𝑛 ≤ 3) with a smooth
boundary Γ. We set 𝑄 = (0, 𝑇) × Ω, Σ = (0, 𝑇) × Γ
for 𝑇 > 0. We consider a strongly damped Kirchhoff-type
equation described by the followingDirichlet boundary value
problem:

𝑦󸀠󸀠 − (1 + ∫
Ω

󵄨󵄨󵄨󵄨∇𝑦󵄨󵄨󵄨󵄨2 𝑑𝑥)Δ𝑦 − 𝜇Δ𝑦󸀠 = U𝑦 + 𝑓 in 𝑄,
𝑦 = 0 on Σ,

𝑦 (0, 𝑥) = 𝑦0 (𝑥) ,
𝑦󸀠 (0, 𝑥) = 𝑦1 (𝑥)

in Ω,

(1)

where 󸀠 = 𝜕/𝜕𝑡, 𝑦 is the displacement of a string (or
membrane), 𝜇 > 0, 𝑓 is a forcing function, and U is a
bilinear forcing term, which is usually a bilinear control
variable that acts as a multiplier of the displacement term.| ⋅ | denotes the Euclidean norm on R𝑛. As is well known by
Kirchhoff [1], the nonlinear part of (1) represents an extension
effect of a vibrating string (or membrane). Many kinds of
Kirchhoff-type equations have been research subject of many

researchers (see Arosio [2], Spagnolo [3], Pohozaev [4], Lions
[5], Nishihara and Yamada [6], and references therein).

Fromaphysical perspective, the damping of (1) represents
an internal friction in an elastic string (or membrane) that
makes the vibration smooth. Therefore, we can obtain the
well-posedness in the Hadamard sense under sufficiently
smooth initial conditions (see [7]). Based on this result,
Hwang and Nakagiri [8] set up optimal control problems
developed by Lions [9] with (1) using distributed forcing
controls. They proved the Gâteaux differentiability of the
quasilinear solution map from the control variable to the
solution and applied the result to derive the necessary opti-
mality conditions for optimal control in some observation
cases.

It is important and challenging to extend the optimal
control theory to practical nonlinear partial differential
equations. There are several studies on semilinear partial
differential equations (see [10]). Indeed, the extension of
the theory to quasilinear equations is much more restric-
tive because the differentiability of a solution map is quite
dependent on the model due to the strong nonlinearity.
Only a few studies have investigated this topic (see [8, 11,
12]). Thus, the differentiability of a solution map in any
sense is important to study optimal control or identification
problems. In most cases, Gâteaux differentiability may be
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enough to solve a quadratic cost optimal control problem
as in [8]. However, to study the problem in more general
cost function like nonquadratic or nonconvex functions, the
Fréchet differentiability of a solution map is more desirable.

In this paper, we show the Fréchet differentiability of the
solution map of (1): U 󳨀→ 𝑦 from the bilinear control input
variables to the solutions of (1). In the author’s knowledge,
the Fréchet differentiability of a quasilinear solution map
is not studied yet. Based on the result, we construct and
solve a bilinear minimax optimal control problem on (1).
For the study, we refer to the linear results from Belmiloudi
[13], in which the author considered some linear parabolic
partial differential equations as the state equations for the
problem.Minimax control framework has been used bymany
researchers for various control problems. There are many
literatures related to the minimax control problems. We can
refer to just a few: Arada and Raymond [14], Lasiecka and
Triggiani [15], and Li and Yong [16].

In this paper, the minimax control framework was
employed to take into account the undesirable effects of
system disturbance (or noise) in control inputs such that a
cost function achieves its minimum even when the worst
disturbances of the system occur. For this purpose, we replace
the bilinear multiplier U in (1) by 𝑢 + V, where 𝑢 is a
control variable that belongs to the admissible control set
U𝑎𝑑 and V is a disturbance (or noise) that belongs to the
admissible disturbance set V𝑎𝑑. We introduce the following
cost function to be minimized within U𝑎𝑑 and maximized
withinV𝑎𝑑:

𝐽 (𝑢, V) = 12 󵄩󵄩󵄩󵄩C𝑦 − 𝑌𝑑󵄩󵄩󵄩󵄩
2
𝑀 + 𝛼2 ‖𝑢‖2𝐿2(𝑄) −

𝛽
2 ‖V‖2𝐿2(𝑄) , (2)

where𝑦 is a solution of (1),𝑀 is aHilbert space of observation
variables,C is an operator from the solution space of (1) to𝑀,𝑌𝑑 ∈ 𝑀 is a desired value, and the positive constants 𝛼 and 𝛽
are the relative weights of the second and third terms on the
RHS of (2).

As mentioned, another goal of this paper is to find and
characterize the optimal controls of the cost function (2)
for the worst disturbances through control input in (1). This
leads to the problem of finding the saddle points of the cost
function (2). First, we prove the existence of an admissible
control 𝑢∗ ∈ U𝑎𝑑 and disturbance (or noise) V∗ ∈ V𝑎𝑑 such
that (𝑢∗, V∗) is a saddle point of the functional 𝐽(𝑢, V) of (2).
That is,

𝐽 (𝑢∗, V) ≤ 𝐽 (𝑢∗, V∗) ≤ 𝐽 (𝑢, V∗) ,
∀ (𝑢, V) ∈ U𝑎𝑑 ×V𝑎𝑑. (3)

Secondly, we derive an optimality condition for (𝑢∗, V∗) in
(3). In this paper, we use the terminology optimal pair to
represent such a saddle point (𝑢∗, V∗) in (3). To prove the
existence of an optimal pair (𝑢∗, V∗) satisfying (3), we follow
the arguments given by Belmiloudi [13], in which the author
employed the minimax theorem in infinite dimensions given
by Barbu and Precupanu [17]. Next, we derive the necessary
optimal conditions for some observation cases that should be
satisfied by the optimal pairs in these observation cases. To

derive these conditions, we refer to the studies about bilinear
optimal control problems where the state equation is linear
partial differential equations such as the reaction diffusion
equation or Kirchhoff plate equation (see [13, 18–20] and
references therein).

We now explain the content of this paper. In Section 2,
we prove the well-posedness of (1) in the Hadamard sense
under sufficiently smooth initial conditions, including a
stability estimate from the data space to the solution space.
In Section 3, we shall show that the solution map of (1):
U 󳨀→ 𝑦 is Fréchet differentiable. In Section 4, we shall study
the minimax optimal control problems: By using the Fréchet
differentiability of the solution maps 𝑢 󳨀→ 𝑦 and V 󳨀→ 𝑦,
we prove that the maps 𝑢 󳨀→ 𝐽 and V 󳨀→ 𝐽 are convex
and concave, respectively, under the assumptions that𝛼, 𝛽 are
sufficiently large. And with an assumption on the operatorC
in (2), we prove the maps 𝑢 󳨀→ 𝐽 and V 󳨀→ 𝐽 are lower and
upper semicontinuous, respectively. As a result, we can prove
the existence of an optimal pair. Next, we derive the necessary
optimal conditions for some practical observation cases by
employing associate adjoint systems. Especially, we use a first-
orderVolterra integrodifferential equation as a proper adjoint
equation in the velocity’s observation case, which is another
novelty of this paper.

2. Preliminaries

Throughout this paper, we use 𝐶 as a generic constant. Let𝑋
be a Banach space. We denote its topological dual as 𝑋󸀠 and
the duality pairing between 𝑋󸀠 and 𝑋 by ⟨⋅, ⋅⟩𝑋󸀠 ,𝑋. We also
introduce the following abbreviations:

𝐿𝑝 = 𝐿𝑝 (Ω) ,
𝐻𝑘 = 𝐻𝑘 (Ω) ,
‖⋅‖𝑝 = ‖⋅‖𝐿𝑝 ,

(4)

where 𝑝 ≥ 1. 𝐻𝑘0 is the completions of 𝐶∞0 (Ω) in 𝐻𝑘 for𝑘 ≥ 1. Let the scalar product on 𝐿2 be (⋅, ⋅)2. From Poincare’s
inequality and the regularity theory for elliptic boundary
value problems (cf. Temam [21, p. 150]), the scalar products
on𝐻10 and𝐷(Δ) = 𝐻2 ∩ 𝐻10 can be endowed as follows:

((𝜓, 𝜙))𝐻10 = (∇𝜓, ∇𝜙)2 , ∀𝜓, 𝜙 ∈ 𝐻10 ; (5)

((𝜓, 𝜙))𝐷(Δ) = (Δ𝜓, Δ𝜙)2 , ∀𝜓, 𝜙 ∈ 𝐷 (Δ) . (6)

Then we know that
󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐻10 = 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2 , ∀𝜓 ∈ 𝐻10 ,󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐷(Δ) = 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩2 , ∀𝜓 ∈ 𝐷 (Δ) .

(7)

The duality pairing between 𝐻10 and 𝐻−1 is denoted by⟨𝜙, 𝜓⟩1,−1. It is clear that
𝐷 (Δ) 󳨅→ 𝐻10 󳨅→ 𝐿2 󳨅→ 𝐻−1. (8)
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Each space is dense in the following one, and the injections
are continuous and compact. According to Adams [22], we
know that the embeddings

𝐻10 󳨅→ 𝐿𝑝,
(𝑖.𝑒., 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝑝 ≤ 𝐶 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2 , ∀𝜓 ∈ 𝐻10) , (1 ≤ 𝑝 < 6) ,

(9)

𝐷 (Δ) 󳨅→ 𝐶0 (Ω) ,
(𝑖.𝑒., 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩𝐶0(Ω) ≤ 𝐶 󵄩󵄩󵄩󵄩Δ𝜙󵄩󵄩󵄩󵄩2 , ∀𝜙 ∈ 𝐷 (Δ))

(10)

are compact when 𝑛 ≤ 3.
The solution space 𝑆(0, 𝑇) of (1) of strong solutions is

defined by

𝑆 (0, 𝑇) = {𝑔 | 𝑔 ∈ 𝐿2 (0, 𝑇;𝐷 (Δ)) , 𝑔󸀠
∈ 𝐿2 (0, 𝑇;𝐷 (Δ)) , 𝑔󸀠󸀠 ∈ 𝐿2 (𝑄)} (11)

which is endowed with the norm󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑆(0,𝑇)
= (󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐷(Δ)) + 󵄩󵄩󵄩󵄩󵄩𝑔󸀠󵄩󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐷(Δ)) + 󵄩󵄩󵄩󵄩󵄩𝑔󸀠󸀠󵄩󵄩󵄩󵄩󵄩2𝐿2(𝑄))

1/2 , (12)

where 𝑔󸀠 and 𝑔󸀠󸀠 denote the first and second order distribu-
tional derivatives of 𝑔.
Definition 1. A function 𝑦 is said to be a strong solution of (1)
if 𝑦 ∈ 𝑆(0, 𝑇) and 𝑦 satisfies

𝑦󸀠󸀠 (𝑡) − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑡)󵄩󵄩󵄩󵄩22) Δ𝑦 (𝑡) − 𝜇Δ𝑦󸀠 (𝑡)
= U (𝑡) 𝑦 (𝑡) + 𝑓 (𝑡) , 𝑎.𝑒. 𝑡 ∈ [0, 𝑇] ,

𝑦 (0) = 𝑦0,
𝑦󸀠 (0) = 𝑦1.

(13)

From Dautray and Lions [23, p.480] and Lions and
Magnes [24], we remark that

𝑆 (0, 𝑇) 󳨅→ 𝐶 ([0, 𝑇] ; 𝐷 (Δ)) ∩ 𝐶1 ([0, 𝑇] ;𝐻10) . (14)

The following variational formulation is used to define the
weak solution of (1).

Definition 2. A function 𝑦 is said to be a weak solution of
(1) if 𝑦 ∈ 𝑊(0, 𝑇) ≡ {𝑔 | 𝑔 ∈ 𝐿2(0, 𝑇;𝐻10 ), 𝑔󸀠 ∈𝐿2(0, 𝑇;𝐻10 ), 𝑔󸀠󸀠 ∈ 𝐿2(0, 𝑇;𝐻−1)} and 𝑦 satisfies
⟨𝑦󸀠󸀠 (⋅) , 𝜙⟩

−1,1
+ (1 + 󵄩󵄩󵄩󵄩∇𝑦 (⋅)󵄩󵄩󵄩󵄩22) (∇𝑦 (⋅) , ∇𝜙)2

+ 𝜇 (∇𝑦󸀠 (⋅) , ∇𝜙)
2
= ⟨U (⋅) 𝑦 (⋅) + 𝑓 (⋅) , 𝜙⟩−1,1

∀𝜙 ∈ 𝐻10 in the sense of D󸀠 (0, 𝑇) ,
𝑦 (0) = 𝑦0,
𝑦󸀠 (0) = 𝑦1.

(15)

The following is the well-known Gronwall inequality.

Lemma 3. Let 𝜂(⋅) be a nonnegative, absolutely continuous
function on [0, 𝑇], which satisfies the following differentiable
inequality for a.e. 𝑡 ∈ [0, 𝑇] :

𝜂󸀠 (𝑡) ≤ 𝜙 (𝑡) 𝜂 (𝑡) + 𝜓 (𝑡) , (16)

where 𝜙 and 𝜓 are nonnegative, summable functions on [0, 𝑇].
Then

𝜂 (𝑡) ≤ 𝑒∫𝑡0 𝜙(𝑠)𝑑𝑠 (𝜂 (0) + ∫𝑡
0
𝜓 (𝑠) 𝑑𝑠) . (17)

Proof. See Evans [25, p.624].

Throughout this paper, we will omit writing the integral
variables in the definite integral without any confusion.
Referring to [7] and the previous result of [8], we can
obtain the following theorem on existence, uniqueness, and
regularity of a solution of (1).

Theorem4. Assume that (𝑦0, 𝑦1, 𝑓) ∈ 𝐷(Δ)×𝐻10×𝐿2(𝑄), and
U ∈ 𝐿∞(𝑄).Then (1) has a unique strong solution 𝑦 ∈ 𝑆(0, 𝑇).
Moreover, the solution mapping 𝑝 = (𝑦0, 𝑦1, 𝑓,U) 󳨀→ 𝑦(𝑝)
of P ≡ 𝐷(Δ) × 𝐻10 × 𝐿2(𝑄) × 𝐿∞(𝑄) into 𝑆(0, 𝑇) is locally
Lipschitz continuous. Let 𝑝1 = (𝑦10 , 𝑦11 , 𝑓1,U1) ∈ P and 𝑝2 =(𝑦20 , 𝑦21 , 𝑓2,U2) ∈ P.The following is satisfied:

󵄩󵄩󵄩󵄩𝑦 (𝑝1) − 𝑦 (𝑝2)󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩Δ (𝑦10 − 𝑦20)󵄩󵄩󵄩󵄩󵄩22
+ 󵄩󵄩󵄩󵄩󵄩∇ (𝑦11 − 𝑦21)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝑓1 − 𝑓2󵄩󵄩󵄩󵄩2𝐿2(𝑄)
+ 󵄩󵄩󵄩󵄩U1 − U2

󵄩󵄩󵄩󵄩2𝐿∞(𝑄))1/2 ≡ 𝐶 󵄩󵄩󵄩󵄩𝑝1 − 𝑝2󵄩󵄩󵄩󵄩P ,
(18)

where 𝐶 > 0 is a constant depending on the data.

Proof. From [7], for each fixedU ∈ 𝐿∞(𝑄) in (1), we can infer
that (1) admits a unique strong solution 𝑦 ∈ 𝑆(0, 𝑇) under the
data condition (𝑦0, 𝑦1, 𝑓) ∈ 𝐷(Δ) × 𝐻10 × 𝐿2(𝑄).

Based on this result, for each 𝑝1 = (𝑦10 , 𝑦11 , 𝑓1,U1) ∈ 𝑃
and 𝑝2 = (𝑦20 , 𝑦21 , 𝑓2,U2) ∈ 𝑃, we prove the inequality (18).
For that purpose, we denote 𝑦1 − 𝑦2 ≡ 𝑦(𝑝1) − 𝑦(𝑝2) by 𝜓.
Then, from (1), we can know that 𝜓 satisfies the following:

𝜓󸀠󸀠 − (1 + 󵄩󵄩󵄩󵄩∇𝑦1󵄩󵄩󵄩󵄩22) Δ𝜓 − 𝜇Δ𝜓󸀠
= 𝜖 (𝜓) + U1𝜓 + (U1 − U2) 𝑦2 + 𝑓1 − 𝑓2 in 𝑄,

𝜓 = 0 on Σ,
𝜓 (0) = 𝑦10 − 𝑦20 ,
𝜓󸀠 (0) = 𝑦11 − 𝑦21

in Ω,

(19)

where

𝜖 (𝜓) = (󵄩󵄩󵄩󵄩∇𝑦1󵄩󵄩󵄩󵄩22 − 󵄩󵄩󵄩󵄩∇𝑦2󵄩󵄩󵄩󵄩22) Δ𝑦2
= (∇𝜓, ∇𝑦1 + ∇𝑦2)2 Δ𝑦2.

(20)
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In estimating𝜓 in (19), we can refer to the previous results [8,
Theorem 2.1] to obtain the following inequality:

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝜓 (𝑡)󵄩󵄩󵄩󵄩22 + ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩Δ (𝑦10 − 𝑦20)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩∇ (𝑦11 − 𝑦21)󵄩󵄩󵄩󵄩󵄩22
+ 󵄩󵄩󵄩󵄩(U1 − U2) 𝑦2 + 𝑓1 − 𝑓2󵄩󵄩󵄩󵄩2𝐿2(𝑄)) .

(21)

Since ‖𝑦2‖𝑆(0,𝑇) ≤ 𝐶(𝑦20 , 𝑦21 , 𝑓2) and 𝑆(0, 𝑇) 󳨅→ 𝐿2(𝑄), we have󵄩󵄩󵄩󵄩(U1 − U2) 𝑦2󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 󵄩󵄩󵄩󵄩U1 − U2󵄩󵄩󵄩󵄩𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑦2󵄩󵄩󵄩󵄩𝐿2(𝑄)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑦2󵄩󵄩󵄩󵄩𝑆(0,𝑇) 󵄩󵄩󵄩󵄩U1 − U2󵄩󵄩󵄩󵄩𝐿∞(𝑄)
≤ 𝐶 󵄩󵄩󵄩󵄩U1 − U2󵄩󵄩󵄩󵄩𝐿∞(𝑄) .

(22)

Together with (21) and (22), we can deduce the following:

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝜓 (𝑡)󵄩󵄩󵄩󵄩22 + ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩Δ (𝑦10 − 𝑦20)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩∇ (𝑦11 − 𝑦21)󵄩󵄩󵄩󵄩󵄩22
+ 󵄩󵄩󵄩󵄩𝑓1 − 𝑓2󵄩󵄩󵄩󵄩2𝐿2(𝑄) + 󵄩󵄩󵄩󵄩U1 − U2󵄩󵄩󵄩󵄩2𝐿∞(𝑄)) ≡ 𝐶 󵄩󵄩󵄩󵄩𝑝1
− 𝑝2󵄩󵄩󵄩󵄩2P .

(23)

Applying (23) to (19), we have
󵄩󵄩󵄩󵄩󵄩𝜓󸀠󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑝1 − 𝑝2󵄩󵄩󵄩󵄩P . (24)

From (23) and (24), we can obtain
󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑝1 − 𝑝2󵄩󵄩󵄩󵄩P . (25)

This completes the proof.

Corollary 5. For 𝑝1 = (𝑦0, 𝑦1, 𝑓,U1), 𝑝2 = (𝑦0, 𝑦1, 𝑓,U2) ∈
P, the following inequality is satisfied:

󵄩󵄩󵄩󵄩𝑦 (𝑝1) − 𝑦 (𝑝2)󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩U1 − U2󵄩󵄩󵄩󵄩𝐿2(𝑄) , (26)

where 𝐶 > 0 is a constant depending on the data and 𝑦(𝑝1)
and 𝑦(𝑝2) are the solutions of (1) corresponding to 𝑝1 and 𝑝2,
respectively.

Proof. We denote 𝑦(𝑝1) −𝑦(𝑝2) by 𝜓. Then, as in the proof of
Theorem 4, we can know that 𝜓 satisfies the following:

𝜓󸀠󸀠 − (1 + 󵄩󵄩󵄩󵄩∇𝑦1󵄩󵄩󵄩󵄩22) Δ𝜓 − 𝜇Δ𝜓󸀠
= 𝜖 (𝜓) + U1𝜓 + (U1 − U2) 𝑦2 in 𝑄,

𝜓 = 0 on Σ,
𝜓 (0) = 0,
𝜓󸀠 (0) = 0

in Ω,

(27)

where 𝜖(𝜓) is given in (20). Estimating 𝜓 in (27) as in the
proof of Theorem 4, we can arrive at

󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩(U1 − U2) 𝑦 (𝑝2)󵄩󵄩󵄩󵄩𝐿2(𝑄) . (28)

Thanks to the fact that 𝑦(𝑝2) ∈ 𝑆(0, 𝑇) 󳨅→ 𝐶([0, 𝑇]; 𝐷(Δ))
and (10), we can know that 𝑆(0, 𝑇) 󳨅→ 𝐶0(𝑄). Thus we have

RHS of (28) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑦 (𝑝2)󵄩󵄩󵄩󵄩𝐶0(𝑄) 󵄩󵄩󵄩󵄩U1 − U2󵄩󵄩󵄩󵄩𝐿2(𝑄)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑦 (𝑝2)󵄩󵄩󵄩󵄩𝑆(0,𝑇) 󵄩󵄩󵄩󵄩U1 − U2󵄩󵄩󵄩󵄩𝐿2(𝑄)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑝2󵄩󵄩󵄩󵄩P 󵄩󵄩󵄩󵄩U1 − U2󵄩󵄩󵄩󵄩𝐿2(𝑄) .

(29)

Consequently, from (28) and (29), we have (26).
This completes the proof.

3. Fréchet Differentiability of
the Nonlinear Solution Map

In this section, we study the Fréchet differentiability of the
nonlinear solution map. The Fréchet differentiability of the
solution map plays an important role in many applications.
Let F = 𝐿∞(𝑄). We consider the nonlinear solution map
from 𝑢 ∈ F to 𝑦(𝑢) ∈ 𝑆(0, 𝑇), where 𝑦(𝑢) is the solution of

𝑦󸀠󸀠 (𝑢) − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝑦 (𝑢) − 𝜇Δ𝑦󸀠 (𝑢)
= 𝑢𝑦 (𝑢) + 𝑓 in 𝑄,

𝑦 (𝑢) = 0 on Σ,
𝑦 (𝑢; 0, 𝑥) = 𝑦0 (𝑥) ,
𝑦󸀠 (𝑢; 0, 𝑥) = 𝑦1 (𝑥)

in Ω.

(30)

Based onTheorem4, for fixed (𝑦0, 𝑦1, 𝑓) ∈ 𝐷(Δ)×𝐻10×𝐿2(𝑄),
we know that the solution map F 󳨀→ 𝑆(0, 𝑇), which maps
from the term 𝑢 ∈ F of (30) to 𝑦(𝑢) ∈ 𝑆(0, 𝑇), is well defined
and continuous. We define the Fréchet differentiability of the
nonlinear solution map as follows.

Definition 6. The solution map 𝑢 󳨀→ 𝑦(𝑢) of F into 𝑆(0, 𝑇)
is said to be Fréchet differentiable onF if for any 𝑢 ∈ F there
exists a 𝑇(𝑢) ∈L(F, 𝑆(0, 𝑇)) such that, for any 𝑤 ∈ F,

󵄩󵄩󵄩󵄩𝑦 (𝑢 + 𝑤) − 𝑦 (𝑢) − 𝑇 (𝑢)𝑤󵄩󵄩󵄩󵄩𝑆(0,𝑇)
‖𝑤‖F 󳨀→ 0

as ‖𝑤‖F 󳨀→ 0.
(31)

The operator𝑇(𝑢) is called the Fréchet derivative of𝑦 at 𝑢,
which we denote by 𝐷𝑦(𝑢), and 𝑇(𝑢)𝑤 = 𝐷𝑦(𝑢)𝑤 ∈ 𝑆(0, 𝑇)
is called the Fréchet derivative of 𝑦 at 𝑢 in the direction of𝑤 ∈ F.
Theorem 7. The solution map 𝑢 󳨀→ 𝑦(𝑢) of F to 𝑆(0, 𝑇) is
Fréchet differentiable on F and the Fréchet derivative of 𝑦(𝑢)
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at 𝑢 in the direction 𝑤 ∈ F, that is to say 𝑧 = 𝐷𝑦(𝑢)𝑤, is the
solution of

𝑧󸀠󸀠 − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝑧 − 2 (∇𝑦 (𝑢) , ∇𝑧)2 Δ𝑦 (𝑢)
− 𝜇Δ𝑧󸀠 = 𝑢𝑧 + 𝑤𝑦 (𝑢) in 𝑄,

𝑧 = 0 𝑜𝑛 Σ,
𝑧 (0, 𝑥) = 0,
𝑧󸀠 (0, 𝑥) = 0

in Ω.

(32)

We prove this theorem by two steps:

(i) For any 𝑤 ∈ F, (32) admits a unique solution𝑧 ∈ 𝑆(0, 𝑇). That is, there exists an operator 𝑇 ∈
L(F, 𝑆(0, 𝑇)) satisfying 𝑇𝑤 = 𝑧(= 𝑧(𝑤)).

(ii) We show that ‖𝑦(𝑢 + 𝑤) − 𝑦(𝑢) − 𝑧‖𝑆(0,𝑇) = 𝑜(‖𝑤‖F)
as ‖𝑤‖F 󳨀→ 0.

Proof. (i) Let

G (𝑦 (𝑢) , 𝑧) fl (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝑧
+ 2 (∇𝑦 (𝑢) , ∇𝑧)2 Δ𝑦 (𝑢) .

(33)

Then fromTheorem 4 and (14), we can estimate the above as
follows:
󵄩󵄩󵄩󵄩G (𝑦 (𝑢) , 𝑧)󵄩󵄩󵄩󵄩2
≤ (1 + 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩2𝐶([0,𝑇];𝐻10 )) ‖Δ𝑧‖2
+ 2 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 ) ‖∇𝑧‖2 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐷(Δ))

≤ (with (14) and (8))
≤ (1 + 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩2𝑆(0,𝑇)) ‖Δ𝑧‖2 + 𝐶 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩2𝑆(0,𝑇) ‖Δ𝑧‖2
≤ 𝐶 (1 + 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩2𝑆(0,𝑇)) ‖Δ𝑧‖2
≤ 𝐶 (1 + 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢)󵄩󵄩󵄩󵄩2P) ‖Δ𝑧‖2 .

(34)

Hence, by (34) we know that

G (𝑦 (𝑢) , ⋅) ∈L (𝐷 (Δ) , 𝐿2) . (35)

To estimate the solution 𝑧 of (32), we take the scalar product
of (32) with −Δ𝑧󸀠 − Δ𝑧 in 𝐿2 :

1
2
𝑑
𝑑𝑡
󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠󵄩󵄩󵄩󵄩󵄩22 + 𝜇2

𝑑
𝑑𝑡 ‖Δ𝑧‖22 + 𝜇

󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩22
= (𝑧󸀠󸀠, Δ𝑧)

2
− (G (𝑦 (𝑢) , 𝑧) , Δ𝑧󸀠 + Δ𝑧)

2

− (𝑢𝑧 + 𝑤𝑦 (𝑢) , Δ𝑧󸀠 + Δ𝑧)
2
.

(36)

Integrating (36) over [0, 𝑡], we obtain

1
2
󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 𝜇2 ‖Δ𝑧 (𝑡)‖22 + 𝜇∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠

= − (∇𝑧󸀠 (𝑡) , ∇𝑧 (𝑡))
2
+ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠

− ∫𝑡
0
(G (𝑦 (𝑢) , 𝑧) , Δ𝑧󸀠 + Δ𝑧)

2
𝑑𝑠

− ∫𝑡
0
(𝑢𝑧 + 𝑤𝑦 (𝑢) , Δ𝑧󸀠 + Δ𝑧)

2
𝑑𝑠.

(37)

The right hand side of (37) can be estimated as follows:

󵄨󵄨󵄨󵄨󵄨(∇𝑧󸀠 (𝑡) , ∇𝑧 (𝑡))2󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(∇𝑧
󸀠 (𝑡) , ∫𝑡

0
∇𝑧󸀠𝑑𝑠)

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
∇𝑧󸀠𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ √𝑇 󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(0,𝑡;𝐿2)
≤ (with the Young inequality)
≤ 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 𝑇𝜖 ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠;

(38)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
(G (𝑦 (𝑢) , 𝑧) , Δ𝑧󸀠 + Δ𝑧)

2
𝑑s󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡
0

󵄩󵄩󵄩󵄩G (𝑦 (𝑢) , 𝑧)󵄩󵄩󵄩󵄩2 (󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩2 + ‖Δ𝑧‖2) 𝑑𝑠

≤ (with (35)) ≤ 𝐶∫𝑡
0
(‖Δ𝑧‖2 󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩2 + ‖Δ𝑧‖22) 𝑑𝑠

≤ (with the Young inequality)
≤ 𝜖∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝐶∫
𝑡

0
‖Δ𝑧‖22 𝑑𝑠;

(39)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
(𝑢𝑧, Δ𝑧󸀠 + Δ𝑧)

2
𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡
0
‖𝑢𝑧‖2 (󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩2 + ‖Δ𝑧‖2) 𝑑𝑠

≤ ‖𝑢‖F ∫
𝑡

0
‖𝑧‖2 (󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩2 + ‖Δ𝑧‖2) 𝑑𝑠 ≤ (with (8))

≤ 𝐶∫𝑡
0
(‖Δ𝑧‖2 󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩2 + ‖Δ𝑧‖22) 𝑑𝑠

≤ (with the Young inequality)
≤ 𝜖∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝐶∫
𝑡

0
‖Δ𝑧‖22 𝑑𝑠;

(40)
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
(𝑤𝑦 (𝑢) , Δ𝑧󸀠 + Δ𝑧)

2
𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡
0

󵄩󵄩󵄩󵄩𝑤𝑦 (𝑢)󵄩󵄩󵄩󵄩2 (󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩2 + ‖Δ𝑧‖2) 𝑑𝑠
≤ (with the Young inequality)
≤ 𝜖∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝐶∫
𝑡

0
‖Δ𝑧‖22 𝑑𝑠

+ 𝐶∫𝑡
0

󵄩󵄩󵄩󵄩𝑤𝑦 (𝑢)󵄩󵄩󵄩󵄩22 𝑑𝑠.

(41)

Considering (38)-(41) and taking 𝜖 = (1/6)min{1/2, 𝜇/2}, we
can obtain the following from (37):

󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + ‖Δ𝑧 (𝑡)‖22 + ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠

≤ 𝐶∫𝑡
0
(󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠󵄩󵄩󵄩󵄩󵄩22 + ‖Δ𝑧‖22) 𝑑𝑠 + 𝐶 󵄩󵄩󵄩󵄩𝑤𝑦 (𝑢)󵄩󵄩󵄩󵄩2𝐿2(𝑄) .

(42)

Applying Lemma 3 to (42), we obtain

󵄩󵄩󵄩󵄩󵄩∇𝑧󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + ‖Δ𝑧 (𝑡)‖22 + ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑧󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
≤ 𝐶 󵄩󵄩󵄩󵄩𝑤𝑦 (𝑢)󵄩󵄩󵄩󵄩2𝐿2(𝑄) .

(43)

In view of (32), (43) implies that

󵄩󵄩󵄩󵄩󵄩𝑧󸀠󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑤𝑦 (𝑢)󵄩󵄩󵄩󵄩𝐿2(𝑄) . (44)

Therefore, from (43) and (44), we can know that 𝑧 ∈ 𝑆(0, 𝑇),
and the solution 𝑧(= 𝑧(𝑤)) of (32) satisfies
‖𝑧 (𝑤)‖𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑤𝑦 (𝑢)󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 𝐶 ‖𝑤‖F 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩𝐿2(𝑄)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩𝑆(0,𝑇) ‖𝑤‖F
≤ 𝐶 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢)󵄩󵄩󵄩󵄩P ‖𝑤‖F .

(45)

Hence, from (45), the mapping 𝑤 ∈ F 󳨃󳨀→ 𝑧(𝑤) ∈ 𝑆(0, 𝑇) is
linear and bounded. From this, we can infer that there exists𝑇 ∈L(F, 𝑆(0, 𝑇)) such that 𝑇𝑤 = 𝑧(𝑤) for each 𝑤 ∈ F.

(ii) We set the difference 𝛿 = 𝑦(𝑢 + 𝑤) − 𝑦(𝑢) − 𝑧. Then,
from (30) and (32), we can have the following:

𝛿󸀠󸀠 − 𝜇Δ𝛿󸀠 = (𝑢 + 𝑤) 𝑦 (𝑢 + 𝑤) − 𝑢𝑦 (𝑢) − 𝑢𝑧
− 𝑤𝑦 (𝑢) + (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢 + 𝑤)󵄩󵄩󵄩󵄩22) Δ𝑦 (𝑢 + 𝑤)
− (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝑦 (𝑢) − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝑧
− 2 (∇𝑦 (𝑢) , ∇𝑧)2 Δ𝑦 (𝑢) = 𝑢𝛿
+ 𝑤 (𝑦 (𝑢 + 𝑤) − 𝑦 (𝑢)) + (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝛿

+ (󵄩󵄩󵄩󵄩∇𝑦 (𝑢 + 𝑤)󵄩󵄩󵄩󵄩22 − 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝑦 (𝑢 + 𝑤)
− 2 (∇𝑦 (𝑢) , ∇𝑧)2 Δ𝑦 (𝑢) = (𝑢 + 𝑤) 𝛿 + 𝑤𝑧
+ (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝛿
+ (∇𝑦 (𝑢 + 𝑤) − ∇𝑦 (𝑢) , ∇𝑦 (𝑢 + 𝑤) + ∇𝑦 (𝑢))2
⋅ Δ𝑦 (𝑢 + 𝑤) − 2 (∇𝑦 (𝑢) , ∇𝑧)2 Δ𝑦 (𝑢) = (𝑢 + 𝑤) 𝛿
+ 𝑤𝑧 + (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝛿
+ (∇𝛿, ∇𝑦 (𝑢 + 𝑤) + ∇𝑦 (𝑢))2 Δ𝑦 (𝑢 + 𝑤)
+ (∇𝑧, ∇𝑦 (𝑢 + 𝑤) + ∇𝑦 (𝑢))2 Δ𝑦 (𝑢 + 𝑤)
− 2 (∇𝑦 (𝑢) , ∇𝑧)2 Δ𝑦 (𝑢) = (𝑢 + 𝑤) 𝛿 + 𝑤𝑧
+ (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝛿
+ (∇𝛿, ∇𝑦 (𝑢 + 𝑤) + ∇𝑦 (𝑢))2 Δ𝑦 (𝑢 + 𝑤)
+ (∇𝑧, ∇𝑦 (𝑢 + 𝑤) − ∇𝑦 (𝑢))2 Δ𝑦 (𝑢 + 𝑤)
+ 2 (∇𝑧, ∇𝑦 (𝑢))2 (Δ𝑦 (𝑢 + 𝑤) − Δ𝑦 (𝑢)) in 𝑄.

(46)

Thus, we know from (46) that 𝛿 satisfies
𝛿󸀠󸀠 − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝛿
− (∇𝛿, ∇𝑦 (𝑢 + 𝑤) + ∇𝑦 (𝑢))2 Δ𝑦 (𝑢 + 𝑤)
− 𝜇Δ𝛿󸀠 = (𝑢 + 𝑤) 𝛿 + 𝑤𝑧 + 𝐼1 + 𝐼2 in 𝑄,

𝛿 = 0 on Σ,
𝛿 (0, 𝑥) = 0,
𝛿󸀠 (0, 𝑥) = 0

in Ω,

(47)

where
𝐼1 = (∇𝑧, ∇𝑦 (𝑢 + 𝑤) − ∇𝑦 (𝑢))2 Δ𝑦 (𝑢 + 𝑤) ,
𝐼2 = 2 (∇𝑧, ∇𝑦 (𝑢))2 (Δ𝑦 (𝑢 + 𝑤) − Δ𝑦 (𝑢)) .

(48)

If we let
H (𝑦 (𝑢 + 𝑤) , 𝑦 (𝑢) , 𝑧)

fl (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢)󵄩󵄩󵄩󵄩22) Δ𝛿
+ (∇𝛿, ∇𝑦 (𝑢 + 𝑤) + ∇𝑦 (𝑢))2 Δ𝑦 (𝑢 + 𝑤) ,

(49)

then by similar arguments used for (34), we have

H (𝑦 (𝑢 + 𝑤) , 𝑦 (𝑢) , ⋅) ∈L (𝐷 (Δ) , 𝐿2) . (50)

Thanks to (50), if we follow similar arguments as in (i), then
we can arrive at

‖𝛿‖𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑤𝑧 + 𝐼1 + 𝐼2󵄩󵄩󵄩󵄩𝐿2(𝑄) . (51)
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From (14),Theorem 4, and (45), we can deduce the following:

‖𝑤𝑧‖𝐿2(𝑄) ≤ ‖𝑤‖F ‖𝑧‖𝐿2(𝑄) ≤ 𝐶 ‖𝑤‖F ‖𝑧‖𝑆(0,𝑇)
≤ 𝐶 ‖𝑤‖2F ;

(52)

󵄩󵄩󵄩󵄩𝐼1󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ ‖𝑧‖𝐶([0,𝑇];𝐻10 ) 󵄩󵄩󵄩󵄩𝑦 (𝑢 + 𝑤) − 𝑦 (𝑢)󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 )
× 󵄩󵄩󵄩󵄩Δ𝑦 (𝑢 + 𝑤)󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 𝐶 ‖𝑧‖𝑆(0,𝑇)
⋅ 󵄩󵄩󵄩󵄩𝑦 (𝑢 + 𝑤) − 𝑦 (𝑢)󵄩󵄩󵄩󵄩𝑆(0,𝑇) 󵄩󵄩󵄩󵄩𝑦 (𝑢 + 𝑤)󵄩󵄩󵄩󵄩𝑆(0,𝑇)
≤ 𝐶 ‖𝑤‖F ‖𝑢 + 𝑤 − 𝑢‖F 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢 + 𝑤)󵄩󵄩󵄩󵄩P
≤ 𝐶 ‖𝑤‖2F ;

(53)

󵄩󵄩󵄩󵄩𝐼2󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 2 ‖𝑧‖𝐶([0,𝑇];𝐻10 ) 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 )
× 󵄩󵄩󵄩󵄩Δ𝑦 (𝑢 + 𝑤) − Δ𝑦 (𝑢)󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 𝐶 ‖𝑧‖𝑆(0,𝑇)
⋅ 󵄩󵄩󵄩󵄩𝑦 (𝑢)󵄩󵄩󵄩󵄩𝑆(0,𝑇) 󵄩󵄩󵄩󵄩𝑦 (𝑢 + 𝑤) − 𝑦 (𝑢)󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶 ‖𝑤‖F
⋅ 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢)󵄩󵄩󵄩󵄩P ‖𝑢 + 𝑤 − 𝑢‖F ≤ 𝐶 ‖𝑤‖2F .

(54)

Hence, from (51) to (54), we can obtain

‖𝛿‖𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑤𝑧 + 𝐼1 + 𝐼2󵄩󵄩󵄩󵄩𝐿2(𝑄)
≤ 𝐶 (‖𝑤𝑧‖𝐿2(𝑄) + 󵄩󵄩󵄩󵄩𝐼1󵄩󵄩󵄩󵄩𝐿2(𝑄) + 󵄩󵄩󵄩󵄩𝐼2󵄩󵄩󵄩󵄩𝐿2(𝑄))
≤ 𝐶 ‖𝑤‖2F ,

(55)

which immediately implies that ‖𝛿‖𝑆(0,𝑇) = 𝑜(‖𝑤‖F) as‖𝑤‖F 󳨀→ 0.
This completes the proof.

The following result plays an important role in proving
the existence of optimal controls in the next section.

Proposition 8. Given 𝑤 ∈ F, the Fréchet derivative 𝐷𝑦(𝑢)𝑤
is locally Lipschitz continuous on F with 𝐿2(𝑄) topology.
Indeed, it is satisfied that

󵄩󵄩󵄩󵄩𝐷𝑦 (𝑢1) 𝑤 − 𝐷𝑦 (𝑢2) 𝑤󵄩󵄩󵄩󵄩𝑆(0,𝑇)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑤‖𝐿2(𝑄) ,

(56)

where 𝐶 > 0 is a constant depending on the data.

Proof. Let 𝑧𝑖 = 𝐷𝑦(𝑢𝑖)𝑤, (𝑖 = 1, 2) be the solutions of (32)
corresponding to 𝑢𝑖, (𝑖 = 1, 2), and we set 𝜙 = 𝑧1 − 𝑧2.
Then, by similar calculations as in (46), we can deduce that𝜙 satisfies
𝜙󸀠󸀠 − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑢1)󵄩󵄩󵄩󵄩22) Δ𝜙 − 2 (∇𝜙, ∇𝑦 (𝑢1))2 Δ𝑦 (𝑢1)
− 𝜇Δ𝜙󸀠 = 𝑢1𝜙 +

4∑
𝑖=1
𝐼𝑖 in 𝑄,

𝜙 = 0 on Σ,
𝜙 (0, 𝑥) = 0,
𝜙󸀠 (0, 𝑥) = 0

in Ω,
(57)

where
𝐼1 = 2 (∇𝑧2, ∇𝑦 (𝑢1) − ∇𝑦 (𝑢2))2 Δ𝑦 (𝑢1) ,
𝐼2 = 2 (∇𝑧2, ∇𝑦 (𝑢2))2 (Δ𝑦 (𝑢1) − Δy (𝑢2)) ,
𝐼3 = (∇𝑦 (𝑢1) − ∇𝑦 (𝑢2) , ∇𝑦 (𝑢1) + ∇𝑦 (𝑢2))2 Δ𝑧2,
𝐼4 = (𝑢1 − 𝑢2) 𝑧2 + 𝑤 (𝑦 (𝑢1) − 𝑦 (𝑢2)) .

(58)

By similar arguments as in the proof of (i) ofTheorem 7, 𝜙 in
(57) can be estimated as follows:

󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
4∑
𝑖=1
𝐼𝑖
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄) . (59)

From Theorem 4, the embedding 𝑆(0, 𝑇) 󳨅→ 𝐶0(𝑄), and the
first inequality of (45), we can deduce

󵄩󵄩󵄩󵄩𝑧2󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑤𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝐿2(𝑄)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝐶0(𝑄) ‖𝑤‖𝐿2(𝑄)
≤ (with (10) and (14))
≤ 𝐶 󵄩󵄩󵄩󵄩𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝑆(0,𝑇) ‖𝑤‖𝐿2(𝑄)
≤ 𝐶 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢2)󵄩󵄩󵄩󵄩P ‖𝑤‖𝐿2(𝑄)
≤ 𝐶 ‖𝑤‖𝐿2(𝑄) .

(60)

We can estimate 𝐼𝑖 (𝑖 = 1, . . . , 4) of (57) as follows:󵄩󵄩󵄩󵄩𝐼1󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 2 󵄩󵄩󵄩󵄩𝑧2󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 ) 󵄩󵄩󵄩󵄩𝑦 (𝑢1) − 𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 )
⋅ 󵄩󵄩󵄩󵄩Δ𝑦 (𝑢1)󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ (with (14)) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑧2󵄩󵄩󵄩󵄩𝑆(0,𝑇)
⋅ 󵄩󵄩󵄩󵄩𝑦 (𝑢1) − 𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝑆(0,𝑇) 󵄩󵄩󵄩󵄩𝑦 (𝑢1)󵄩󵄩󵄩󵄩𝑆(0,𝑇)
≤ (with Corollary 5, Theorem 4 and (60))
≤ 𝐶 ‖𝑤‖𝐿2(𝑄) 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄) 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢1)󵄩󵄩󵄩󵄩P
≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑤‖𝐿2(𝑄) ;

(61)

󵄩󵄩󵄩󵄩𝐼2󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 2 󵄩󵄩󵄩󵄩𝑧2󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 ) 󵄩󵄩󵄩󵄩𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 ) 󵄩󵄩󵄩󵄩Δ𝑦 (𝑢1)
− Δ𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝐿2(𝑄)
≤ (with an arguments similar to (61))
≤ 𝐶 󵄩󵄩󵄩󵄩𝑧2󵄩󵄩󵄩󵄩𝑆(0,𝑇) 󵄩󵄩󵄩󵄩𝑦 (𝑢2)󵄩󵄩󵄩󵄩S(0,𝑇) 󵄩󵄩󵄩󵄩𝑦 (𝑢1) − 𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝑆(0,𝑇)
≤ 𝐶 ‖𝑤‖𝐿2(𝑄) 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢2)󵄩󵄩󵄩󵄩P 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑤‖𝐿2(𝑄) ;

(62)
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󵄩󵄩󵄩󵄩𝐼3󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 󵄩󵄩󵄩󵄩𝑦 (𝑢1) − 𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 ) 󵄩󵄩󵄩󵄩𝑦 (𝑢1)
+ 𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 ) × 󵄩󵄩󵄩󵄩Δ𝑧2󵄩󵄩󵄩󵄩𝐿2(𝑄)
≤ (with an arguments similar to (61))
≤ 𝐶 󵄩󵄩󵄩󵄩𝑦 (𝑢1) − 𝑦 (𝑢2)󵄩󵄩󵄩󵄩S(0,𝑇) 󵄩󵄩󵄩󵄩𝑦 (𝑢1) + 𝑦 (𝑢2)󵄩󵄩󵄩󵄩𝑆(0,𝑇)
⋅ 󵄩󵄩󵄩󵄩𝑧2󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄) (󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢1)󵄩󵄩󵄩󵄩P
+ 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢2)󵄩󵄩󵄩󵄩P) ‖𝑤‖𝐿2(𝑄) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄)
⋅ ‖𝑤‖𝐿2(𝑄) ;

(63)

󵄩󵄩󵄩󵄩𝐼4󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 󵄩󵄩󵄩󵄩(𝑢1 − 𝑢2) 𝑧2󵄩󵄩󵄩󵄩𝐿2(𝑄)
+ 󵄩󵄩󵄩󵄩𝑤 (𝑦 (𝑢1) − 𝑦 (𝑢2))󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 󵄩󵄩󵄩󵄩𝑧2󵄩󵄩󵄩󵄩𝐶0(𝑄) 󵄩󵄩󵄩󵄩𝑢1
− 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄) + ‖𝑤‖𝐿2(𝑄) 󵄩󵄩󵄩󵄩(𝑦 (𝑢1) − 𝑦 (𝑢2))󵄩󵄩󵄩󵄩𝐶0(𝑄)
≤ (with (10) and 𝑆 (0, 𝑇) 󳨅→ 𝐶0 (𝑄))
≤ 𝐶 (󵄩󵄩󵄩󵄩𝑧2󵄩󵄩󵄩󵄩𝑆(0,𝑇) 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄)
+ ‖𝑤‖𝐿2(𝑄) 󵄩󵄩󵄩󵄩(𝑦 (𝑢1) − 𝑦 (𝑢2))󵄩󵄩󵄩󵄩𝑆(0,𝑇))
≤ (with Corollary 5 and (60)) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1
− 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑤‖𝐿2(𝑄) .

(64)

From (61) to (64), we can obtain the following from (59):

󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩𝑆(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑤‖𝐿2(𝑄) . (65)

This completes the proof.

4. Quadratic Cost Minimax Control Problems

In this section, we study the quadratic cost minimax optimal
control problems for a damped Kirchhoff-type equation. Let
the following be the set of the admissible controls:

U𝑎𝑑 = {𝑢 ∈ F | 𝑎 ≤ 𝑢 ≤ 𝑏 a.e. in 𝑄} . (66)

Let the following be the set of the admissible disturbance or
noises:

V𝑎𝑑 = {V ∈ F | 𝑐 ≤ V ≤ 𝑑 a.e. in 𝑄} . (67)

To perform our variational analysis, 𝐿2(𝑄) norms ofU𝑎𝑑 and
V𝑎𝑑 are preferable, even though U𝑎𝑑 and V𝑎𝑑 are subsets
of F. For simplicity, let F𝑎𝑑 be a product space defined by
F𝑎𝑑 = U𝑎𝑑 ×V𝑎𝑑.

Using Theorem 4, we can uniquely define the solution
mapping F𝑎𝑑 󳨀→ 𝑆(0, 𝑇), which maps the term 𝑞 =

(𝑢, V) ∈ F𝑎𝑑 to the solution 𝑦(𝑞) ∈ 𝑆(0, 𝑇), which satisfies
the following equation:

𝑦󸀠󸀠 (𝑞) − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑞)󵄩󵄩󵄩󵄩22) Δ𝑦 (𝑞) − 𝜇Δ𝑦󸀠 (𝑞)
= (𝑢 + V) 𝑦 (𝑞) + 𝑓 in 𝑄,

𝑦 (𝑞) = 0 on Σ,
𝑦 (𝑞; 0, 𝑥) = 𝑦0 (𝑥) ,
𝑦󸀠 (𝑞; 0, 𝑥) = 𝑦1 (𝑥)

in Ω,

(68)

The solution𝑦(𝑞) of (68) is the state of the control system (68).
FromTheorem 7, we can deduce that the map 𝑞 = (𝑢, V) 󳨀→𝑦(𝑞) of F𝑎𝑑 to 𝑆(0, 𝑇) is Fréchet differentiable at 𝑞 = 𝑞∗ =(𝑢∗, V∗), and the Fréchet derivative of 𝑦(𝑞) at 𝑞 = 𝑞∗ in the
direction 𝑤 = (ℎ, 𝑙) ∈ F2, say 𝑧 = 𝐷𝑦(𝑞∗)𝑤 is a unique
solution of the following problem:

𝑧󸀠󸀠 − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑞∗)󵄩󵄩󵄩󵄩22) Δ𝑧
− 2 (∇𝑦 (𝑞∗) , ∇𝑧)2 Δ𝑦 (𝑞∗) − 𝜇Δ𝑧󸀠 = (𝑢∗ + V∗) 𝑧
+ (ℎ + 𝑙) 𝑦 (𝑞∗) in 𝑄,

𝑧 = 0 on Σ,
𝑧 (0, 𝑥) = 0,
𝑧󸀠 (0, 𝑥) = 0

in Ω.

(69)

The quadratic cost function associated with the control
system (68) is

𝐽 (𝑢, V) = 12 󵄩󵄩󵄩󵄩C𝑦 (𝑞) − 𝑌𝑑󵄩󵄩󵄩󵄩
2
𝑀 + 𝛼2 ‖𝑢‖2𝐿2(𝑄)

− 𝛽2 ‖V‖2𝐿2(𝑄) ,
(70)

where 𝑀 is a Hilbert space of observation variables, the
operator C ∈ L(𝑆(0, 𝑇),𝑀) is an observer, 𝑌𝑑 ∈ 𝑀 is
a desired value, and the positive constants 𝛼 and 𝛽 are the
relative weights of the second and the third terms on the RHS
of (70).

To pursue our objective, we assume that the observerC(∈
L(𝑆(0, 𝑇),𝑀)) in (70) is a compact operator. As mentioned
in the introduction, the minimax optimal control problem
can be summarized as follows:

(i) Find an admissible control 𝑢∗ ∈ U𝑎𝑑 and a noise (or
disturbance) V∗ ∈ V𝑎𝑑 such that (𝑢∗, V∗) is a saddle
point of the functional 𝐽(𝑢, V) of (70). That is,

𝐽 (𝑢∗, V) ≤ 𝐽 (𝑢∗, V∗) ≤ 𝐽 (𝑢, V∗) , ∀ (𝑢, V) ∈ F𝑎𝑑. (71)

(ii) Characterize (𝑢∗, V∗) (optimality condition).

Such a pair (𝑢∗, V∗) in (71) is called an optimal pair (or an
optimal strategy pair) for the problem (70).
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4.1. Existence of Optimal Pairs. To study the existence of
optimal pairs, we present the following results.

Proposition 9. The solution mapping from F𝑎𝑑 to 𝑆(0, 𝑇) is
continuous from the weakly-star topology of F𝑎𝑑 to the weak
topology of 𝑆(0, 𝑇).

In proving the Proposition 9, we need the following
compactness lemma.

Lemma 10. Let 𝑋,𝑌 and 𝑍 be Banach spaces such that the
embeddings 𝑋 󳨅→ 𝑌 󳨅→ 𝑍 are continuous and the imbedding𝑋 󳨅→ 𝑌 is compact. Then a bounded set of𝑊1,∞(0, 𝑇;𝑋, 𝑍) ={𝑔 | 𝑔 ∈ 𝐿∞(0, 𝑇;𝑋), 𝑔󸀠 ∈ 𝐿∞(0, 𝑇; 𝑍)} is relatively compact
in 𝐶([0, 𝑇]; 𝑌).
Proof. See Simon [26].

Proof of Proposition 9. Let 𝑞 = (𝑢, V) ∈ F𝑎𝑑 and let 𝑞𝑛 =(𝑢𝑛, V𝑛) ∈ F𝑎𝑑 be a sequence such that

𝑞𝑛 ⇀ 𝑞 weakly-star in F𝑎𝑑 as 𝑛 󳨀→ ∞. (72)

For simplicity, we let each state 𝑦𝑛 = 𝑦(𝑞𝑛) be a solution of

𝑦󸀠󸀠𝑛 − (1 + 󵄩󵄩󵄩󵄩∇𝑦𝑛󵄩󵄩󵄩󵄩22) Δ𝑦𝑛 − 𝜇Δ𝑦󸀠𝑛 = (𝑢𝑛 + V𝑛) 𝑦𝑛 + 𝑓
in 𝑄,

𝑦𝑛 = 0 on Σ,
𝑦𝑛 (0, 𝑥) = 𝑦0 (𝑥) ,
𝑦󸀠𝑛 (0, 𝑥) = 𝑦1 (𝑥)

in Ω.

(73)

We conduct the scalar product of (73) with −Δ𝑦󸀠𝑛−Δ𝑦𝑛 in 𝐿2 :
1
2
𝑑
𝑑𝑡
󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 + 𝜇 + 12

𝑑
𝑑𝑡 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩

2
2 + 𝜇 󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22

+ (1 + 󵄩󵄩󵄩󵄩∇𝑦𝑛󵄩󵄩󵄩󵄩22) 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇𝑦𝑛󵄩󵄩󵄩󵄩22 12
𝑑
𝑑𝑡 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩

2
2

= (𝑦󸀠󸀠𝑛 , Δ𝑦𝑛)2 − ((𝑢𝑛 + V𝑛) 𝑦𝑛 + 𝑓, Δ𝑦󸀠𝑛 + Δ𝑦𝑛)2 ,
(74)

which immediately implies

1
2
𝑑
𝑑𝑡
󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 + 𝜇 + 12

𝑑
𝑑𝑡 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩

2
2 + 𝜇 󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22

+ 󵄩󵄩󵄩󵄩∇𝑦𝑛󵄩󵄩󵄩󵄩22 12
𝑑
𝑑𝑡 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩

2
2

≤ (𝑦󸀠󸀠𝑛 , Δ𝑦𝑛)2 − ((𝑢𝑛 + V𝑛) 𝑦𝑛 + 𝑓, Δ𝑦󸀠𝑛 + Δ𝑦𝑛)2 .
(75)

The integration of (75) over [0, 𝑡] implies

1
2
󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 𝜇 + 12 󵄩󵄩󵄩󵄩Δ𝑦𝑛 (𝑡)󵄩󵄩󵄩󵄩22 + 𝜇∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
+ 12 󵄩󵄩󵄩󵄩∇𝑦𝑛 (𝑡)󵄩󵄩󵄩󵄩

2
2
󵄩󵄩󵄩󵄩Δ𝑦𝑛 (𝑡)󵄩󵄩󵄩󵄩22

≤ I (𝑦0, 𝑦1) − (∇𝑦󸀠𝑛 (𝑡) , ∇𝑦𝑛 (𝑡))2 + ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠

+ ∫𝑡
0
(∇𝑦𝑛, ∇𝑦󸀠𝑛)2 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩22 𝑑𝑠

− ∫𝑡
0
((𝑢𝑛 + V𝑛) 𝑦𝑛 + 𝑓, Δ𝑦󸀠𝑛 + Δ𝑦𝑛)2 𝑑𝑠,

(76)

where

I (𝑦0, 𝑦1) = 12 󵄩󵄩󵄩󵄩∇𝑦1󵄩󵄩󵄩󵄩
2
2 + 𝜇 + 12 󵄩󵄩󵄩󵄩Δ𝑦0󵄩󵄩󵄩󵄩22

+ 12 󵄩󵄩󵄩󵄩∇𝑦0󵄩󵄩󵄩󵄩
2
2
󵄩󵄩󵄩󵄩Δ𝑦0󵄩󵄩󵄩󵄩22 + (∇𝑦1, ∇𝑦0)2 .

(77)

By conducting similar calculations to the proof of (i) of
Theorem 7, we can obtain the following from (76):

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝑦𝑛 (𝑡)󵄩󵄩󵄩󵄩22 + ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠

≤ 𝐶(󵄨󵄨󵄨󵄨I (𝑦0, 𝑦1)󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐿2(𝑄)
+ ∫𝑡
0
(󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩22) 𝑑𝑠

+ ∫𝑡
0

󵄨󵄨󵄨󵄨󵄨(∇𝑦𝑛, ∇𝑦󸀠𝑛)2󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩22 𝑑𝑠) .

(78)

Since we know fromTheorem 4 that 𝑦𝑛 ∈ 𝑆(0, 𝑇), we can note
that

󵄨󵄨󵄨󵄨󵄨(∇𝑦𝑛 (⋅) , ∇𝑦󸀠𝑛 (⋅))2󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝑦𝑛󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 ) 󵄩󵄩󵄩󵄩󵄩𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻10 )
≤ (with (14)) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑦𝑛󵄩󵄩󵄩󵄩2𝑆(0,𝑇)
≤ 𝐶 󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢𝑛 + V𝑛)󵄩󵄩󵄩󵄩2P .

(79)

From (78) and (79), we can infer

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝑦𝑛 (𝑡)󵄩󵄩󵄩󵄩22 + ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠

≤ 𝐶(1 + ∫𝑡
0
(󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝑦𝑛󵄩󵄩󵄩󵄩22) 𝑑𝑠) .

(80)

Applying Lemma 3 to (80), we have

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑛 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝑦𝑛 (𝑡)󵄩󵄩󵄩󵄩22 + ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑛󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 ≤ 𝐶. (81)

Theorem 4 and (81) imply that 𝑦𝑛 remains in a bounded set of𝑆(0, 𝑇) ∩ 𝑊1,∞(0, 𝑇;𝐷(Δ),𝐻10 ).Therefore, by using Rellich’s
extraction theorem, we can find a subsequence of {𝑦𝑛} also
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called {𝑦𝑛}, and find 𝑦 ∈ 𝑆(0, 𝑇) ∩𝑊1,∞(0, 𝑇;𝐷(Δ),𝐻10 ) such
that

𝑦𝑛 ⇀ 𝑦 weakly in 𝑆 (0, 𝑇) as 𝑛 󳨀→ ∞, (82)

𝑦𝑛 ⇀ 𝑦
weakly-star in 𝐿∞ (0, 𝑇;𝐷 (Δ)) as 𝑛 󳨀→ ∞, (83)

𝑦󸀠𝑛 ⇀ 𝑦󸀠
weakly-star in 𝐿∞ (0, 𝑇;𝐻10) as 𝑛 󳨀→ ∞. (84)

Since the embedding 𝐷(Δ) 󳨅→ 𝐻10 is compact, we can apply
Lemma 10 to (83) and (84) with 𝑋 = 𝐷(Δ) and 𝑌 = 𝑍 = 𝐻10
in Lemma 10 to verify that

𝑦𝑛 is pre-compact in 𝐶 ([0, 𝑇] ;𝐻10) . (85)

Hence, we can find a subsequence {𝑦𝑛𝑘} ⊂ {𝑦𝑛} if necessary
such that

𝑦𝑛𝑘 (𝑡) 󳨀→ 𝑦 (𝑡) in 𝐻10 for ∀𝑡 ∈ [0, 𝑇] as 𝑘 󳨀→ ∞. (86)

Therefore, (82) and (86) imply

󵄩󵄩󵄩󵄩󵄩∇𝑦𝑛𝑘󵄩󵄩󵄩󵄩󵄩22 Δ𝑦𝑛𝑘 ⇀ 󵄩󵄩󵄩󵄩∇𝑦󵄩󵄩󵄩󵄩22 Δ𝑦
weakly in 𝐿2 (𝑄) as 𝑘 󳨀→ ∞.

(87)

From (72) and (85), we can also extract a subsequence, if
necessary, denoted again by 𝑞𝑛 ≡ (𝑢𝑛, V𝑛) such that

(𝑢𝑛 + V𝑛) 𝑦𝑛 ⇀ (𝑢 + V) 𝑦 weakly in 𝐿2 (𝑄) . (88)

We replace 𝑦𝑛 by 𝑦𝑛𝑘 , if necessary, and take 𝑘 󳨀→ ∞ in (73).
Then, by the standard argument in Dautray and Lions [23,
pp.561-565], we conclude that the limit 𝑦 is a solution of

𝑦󸀠󸀠 − (1 + 󵄩󵄩󵄩󵄩∇𝑦󵄩󵄩󵄩󵄩22) Δ𝑦 − 𝜇Δ𝑦󸀠 = (𝑢 + V) 𝑦 + 𝑓 in 𝑄,
𝑦 = 0 on Σ,

𝑦 (0, 𝑥) = 𝑦0 (𝑥) ,
𝑦󸀠 (0, 𝑥) = 𝑦1 (𝑥)

in Ω.

(89)

Moreover, from the uniqueness of solutions of (89), we
conclude that 𝑦 = 𝑦(𝑞) in 𝑆(0, 𝑇), which implies that 𝑦(𝑞𝑛) ⇀𝑦(𝑞) weakly in 𝑆(0, 𝑇).

This completes the proof.

We now study the existence of optimal pairs.

Theorem 11. Let the observerC in (70) be a compact operator.
Then, for sufficiently large 𝛼 and 𝛽 in (70), there exists(𝑢∗, V∗) ∈ F𝑎𝑑 such that (𝑢∗, V∗) satisfies (71).

Proof. LetPV be the map 𝑢 󳨀→ 𝐽(𝑢, V) and letQ𝑢 be the map
V 󳨀→ 𝐽(𝑢, V). To obtain the existence of optimal pairs in the
minimax control problem, we follow the steps given by [13]:
We prove thatPV is convex and lower semicontinuous for all
V ∈ V𝑎𝑑 and that Q𝑢 is concave and upper semicontinuous
for all 𝑢 ∈ U𝑎𝑑.Then, we employ the minimax theorem in
infinite dimensions (see Barbu and Precupanu [17]).

For sufficiently large 𝛼 and 𝛽 in (70), we first prove
the convexity of PV and the concavity of Q𝑢. To prove the
convexity ofPV, which is a differentiable map, it is sufficient
to show that

(𝐷PV (𝑢1) − 𝐷PV (𝑢2)) (𝑢1 − 𝑢2) ≥ 0,
∀𝑢1, 𝑢2 ∈ U𝑎𝑑. (90)

From Fréchet differentiability of the solution map 𝑢 󳨀→𝑦(𝑢, V), where V is fixed, (90) can be rewritten as

(C𝑦 (𝑢1, V) − 𝑌𝑑,C𝐷𝑢𝑦 (𝑢1, V) (𝑢1 − 𝑢2))𝑀
+ 𝛼∫𝑇
0
(𝑢1, 𝑢1 − 𝑢2)2 𝑑𝑡

− (C𝑦 (𝑢2, V) − 𝑌𝑑,C𝐷𝑢𝑦 (𝑢2, V) (𝑢1 − 𝑢2))𝑀
− 𝛼∫𝑇
0
(𝑢2, 𝑢1 − 𝑢2)2 𝑑𝑡 ≥ 0, ∀𝑢1, 𝑢2 ∈ U𝑎𝑑,

(91)

where 𝐷𝑢𝑦(𝑢𝑖, V)(𝑢1 − 𝑢2), (𝑖 = 1, 2) are solutions of (69), in
which (𝑢∗ + V∗)𝑧 + (ℎ + 𝑙)𝑦(𝑝) is replaced by (𝑢𝑖 + V)𝑧 + (𝑢1 −𝑢2)𝑦(𝑢𝑖, V), (𝑖 = 1, 2), respectively. We can easily deduce that
(91) is equivalent again to

(C (𝑦 (𝑢1, V) − 𝑦 (𝑢2, V)) ,C𝐷𝑢𝑦 (𝑢1, V) (𝑢1 − 𝑢2))𝑀
+ (C𝑦 (𝑢2, V) − 𝑌𝑑,C (𝐷𝑢𝑦 (𝑢1, V) (𝑢1 − 𝑢2)
− 𝐷𝑢𝑦 (𝑢2, V) (𝑢1 − 𝑢2)))𝑀 + 𝛼 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩2𝐿2(𝑄) ≥ 0,

∀𝑢1, 𝑢2 ∈ U𝑎𝑑.

(92)

From Corollary 5, Proposition 8, and (60), we can estimate
the left hand side of (92) as follows:

󵄨󵄨󵄨󵄨(C (𝑦 (𝑢1, V) − 𝑦 (𝑢2, V)) ,C𝐷𝑢𝑦 (𝑢1, V) (𝑢1 − 𝑢2))𝑀󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩C (𝑦 (𝑢1, V) − 𝑦 (𝑢2, V))󵄩󵄩󵄩󵄩𝑀 󵄩󵄩󵄩󵄩C𝐷𝑢𝑦 (𝑢1, V) (𝑢1
− 𝑢2)󵄩󵄩󵄩󵄩𝑀 ≤ ‖C‖2L(𝑆(0,𝑇),𝑀) 󵄩󵄩󵄩󵄩𝑦 (𝑢1, V) − 𝑦 (𝑢2,
V)󵄩󵄩󵄩󵄩𝑆(0,𝑇) 󵄩󵄩󵄩󵄩𝐷𝑢𝑦 (𝑢1, V) (𝑢1 − 𝑢2)󵄩󵄩󵄩󵄩𝑆(0,𝑇)
≤ (with Corollary 5 and (60)) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1
− 𝑢2󵄩󵄩󵄩󵄩2𝐿2(𝑄) ;

(93)
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󵄨󵄨󵄨󵄨(C𝑦 (𝑢2, V) − 𝑌𝑑,C (𝐷𝑢𝑦 (𝑢1, V) (𝑢1 − 𝑢2)
− 𝐷𝑢𝑦 (𝑢2, V) (𝑢1 − 𝑢2)))𝑀󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩C𝑦 (𝑢2, V)
− 𝑌𝑑󵄩󵄩󵄩󵄩𝑀 󵄩󵄩󵄩󵄩C (𝐷𝑢𝑦 (𝑢1, V) (𝑢1 − 𝑢2) − 𝐷𝑢𝑦 (𝑢2, V)
⋅ (𝑢1 − 𝑢2))󵄩󵄩󵄩󵄩𝑀 ≤ ‖C‖L(𝑆(0,𝑇),𝑀) (‖C‖L(𝑆(0,𝑇),𝑀)
⋅ 󵄩󵄩󵄩󵄩𝑦 (𝑢2, V)󵄩󵄩󵄩󵄩𝑆(0,𝑇) + 󵄩󵄩󵄩󵄩𝑌𝑑󵄩󵄩󵄩󵄩𝑀) × 󵄩󵄩󵄩󵄩𝐷𝑢𝑦 (𝑢1, V) (𝑢1
− 𝑢2) − 𝐷𝑢𝑦 (𝑢2, V) (𝑢1 − 𝑢2)󵄩󵄩󵄩󵄩𝑆(0,𝑇)
≤ (with Proposition 8) ≤ 𝐶 (󵄩󵄩󵄩󵄩𝑦 (𝑢2, V)󵄩󵄩󵄩󵄩𝑆(0,𝑇)
+ 󵄩󵄩󵄩󵄩𝑌𝑑󵄩󵄩󵄩󵄩𝑀) 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩2𝐿2(𝑄) ≤ 𝐶 (󵄩󵄩󵄩󵄩(𝑦0, 𝑦1, 𝑓, 𝑢2
+ V)󵄩󵄩󵄩󵄩P + 󵄩󵄩󵄩󵄩𝑌𝑑󵄩󵄩󵄩󵄩𝑀) 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩2𝐿2(𝑄) .

(94)

Considering from (92) to (94), we can deduce that there exists
a sufficiently large 𝛼𝑙(P,F𝑎𝑑, 𝑌𝑑,C) such that, for any 𝛼 >𝛼𝑙(P,F𝑎𝑑, 𝑌𝑑,C), (92) holds true. Therefore, the map PV is
convex.

Similarly, we can also show that there exist a sufficiently
large 𝛽𝑙(P,F𝑎𝑑, 𝑌𝑑,C) such that the following inequality is
satisfied for any 𝛽 > 𝛽𝑙(P,F𝑎𝑑, 𝑌𝑑,C):
(𝐷Q𝑢 (V1) − 𝐷Q𝑢 (V2)) (V1 − V2) ≤ 0,

∀V1, V2 ∈V𝑎𝑑. (95)

This also indicates the concavity of Q𝑢.
Next, we prove the existence of an optimal pair (𝑢∗, V∗) ∈

F𝑎𝑑 by verifying thatPV is lower semicontinuous for all V ∈
V𝑎𝑑 and Q𝑢 is upper semicontinuous for all 𝑢 ∈ U𝑎𝑑. Let{𝑢𝑛} ⊂ U𝑎𝑑 be a minimizing sequence of 𝐽. Thus

lim inf
𝑛󳨀→∞

𝐽 (𝑢𝑛, V) = min
𝑢∈U𝑎𝑑

𝐽 (𝑢, V) . (96)

Since U𝑎𝑑 defined by (66) is a closed, bounded, and convex
inF, we can extract a subsequence {𝑢𝑛𝑘} ⊂ {𝑢𝑛} such that

𝑢𝑛𝑘 ⇀ 𝑢∗ weakly-starin U𝑎𝑑 as 𝑘 󳨀→ ∞. (97)

Then, by Proposition 9, we have ∀V ∈V𝑎𝑑,
𝑦 (𝑢𝑛𝑘 , V) ⇀ 𝑦 (𝑢∗, V)

weakly in 𝑆 (0, 𝑇) as 𝑘 󳨀→ ∞. (98)

Thus, by the assumption thatC ∈L(𝑆(0, 𝑇),𝑀) is a compact
operator, we can extract a subsequence of {𝑢𝑛𝑘}, if necessary,
denoted again by {𝑢𝑛𝑘}, such that

C𝑦 (𝑢𝑛𝑘 , V) 󳨀→ C𝑦 (𝑢∗, V)
strongly in 𝑀 as 𝑘 󳨀→ ∞, (99)

∀V ∈ V𝑎𝑑. From (97), it can be easily verified for the same
subsequence {𝑢𝑛𝑘} in (97) that

𝑢𝑛𝑘 ⇀ 𝑢∗ weakly in 𝐿2 (𝑄) as 𝑘 󳨀→ ∞. (100)

Due to the weakly lower semicontinuity in the 𝐿2(𝑄) norm
topology, we can determine from (99) and (100) that the
map PV : 𝑢 󳨀→ 𝐽(𝑢, V) is lower semicontinuous for all
V ∈V𝑎𝑑. By similar arguments, we can prove thatQ𝑢 is upper
semicontinuous for all 𝑢 ∈ U𝑎𝑑.

Hence, we know that

𝐽0 (V) = lim inf
𝑛󳨀→∞

𝐽 (𝑢𝑛, V) ≥ 𝐽 (𝑢∗, V) , ∀V ∈V𝑎𝑑. (101)

But since 𝐽0(V) ≤ 𝐽(𝑢∗, V), we have
𝐽0 (V) = 𝐽 (𝑢∗, V) = min

𝑢∈U𝑎𝑑
𝐽 (𝑢, V) , ∀V ∈V𝑎𝑑. (102)

Similarly, we also know that there exists V∗ ∈V𝑎𝑑 such that

𝐽0 (V∗) = max
V∈V𝑎𝑑

𝐽0 (V) . (103)

From (102) and (103), we can conclude that (𝑢∗, V∗) ∈ F𝑎𝑑 is
an optimal pair for the cost (70).

This completes the proof.

4.2. Necessary Conditions of Optimal Pairs. We now turn to
the necessary optimality conditions that have to be satisfied
by optimal pairs with the cost (70). For this purpose, we
consider the following two types of observations𝐶𝑖, (𝑖 = 1, 2)
of distributive and terminal values:

(1) we take𝑀1 = 𝐿2(𝑄) × 𝐿2 and 𝐶1 ∈ L(𝑆(0, 𝑇),𝑀1)
and observe 𝐶1𝑦(𝑞) = (𝑦(𝑞; ⋅), 𝑦(𝑞; 𝑇)) ∈ 𝐿2(𝑄) × 𝐿2;

(2) we take 𝑀2 = 𝐿2(𝑄) and 𝐶2 ∈ L(𝑆(0, 𝑇),𝑀2) and
observe 𝐶2𝑦(𝑞) = 𝑦󸀠(𝑞; ⋅) ∈ 𝐿2(𝑄).

Remark 12. Clearly, the embedding 𝑆(0, 𝑇) 󳨅→ 𝐿2(𝑄) is
compact. From the embedding (14) we can utilize Lemma 10
in which𝑋 = 𝐷(Δ) and 𝑌 = 𝑍 = 𝐿2 to obtain the embedding𝑆(0, 𝑇) 󳨅→ 𝐶([0, 𝑇]; 𝐿2) is also compact. Consequently,
the observer 𝐶1 is a compact operator. Thus, 𝐶1 satisfies
the requirement for the existence of optimal pairs given in
Theorem 11.

Remark 13. Since 𝑦󸀠(𝑞) ∈ 𝐻1(0, 𝑇;𝐷(Δ), 𝐿2) ≡ {𝑔 | 𝑔 ∈𝐿2(0, 𝑇;𝐷(Δ)), 𝑔󸀠 ∈ 𝐿2(𝑄)}, and the embedding 𝐷(Δ) 󳨅→𝐿2 is compact, we can employ the Aubin-Lions-Temam’s
compact embedding theorem (cf. Temam [27, p. 274]) to
determine that the embedding 𝐻1(0, 𝑇;𝐷(Δ), 𝐿2) 󳨅→ 𝐿2(𝑄)
is compact. Consequently, the observer 𝐶2 is a compact
operator. Therefore, 𝐶2 satisfies the requirement for the
existence of optimal pairs given inTheorem 11.

4.2.1. Case of Distributive and Terminal Values Observations𝐶1. In this observation case, we consider the cost function
associated with the control system (68):

𝐽 (𝑢, V) = 12 󵄩󵄩󵄩󵄩𝑦 (𝑞) − 𝑌𝑑󵄩󵄩󵄩󵄩
2
𝐿2(𝑄) + 12

󵄩󵄩󵄩󵄩󵄩𝑦 (𝑞; 𝑇) − 𝑌𝑇𝑑 󵄩󵄩󵄩󵄩󵄩22
+ 𝛼2 ‖𝑢‖2𝐿2(𝑄) −

𝛽
2 ‖V‖2𝐿2(𝑄) ,

(104)
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where 𝑌𝑑 ∈ 𝐿2(𝑄) and 𝑌𝑇𝑑 ∈ 𝐿2 are desired values, and
the positive constants 𝛼 and 𝛽 are the relative weight of the
second and the third terms on the RHS of (104).

Now we formulate the following adjoint equation to
describe the necessary optimality conditions for this obser-
vation:

𝑝󸀠󸀠 −G (𝑦 (𝑞∗) , 𝑝) + 𝜇Δ𝑝󸀠
= (𝑢∗ + V∗) 𝑝 + 𝑦 (𝑞∗) − 𝑌𝑑 in 𝑄,

𝑝 = 0 on Σ,
𝑝 (𝑇, 𝑥) = 0,
𝑝󸀠 (𝑇, 𝑥) = −𝑦 (𝑞∗; 𝑇, 𝑥) + 𝑌𝑇𝑑 (𝑥)

in Ω,

(105)

where G(⋅, ⋅) is defined in (33). Using a similar estimation to
(34), we can have

G (𝑦 (𝑞∗) , ⋅) ∈L (𝐻10 , 𝐻−1) . (106)

Remark 14. By considering the observation conditions
𝑦(𝑞∗) − 𝑌𝑑 ∈ 𝐿2(𝑄) ⊂ 𝐿2(0, 𝑇;𝐻−1) and 𝑦(𝑞∗; 𝑇) − 𝑌𝑇𝑑 ∈ 𝐿2
and (106), we can refer to thewell-posedness result ofDautray
and Lions [23, pp.558-570] to verify that (105), reversing the
direction of time 𝑡 󳨀→ 𝑇 − 𝑡, admits a unique weak solution𝑝 ∈ 𝑊(0, 𝑇), which is given in Definition 2.

We now discuss the first-order optimality conditions for
the minimax optimal control problem (71) for the quadratic
cost function (104).

Theorem 15. If 𝛼 and 𝛽 in the cost (104) are large enough, then
an optimal control 𝑢∗ ∈ U𝑎𝑑 and a disturbance V∗ ∈ V𝑎𝑑,
namely, an optimal pair 𝑞∗ = (𝑢∗, V∗) ∈ F𝑎𝑑 satisfying (71),
can be given by

𝑢∗ = max{𝑎,min{−𝑦 (𝑞∗) 𝑝𝛼 , 𝑏}} ,

V∗ = max{𝑐,min{𝑦 (𝑞∗) 𝑝𝛽 , 𝑑}} ,
(107)

where 𝑝 is the weak solution of (105).

Proof. Let 𝑞∗ = (𝑢∗, V∗) ∈ F𝑎𝑑 be an optimal pair in (71)
with the cost (104) and let 𝑦(𝑞∗) be the corresponding weak
solution of (68).

From Theorem 7, we know that the map 𝑞 = (𝑢, V) 󳨀→𝑦(𝑞) is Fréchet differentiable at 𝑞 = 𝑞∗ = (𝑢∗, V∗) in the
direction 𝑤 = (ℎ, 𝑙) ∈ F2, which satisfies 𝑞∗ + 𝜖𝑤 ∈ F𝑎𝑑 for
sufficiently small 𝜖 > 0.Thus, the map 𝑞 = (𝑢, V) 󳨀→ 𝑦(𝑞)
is also (strongly) Gâteaux differentiable at 𝑞 = 𝑞∗ in the
direction 𝑤 = (ℎ, 𝑙) ∈ F2. Thus, we have

𝑦 (𝑞∗ + 𝜖𝑤) − 𝑦 (𝑞∗)
𝜖 󳨀→ 𝑧 (= 𝑧 (𝑤))

strongly in 𝑆 (0, 𝑇) as 𝜖 󳨀→ 0+,
(108)

where 𝑧 = 𝐷𝑦(𝑞∗)𝑤 is a unique solution of (69).Therefore we
can obtain the Gâteaux derivative of the cost (104) at 𝑞 = 𝑞∗
in the direction 𝑤 = (ℎ, 𝑙) as follows:
𝐷𝐽 (𝑢∗, V∗) (ℎ, 𝑙)
= lim
𝜖󳨀→0+

𝐽 (𝑢∗ + 𝜖ℎ, V∗ + 𝜖𝑙) − 𝐽 (𝑢∗, V∗)
𝜖 = lim

𝜖󳨀→0+
1
2

⋅ ∫𝑇
0
(𝑦 (𝑞∗ + 𝜖𝑤) + 𝑦 (𝑞∗)

− 2𝑌𝑑, 𝑦 (𝑞
∗ + 𝜖𝑤) − 𝑦 (𝑞∗)

𝜖 )
2
𝑑𝑡 + lim
𝜖󳨀→0+

1
2

⋅ (𝑦 (𝑞∗ + 𝜖𝑤; 𝑇) + 𝑦 (𝑞∗; 𝑇) − 2𝑌𝑇𝑑 ,
𝑦 (𝑞∗ + 𝜖𝑤; 𝑇) − 𝑦 (𝑞∗; 𝑇)

𝜖 )
2
+ lim
𝜖󳨀→0+

[𝛼2
⋅ ∫𝑇
0
(2 (𝑢∗, ℎ)2 + 𝜖 ‖ℎ‖22) 𝑑𝑡 − 𝛽2

⋅ ∫𝑇
0
(2 (V∗, 𝑙)2 + 𝜖 ‖𝑙‖22) 𝑑𝑡] = ∫

𝑇

0
(𝑦 (𝑞∗)

− 𝑌𝑑, 𝑧)2 𝑑𝑡 + (𝑦 (𝑞∗; 𝑇) − 𝑌𝑇𝑑 , 𝑧 (𝑇))2
+ 𝛼∫𝑇
0
(𝑢∗, ℎ)2 𝑑𝑡 − 𝛽∫

𝑇

0
(V∗, 𝑙)2 𝑑𝑡,

(109)

where 𝑧 = 𝐷𝑦(𝑞∗)𝑤 is a solution of (69).
Before we proceed to the calculations, we note that

⟨G (𝑦 (𝑞∗) , 𝜑) , 𝜙⟩−1,1
= − (1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑞∗)󵄩󵄩󵄩󵄩22) (∇𝜑, ∇𝜙)2
− 2 (∇𝑦 (𝑞∗) , ∇𝜑)2 (∇𝑦 (𝑞∗) , ∇𝜙)2

= ⟨(1 + 󵄩󵄩󵄩󵄩∇𝑦 (𝑞∗)󵄩󵄩󵄩󵄩22) Δ𝜙, 𝜑⟩−1,1
+ 2 (∇𝑦 (𝑞∗) , ∇𝜙)2 (Δ𝑦 (𝑞∗) , 𝜑)2

= ⟨𝜑,G (𝑦 (𝑞∗) , 𝜙)⟩1,−1 , ∀𝜑, 𝜙 ∈ 𝐻10 .

(110)

We multiply both sides of the weak form of (105) by 𝑧, which
is a solution of (69), and integrate it over [0, 𝑇].Then, we have

∫𝑇
0
⟨𝑝󸀠󸀠, 𝑧⟩

−1,1
𝑑𝑡

− ∫𝑇
0
⟨(G (𝑦 (𝑞∗) , 𝑝) + (𝑢∗ + V∗) 𝑝, 𝑧⟩−1,1 𝑑𝑡

+ 𝜇∫𝑇
0
⟨Δ𝑝󸀠, 𝑧⟩

−1,1
𝑑𝑡

= ∫𝑇
0
(𝑦 (𝑞∗) − 𝑌𝑑, 𝑧)2 𝑑𝑡.

(111)
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By integration by parts and the terminal value of the weak
solution 𝑝 of (105), (111) can be rewritten as

∫𝑇
0
(𝑝, 𝑧󸀠󸀠)

2
𝑑𝑡 + (𝑝󸀠 (𝑇) , 𝑧 (𝑇))

2

− ∫𝑇
0
⟨G (𝑦 (𝑞∗) , 𝑝) , 𝑧⟩−1,1 𝑑𝑡

− 𝜇∫𝑇
0
(𝑝, Δ𝑧󸀠)

2
𝑑𝑡 − ∫𝑇

0
(𝑝, (𝑢∗ + V∗) 𝑧)2 𝑑𝑡

= (by (110) and 𝑝󸀠 (𝑇) = −𝑦 (𝑞∗; 𝑇) + 𝑌𝑇𝑑 )
= ∫𝑇
0
(𝑝, 𝑧󸀠󸀠)

2
𝑑𝑡 − (𝑦 (𝑞∗; 𝑇) − 𝑌𝑇𝑑 , 𝑧 (𝑇))2

− ∫𝑇
0
(𝑝,G (𝑦 (𝑞∗) , 𝑧))2 𝑑𝑡 − 𝜇∫

𝑇

0
(𝑝, Δ𝑧󸀠)

2
𝑑𝑡

− ∫𝑇
0
(𝑝, (𝑢∗ + V∗) 𝑧)2 𝑑𝑡

= ∫𝑇
0
(𝑦 (𝑞∗) − 𝑌𝑑, 𝑧)2 𝑑𝑡.

(112)

Since 𝑧 is the solution of (69), we can obtain the following
from (112):

∫𝑇
0
(𝑦 (𝑞∗) − 𝑌𝑑, 𝑧)2 𝑑𝑡 + (𝑦 (𝑞∗; 𝑇) − 𝑌𝑇𝑑 , 𝑧 (𝑇))2
= ∫𝑇
0
((ℎ + 𝑙) 𝑦 (𝑞∗) , 𝑝)2 𝑑𝑡.

(113)

Therefore, we can deduce that (109) and (113) imply

𝐷𝐽 (𝑢∗, V∗) (ℎ, 𝑙) = ∫𝑇
0
(𝛼𝑢∗ + 𝑦 (𝑞∗) 𝑝, ℎ)2 𝑑𝑡

+ ∫𝑇
0
(−𝛽V∗ + 𝑦 (𝑞∗) 𝑝, 𝑙)2 𝑑𝑡.

(114)

Since 𝑞∗ = (𝑢∗, V∗) ∈ F𝑎𝑑 is an optimal pair in (71), we know
that

𝐷𝑢𝐽 (𝑢∗, V∗) (ℎ) ≥ 0,
𝐷V𝐽 (𝑢∗, V∗) (𝑙) ≤ 0,

(ℎ, 𝑙) ∈ F2.
(115)

Therefore, we can obtain the following from (114) and (115):

∫𝑇
0
(𝛼𝑢∗ + 𝑦 (𝑞∗) 𝑝, ℎ)2 𝑑𝑡 ≥ 0,

∫𝑇
0
(−𝛽V∗ + 𝑦 (𝑞∗) 𝑝, 𝑙)2 𝑑𝑡 ≤ 0,

(116)

where (ℎ, 𝑙) ∈ F2. By considering the signs of the variationsℎ and 𝑙 in (116), which depend on 𝑢∗ and V∗, respectively, we
can deduce the following from (116) (possibly not unique):

𝑢∗ = max{𝑎,min{−𝑦 (𝑞∗) 𝑝𝛼 , 𝑏}} ,

V∗ = max{𝑐,min{𝑦 (𝑞∗) 𝑝𝛽 , 𝑑}} .
(117)

This completes the proof.

4.2.2. Case of Velocity Observation 𝐶2. In this observation
case, we consider the cost function associatedwith the control
system (68):

𝐽 (𝑢, V) = 12
󵄩󵄩󵄩󵄩󵄩𝑦󸀠 (𝑞) − 𝑌𝑑󵄩󵄩󵄩󵄩󵄩2𝐿2(𝑄) + 𝛼2 ‖𝑢‖2𝐿2(𝑄)
− 𝛽2 ‖V‖2𝐿2(𝑄) ,

(118)

where𝑌𝑑 ∈ 𝐿2(𝑄) is a desired value and the positive constants𝛼 and 𝛽 are the relative weight of the second and the third
terms on the RHS of (118). Now we turn to the necessary
optimality conditions that have to be satisfied by each solu-
tion of the minimax optimal control problem with the cost
(118). For this purpose, as proposed in a previous study [8],
we introduce the following adjoint equation corresponding
to (68), in which 𝑞 = (𝑢, V) is replaced by 𝑞∗ = (𝑢∗, V∗):
𝑝󸀠 + ∫𝑇

𝑡
(G (𝑦 (𝑞∗) , 𝑝) + (𝑢∗ + V∗) 𝑝) 𝑑𝑠 + 𝜇Δ𝑝

= 𝑦󸀠 (𝑞∗) − 𝑌𝑑 in 𝑄,
𝑝 = 0 on Σ,
𝑝 (𝑇, 𝑥) = 0 in Ω,

(119)

whereG(⋅, ⋅) is defined in (33).

Remark 16. Usually, adjoint systems of second order prob-
lems are also second order (cf. Lions [9]) as long as they are
meaningful. However, we have a barrier in this quasilinear
(68). If we derive a formal second order adjoint system related
to the velocity observation with the cost (118), then it is hard
to explain the well-posedness. To overcome this difficulty, we
follow the idea given in [8, 11], in which it is adopted that
the first-order integrodifferential system as an appropriate
adjoint system instead of the formal second order adjoint
system.

Proposition 17. Equation (119) admits a unique weak solution𝑝 satisfying
𝑝 ∈ 𝐻1 (0, 𝑇;𝐻10 , 𝐿2) ∩ 𝐶 ([0, 𝑇] ;𝐻10) , (120)

where𝐻1(0, 𝑇;𝐻10 , 𝐿2) is the solution space of (119) given by

𝐻1 (0, 𝑇;𝐻10 , 𝐿2)
= {𝜙 | 𝜙 ∈ 𝐿2 (0, 𝑇;𝐻10) , 𝜙󸀠 ∈ 𝐿2 (𝑄)} .

(121)
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Proof. Since

∫𝑇
𝑇−𝑡
(G (𝑦 (𝑞∗) , 𝑝) + (𝑢∗ + V∗) 𝑝) (𝑠) 𝑑𝑠

= ∫𝑡
0
(G (𝑦 (𝑞∗) , 𝑝) + (𝑢∗ + V∗) 𝑝) (𝑇 − 𝜎) 𝑑𝜎,

(122)

the time reversed equation of (119) (𝑡 󳨀→ 𝑇− 𝑡 in (119)) is
given by

− 𝜓󸀠 + ∫𝑡
0
(G (𝑦 (𝑞∗) , 𝜓) + (𝑢∗ + V∗) 𝜓) 𝑑𝜎 + 𝜇Δ𝜓

= −𝑦󸀠 (𝑞∗) − 𝑌𝑑 in 𝑄,
𝜓 = 0 on Σ,
𝜓 (0, 𝑥) = 0 in Ω,

(123)

where 𝜓(⋅) = 𝑝(𝑇 − ⋅). From (106) and −𝑦󸀠(𝑞∗) − 𝑌𝑑 ∈𝐿2(𝑄), it is verified that all requirements of Dautray and
Lions [23, pp.656-661] are satisfied with (123). Therefore, it
readily follows that there exists a unique weak solution 𝜓 ∈𝐻1(0, 𝑇;𝐻10 , 𝐿2) ∩ 𝐶([0, 𝑇];𝐻10 ) of (123).

This completes the proof.

We now discuss the first-order optimality conditions for
the minimax optimal control problem (71).

Theorem 18. If 𝛼 and 𝛽 in the cost (118) are large enough, then
an optimal control 𝑢∗ ∈ U𝑎𝑑 and a disturbance V∗ ∈ V𝑎𝑑,
namely, an optimal pair 𝑞∗ = (𝑢∗, V∗) ∈ F𝑎𝑑 satisfying (71),
can be given by:

𝑢∗ = max{𝑎,min{𝑦 (𝑞∗) 𝑝𝛼 , 𝑏}} ,

V∗ = max{𝑐,min{−𝑦 (𝑞∗) 𝑝𝛽 , 𝑑}} ,
(124)

where 𝑝 is the weak solution of (119).

Proof. Let 𝑞∗ = (𝑢∗, V∗) ∈ F𝑎𝑑 be an optimal pair in (71) with
the cost (118) and 𝑦(𝑞∗) be the corresponding weak solution
of (68).

By analogy with the proof of Theorem 15, the Gâteaux
derivative of the cost (118) at 𝑞∗ = (𝑢∗, V∗) in the direction𝑤 = (ℎ, 𝑙) ∈ F2 that satisfies 𝑞∗ + 𝜖𝑤 ∈ F𝑎𝑑 for sufficiently
small 𝜖 > 0 is given by

𝐷𝐽 (𝑢∗, V∗) (ℎ, 𝑙)
= lim
𝜖󳨀→0+

𝐽 (𝑢∗ + 𝜖ℎ, V∗ + 𝜖𝑙) − 𝐽 (𝑢∗, V∗)
𝜖

= ∫𝑇
0
(𝑦󸀠 (𝑞∗) − 𝑌𝑑, 𝑧󸀠)2 𝑑𝑡 + 𝛼∫

𝑇

0
(𝑢∗, ℎ)2 𝑑𝑡

− 𝛽∫𝑇
0
(V∗, 𝑙)2 𝑑𝑡,

(125)

where 𝑧 = 𝐷𝑦(𝑞∗)𝑤 is a solution of (69). We multiply both
sides of the weak form of (119) by 𝑧󸀠 and integrate it over[0, 𝑇]. Then, we have

∫𝑇
0
(𝑝󸀠, 𝑧󸀠)

2
𝑑𝑡

+ ∫𝑇
0
⟨∫𝑇
𝑡
(G (𝑦 (𝑞∗) , 𝑝) + (𝑢∗ + V∗) 𝑝) 𝑑𝑠,

𝑧󸀠⟩
−1,1
𝑑𝑡 − 𝜇∫𝑇

0
(∇𝑝, ∇𝑧󸀠)

2
𝑑𝑡

= ∫𝑇
0
(𝑦󸀠 (𝑞∗) − 𝑌𝑑, 𝑧󸀠)2 𝑑𝑡.

(126)

By integration by parts and the terminal value of the weak
solution 𝑝 of (119), (126) can be rewritten as

− ∫𝑇
0
(𝑝, 𝑧󸀠󸀠)

2
𝑑𝑡

+ ∫𝑇
0
⟨G (𝑦 (𝑞∗) , 𝑝) + (𝑢∗ + V∗) 𝑝, 𝑧⟩−1,1 𝑑𝑡

+ 𝜇∫𝑇
0
(𝑝, Δ𝑧󸀠)

2
𝑑𝑡 = (By (110))

= −∫𝑇
0
(𝑝, 𝑧󸀠󸀠)

2
𝑑𝑡

+ ∫𝑇
0
(𝑝,G (𝑦 (𝑞∗) , 𝑧) + (𝑢∗ + V∗) 𝑧)2 𝑑𝑡

+ 𝜇∫𝑇
0
(𝑝, Δ𝑧󸀠)

2
𝑑𝑡 = ∫𝑇

0
(𝑦󸀠 (𝑞∗) − 𝑌𝑑, 𝑧󸀠)2 𝑑𝑡.

(127)

Since 𝑧 is the solution of (69), we can obtain the following
from (127):

∫𝑇
0
(𝑦󸀠 (𝑞∗) − 𝑌𝑑, 𝑧󸀠)2 𝑑𝑡

= −∫𝑇
0
((ℎ + 𝑙) 𝑦 (𝑞∗) , 𝑝)2 𝑑𝑡.

(128)

Therefore, we can deduce that (125) and (128) imply

𝐷𝐽 (𝑢∗, V∗) (ℎ, 𝑙) = ∫𝑇
0
(𝛼𝑢∗ − 𝑦 (𝑞∗) 𝑝, ℎ)2 𝑑𝑡

+ ∫𝑇
0
(−𝛽V∗ − 𝑦 (𝑞∗) 𝑝, 𝑙)2 𝑑𝑡.

(129)

Since 𝑞∗ = (𝑢∗, V∗) ∈ F𝑎𝑑 is an optimal pair in (71), we know
that

𝐷𝑢𝐽 (𝑢∗, V∗) (ℎ) ≥ 0,
𝐷V𝐽 (𝑢∗, V∗) (𝑙) ≤ 0,

(ℎ, 𝑙) ∈ F2.
(130)
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Therefore, we can obtain the following from (129) and (130):

∫𝑇
0
(𝛼𝑢∗ − 𝑦 (𝑞∗) 𝑝, ℎ)2 𝑑𝑡 ≥ 0,

∫𝑇
0
(−𝛽V∗ − 𝑦 (𝑞∗) 𝑝, 𝑙)2 𝑑𝑡 ≤ 0,

(131)

where (ℎ, 𝑙) ∈ F2. By considering the signs of the variationsℎ and 𝑙 in (131), which depend on 𝑢∗ and V∗, respectively, we
can deduce from (131) that (possibly not unique)

𝑢∗ = max{𝑎,min{𝑦 (𝑞∗) 𝑝𝛼 , 𝑏}} ,

V∗ = max{𝑐,min{−𝑦 (𝑞∗) 𝑝𝛽 , 𝑑}} .
(132)

This completes the proof.

5. Conclusion

The Fréchet differentiability from a bilinear control input
into the solution space of a damped Kirchhoff-type equation
is verified. As an application of this result, we proposed
a minimax optimal control problem for the above state
equation by using quadratic cost functions that depend on
control and disturbance (or noise) variables. By utilizing
the Fréchet differentiability of the solution map and the
continuity of the solution map in a weak topology, we
have proven existence of the optimal control of the worst
disturbance, called the optimal pair under some hypothesis.
And we derived necessary optimality conditions that any
optimal pairs must satisfy in some observation cases.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares no conflicts of interest.

Authors’ Contributions

The author read and approved the final manuscript.

Acknowledgments

This research was supported by the Daegu University
Research Grant 2015.

References

[1] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig,
Germany, 1883.

[2] A. Arosio, “Averaged evolution equations. The Kirchhoff string
and its treatment in scales of Banach spaces,” in Proceedings of
the nd Workshop on Functional-Analytic Methods in Complex
Analysis, Treste, World Scientific, Singapore, 1993.

[3] S. Spagnolo, “The Cauchy problem for Kirchhoff equations,”
Rendiconti del Seminario Matematico e Fisico di Milano, vol. 62,
pp. 17–51, 1992.

[4] S. Pohozaev, “On a class of quasilinear hyperbolic equations,”
Matematicheskii Sbornik, vol. 96, pp. 152–166, 1975.

[5] J. L. Lions, “On some questions in boundary value problem
of Mathematical Physics,” in Contemporary developments in
ContinuumMechanics and Partial Differential Equations, G. M.
de la Penha and L. A. Medeiros, Eds., Math. Studies, North
Holland, 1977.

[6] K. Nishihara and Y. Yamada, “On global solutions of some
degenerate quasilinear hyperbolic equations with dissipative
terms,” Funkcialaj Ekvacioj, vol. 33, no. 1, pp. 151–159, 1990.

[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates
Filho, and J. A. Soriano, “Existence and exponential decay for a
Kirchhoff-Carrier model with viscosity,” Journal of Mathemati-
cal Analysis and Applications, vol. 226, no. 1, pp. 40–60, 1998.

[8] J.-s. Hwang and S.-i. Nakagiri, “Optimal control problems
for Kirchhoff type equation with a damping term,” Nonlinear
Analysis, Theory, Method and Applications, vol. 72, no. 3-4, pp.
1621–1631, 2010.

[9] J. L. Lions, Optimal Control of Systems Governed by Partial
Differential Equations, Springer-Verlag, Berlin, Germany, 1971.

[10] J. Droniou and J.-P. Raymond, “Optimal pointwise control of
semilinear parabolic equations,” Nonlinear Analysis, vol. 39, pp.
135–156, 2000.

[11] J.-s. Hwang and S.-i. Nakagiri, “Optimal control problems for
the equation of motion of membrane with strong viscosity,”
Journal of Mathematical Analysis and Applications, vol. 321, no.
1, pp. 327–342, 2006.

[12] J.-s. Hwang, “Optimal control problems for an extensible beam
equation,” Journal of Mathematical Analysis and Applications,
vol. 353, no. 1, pp. 436–448, 2009.

[13] A. Belmiloudi, “Bilinear minimax control problems for a class
of parabolic systems with applications to control of nuclear
reactors,” Journal of Mathematical Analysis and Applications,
vol. 327, no. 1, pp. 620–642, 2007.

[14] N. Arada and J.-P. Raymond, “Minimax control of parabolic
systems with state constraints,” SIAM Journal on Control and
Optimization, vol. 38, no. 1, pp. 254–271, 1999.

[15] I. Lasiecka andR. Triggiani,Control theory for partial differential
equations: continuous and approximation theories, I, Cambridge
University Press, Cambridge, UK, 2000.

[16] X. Li and J. Yong, Optimal Control Theory for Infinite Dimen-
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